Submitted:
14 February 2025
Posted:
18 February 2025
You are already at the latest version
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, characterized by rapid growth, invasive infiltration into surrounding brain tissue, and resistance to conventional therapies. Despite advancements in surgery, radiotherapy, and chemotherapy, median survival remains approximately 15 months, underscoring the urgent need for innovative treatments. Key considerations informing treatment development include oncogenic genetic and epigenetic alterations that may dually serve as therapeutic targets and facilitate treatment resistance. Various immunotherapeutic strategies have been explored and continue to be refined for their anti-tumor potential. Technical aspects of drug delivery and blood-brain barrier (BBB) penetration have been addressed through novel vehicles and techniques including the incorporation of nanotechnology. Molecular profiling has emerged as an important tool to individualize treatment where applicable, and to identify patient populations with the most drug sensitivity. The goal of this review is to describe the spectrum of potential GBM therapeutic targets