Submitted:
03 March 2025
Posted:
04 March 2025
You are already at the latest version
Abstract
Cardiovascular disease is the number one cause of death in the United States, and accounts for one-third of all deaths worldwide. 1 In the United States, 43.9% of the adult population is projected to have some form of Cardiovascular Disease, CVD, by the year 2030. 2 The increasing trend of cardiovascular mortality is ever increasing especially for low and middle-income countries. 3 Some common risk factors that drive this trend include tobacco smoking, lack of physical activity, and unhealthy diet. 4 Fortunately, some of the risk factors for CVD can be clinically assessed and treated medically through blood lipid profiles. Previously, this has been done through lipoprotein-cholesterol (LDL-C) reduction, however, a closer look at the LDL subclasses or particle size distribution has revealed that it may be the size and not the number of lipoprotein particles that are a more powerful predictor of CVD. 5. It appears that small, less dense particles have a greater susceptibility to oxidation and permeability to the endothelial wall in the coronary vessels. 2 Furthermore, small, dense LDL particles also circulate longer in the blood stream and are likely to undergo numerous atherogenic modifications such as desialylation, glycation, and oxidation, increasing their atherogenicity. 6 Similar findings have been found with HDL particle sizes where small HDL particles have been associated with increased CVD risk. Conversely, the concentration of large HDL particles has been shown to be negatively correlated with CVD risk, however, the size of the HDL particle and its cardioprotective functions has not been clearly established in the literature and the mechanisms need further study. 7,8 Therefore, the purpose of this review is to discuss the effect of exercise (both aerobic & resistance training) and diet on HDL and LDL particle size.
Keywords:
Introduction
The Effect of Aerobic Exercise on HDL and LDL Particle Size
The Effect of Resistance Training on HDL and LDL Particle Size
The Effect of Diet on HDL and LDL Particle Sizes
Training Applications & Future Directions
Conclusions
References
- Roth, G. A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S. F., Abyu, G., Ahmed, M., Aksut, B., Alam, T., Alam, K., Alla, F., Alvis-Guzman, N., Amrock, S., Ansari, H., Ärnlöv, J., Asayesh, H., Atey, T. M., Avila-Burgos, L., Awasthi, A., … Murray, C. (2017). Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. Journal of the American College of Cardiology, 70(1), 1–25. [CrossRef]
- Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., de Ferranti, S. D., Floyd, J., Fornage, M., Gillespie, C., Isasi, C. R., Jiménez, M. C., Jordan, L. C., Judd, S. E., Lackland, D., Lichtman, J. H., Lisabeth, L., Liu, S., Longenecker, C. T., … Muntner, P. (2017). Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association. Circulation, 135(10). [CrossRef]
- Mendis, S. (2017). Global progress in prevention of cardiovascular disease. Cardiovascular Diagnosis and Therapy, 67(1), S32–S38. [CrossRef]
- Dvm, H. S. B., Li, T., & Ravi, N. (2005). Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. 10(4), 21.
- Superko, H. R., & Gadesam, R. R. (2008). Is it LDL particle size or number that correlates with risk for cardiovascular disease? Current Atherosclerosis Reports, 10(5), 377–385. [CrossRef]
- Ivanova, E. A., Myasoedova, V. A., Melnichenko, A. A., Grechko, A. V., & Orekhov, A. N. (2017). Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxidative Medicine and Cellular Longevity, 2017, 1–10. [CrossRef]
- Fazio, S., & Pamir, N. (2016). HDL Particle Size and Functional Heterogeneity. Circulation Research, 119(6), 704–707. [CrossRef]
- Varady, K. A., Bhutani, S., Klempel, M. C., & Kroeger, C. M. (2011). Comparison of effects of diet versus exercise weight loss regimens on LDL and HDL particle size in obese adults. Lipids in Health and Disease, 10(1), 119. [CrossRef]
- Kraus, W. E., Houmard, J. A., Duscha, B. D., Knetzger, K. J., Wharton, M. B., McCartney, J. S., Bales, C. W., Henes, S., Samsa, G. P., Otvos, J. D., Kulkarni, K. R., & Slentz, C. A. (2002). Effects of the amount and intensity of exercise on plasma lipoproteins. The New England journal of medicine, 347(19), 1483–1492. [CrossRef]
- Slentz, C. A., Houmard, J. A., Johnson, J. L., Bateman, L. A., Tanner, C. J., McCartney, J. S., Duscha, B. D., & Kraus, W. E. (2007). Inactivity, exercise training and detraining, and plasma lipoproteins. STRRIDE: a randomized, controlled study of exercise intensity and amount. Journal of applied physiology (Bethesda, Md. : 1985), 103(2), 432–442. [CrossRef]
- Siahkohian, M., Bolboli, L., & Naghizadeh Baghi, A. (2008). The Effects of Exercise Intensity on the Low-Density Lipoprotein Profile: Quantitative vs Qualitative Changes. Sci alert.
- Wooten, J. S., Biggerstaff, K. D., & Ben-Ezra, V. (2009). Responses of LDL and HDL particle size and distribution to omega-3 fatty acid supplementation and aerobic exercise. Journal of Applied Physiology, 107(3), 794–800. [CrossRef]
- Kelley, G. A., & Kelley, K. S. (2006). Aerobic exercise and lipids and lipoproteins in men: A meta-analysis of randomized controlled trials. The Journal of Men’s Health & Gender, 3(1), 61–70. [CrossRef]
- Sittiwicheanwong, R., Ariyapitipun, T., Gulsatitporn, S., Nopponpunth, V., Abeywardena, M., & Dahlan, W. (n.d.). Alterations of atherogenic low-density lipoproteins and serum fatty acids after 12 week moderate exercise training in sedentary Thai women.
- Swift, D. L., Houmard, J. A., Slentz, C. A., & Kraus, W. E. (2018). Effects of aerobic training with and without weight loss on insulin sensitivity and lipids. PLOS ONE, 13(5), e0196637. [CrossRef]
- Williams, P. T., Krauss, R. M., Vranizan, K. M., Albers, J. J., Terry, R. B., & Wood, P. D. (1989). Effects of exercise-induced weight loss on low density lipoprotein subfractions in healthy men. Arteriosclerosis: An Official Journal of the American Heart Association, Inc., 9(5), 623–632. [CrossRef]
- da Silva, J. L., Vinagre, C. G. C. M., Morikawa, A. T., Alves, M. J. N. N., Mesquita, C. H., & Maranhão, R. C. (2011). Resistance training changes LDL metabolism in normolipidemic subjects: A study with a nanoemulsion mimetic of LDL. Atherosclerosis, 219(2), 532–537. [CrossRef]
- Voglhuber, J., Ljubojevic-Holzer, S., Abdellatif, M., & Sedej, S. (2021). Targeting Cardiovascular Risk Factors Through Dietary Adaptations and Caloric Restriction Mimetics. Frontiers in nutrition, 8, 758058. [CrossRef]
- Varady, K. A., Lamarche, B., Santosa, S., Demonty, I., Charest, A., & Jones, P. J. H. (2006). Effect of weight loss resulting from a combined low-fat diet/exercise regimen on low-density lipoprotein particle size and distribution in obese women. Metabolism, 55(10), 1302–1307. [CrossRef]
- Bhutani, S., Klempel, M.C., Kroeger, C.M., Trepanowski, J.F. and Varady, K.A. (2013), Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity, 21: 1370-1379. [CrossRef]
- Klempel, M., Kroeger, C. & Varady, K. Alternate day fasting increases LDL particle size independently of dietary fat content in obese humans. Eur J Clin Nutr 67, 783–785 (2013). [CrossRef]
- Halverstadt, A., Phares, D. A., Wilund, K. R., Goldberg, A. P., & Hagberg, J. M. (2007). Endurance exercise training raises high-density lipoprotein cholesterol and lowers small low-density lipoprotein and very low-density lipoprotein independent of body fat phenotypes in older men and women. Metabolism, 56(4), 444–450. [CrossRef]
- Huffman, K. M., Hawk, V. H., Henes, S. T., Ocampo, C. I., Orenduff, M. C., Slentz, C. A., Johnson, J. L., Houmard, J. A., Samsa, G. P., Kraus, W. E., & Bales, C. W. (2012). Exercise effects on lipids in persons with varying dietary patterns—does diet matter if they exercise? Responses in Studies of a Targeted Risk Reduction Intervention through Defined Exercise I. American Heart Journal, 164(1), 117–124. [CrossRef]
- Siri, P. W., & Krauss, R. M. (2005). Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Current Atherosclerosis Reports, 7(6), 455–459. [CrossRef]
- Aeberli, I., Zimmermann, M. B., Molinari, L., Lehmann, R., l'Allemand, D., Spinas, G. A., Berneis, K. (2007) Fructose intake is a predictor of LDL particle size in overweight schoolchildren, The American Journal of Clinical Nutrition. 86(4), 1174–1178. [CrossRef]
- Hieronimus, B., Griffen, S. C., Keim, N. L., Bremer, A. A., Berglund, L., Nakajima, K., Havel, P. J., & Stanhope, K. L. (2019). Effects of Fructose or Glucose on Circulating ApoCIII and Triglyceride and Cholesterol Content of Lipoprotein Subfractions in Humans. Journal of clinical medicine, 8(7), 913. [CrossRef]
- Chiu, S., Bergeron, N., Williams, P. T., Bray, G. A., Sutherland, B., & Krauss, R. M. (2016). Comparison of the DASH (Dietary Approaches to Stop Hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: a randomized controlled trial. The American journal of clinical nutrition, 103(2), 341–347. [CrossRef]
- Mueller, C., Masri, B., Hogg, J., Mastrogiacomo, M., & Chiu, Y. L. (2010). Carbohydrate- vs fat-controlled diet effect on weight loss and coronary artery disease risk: a pilot feeding study. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition, 25(5), 542–547. [CrossRef]
- McLaughlin, T., Carter, S., Lamendola, C., Abbasi, F., Yee, G., Schaaf, P., Basina, M., & Reaven, G. (2006). Effects of moderate variations in macronutrient composition on weight loss and reduction in cardiovascular disease risk in obese, insulin-resistant adults. The American journal of clinical nutrition, 84(4), 813–821. [CrossRef]
- Al-Sarraj, T., Saadi, H., Volek, J. S., & Fernandez, M. L. (2010). Carbohydrate restriction favorably alters lipoprotein metabolism in Emirati subjects classified with the metabolic syndrome. Nutrition, metabolism, and cardiovascular diseases : NMCD, 20(10), 720–726. [CrossRef]
- Mangravite, L. M., Chiu, S., Wojnoonski, K., Rawlings, R. S., Bergeron, N., & Krauss, R. M. (2011). Changes in atherogenic dyslipidemia induced by carbohydrate restriction in men are dependent on dietary protein source. The Journal of nutrition, 141(12), 2180–2185. [CrossRef]
- Faghihnia, N., Mangravite, L. M., Chiu, S., Bergeron, N., & Krauss, R. M. (2012). Effects of dietary saturated fat on LDL subclasses and apolipoprotein CIII in men. European journal of clinical nutrition, 66(11), 1229–1233. [CrossRef]
- Bergeron, N., Chiu, S., Williams, P. T., M King, S., & Krauss, R. M. (2019). Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: a randomized controlled trial. The American journal of clinical nutrition, 110(1), 24–33. [CrossRef]
- Chiu, S., Williams, P. T., & Krauss, R. M. (2017). Effects of a very high saturated fat diet on LDL particles in adults with atherogenic dyslipidemia: A randomized controlled trial. PLOS ONE, 12(2), e0170664. [CrossRef]
- Michielsen, C., Hangelbroek, R., Feskens, E., & Afman, L. A. (2019). Disentangling the Effects of Monounsaturated Fatty Acids from Other Components of a Mediterranean Diet on Serum Metabolite Profiles: A Randomized Fully Controlled Dietary Intervention in Healthy Subjects at Risk of the Metabolic Syndrome. Molecular nutrition & food research, 63(9), e1801095. [CrossRef]
- Wang, L., Bordi, P. L., Fleming, J. A., Hill, A. M., Kris-Etherton, P. M. (2015) Effect of a Moderate Fat Diet with and Without Avocados on Lipoprotein Particle Number, Size and Subclasses in Overweight and Obese Adults: A Randomized, Controlled Trial. Journal of the American Heart Association. 4:e001355. [CrossRef]
- Hartwich, J., Malec, M. M., Partyka, L., Pérez-Martinez, P., Marin, C., López-Miranda, J., Tierney, A. C., Mc Monagle, J., Roche, H. M., Defoort, C., Wolkow, P., & Dembinska-Kieć, A. (2009). The effect of the plasma n-3/n-6 polyunsaturated fatty acid ratio on the dietary LDL phenotype transformation - insights from the LIPGENE study. Clinical nutrition (Edinburgh, Scotland), 28(5), 510–515. [CrossRef]
- Schwab, U., Sarkkinen, E., Lichtenstein, A. et al. The effect of quality and amount of dietary fat on the susceptibility of low density lipoprotein to oxidation in subjects with impaired glucose tolerance. Eur J Clin Nutr 52, 452–458 (1998). [CrossRef]
- Bos, G., Poortvliet, M., Scheffer, P. et al. Dietary polyunsaturated fat intake is associated with low-density lipoprotein size, but not with susceptibility to oxidation in subjects with impaired glucose metabolism and type II diabetes: the Hoorn study. Eur J Clin Nutr 61, 205–211 (2007). [CrossRef]
- Ashton EL, Best JD, Ball MJ. Effects of monounsaturated enriched sunflower oil on CHD risk factors including LDL size and copper-induced LDL oxidation. J Am Coll Nutr. 2001 Aug;20(4):320-6. [CrossRef] [PubMed]
- Dumesnil, J. G., Turgeon, J., Tremblay, A., Poirier, P., Gilbert, M., Gagnon, L., St-Pierre, S., Garneau, C., Lemieux, I., Pascot, A., Bergeron, J., & Després, J. P. (2001). Effect of a low-glycaemic index--low-fat--high protein diet on the atherogenic metabolic risk profile of abdominally obese men. The British journal of nutrition, 86(5), 557–568. [CrossRef]
- Desroches, S., & Lamarche, B. (2004). Diet and low-density lipoprotein particle size. Current Atherosclerosis Reports, 6(6), 453–460. [CrossRef]
- Obisesan, T. O., Ferrell, R. E., Goldberg, A. P., Phares, D. A., Ellis, T. J., & Hagberg, J. M. (2008). APOE genotype affects black-white responses of high-density lipoprotein cholesterol subspecies to aerobic exercise training. Metabolism, 57(12), 1669–1676. [CrossRef]
- Johnson, J. L., Slentz, C. A., Duscha, B. D., Samsa, G. P., McCartney, J. S., Houmard, J. A., & Kraus, W. E. (2004). Gender and racial differences in lipoprotein subclass distributions: the STRRIDE study. Atherosclerosis, 176(2), 371–377. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).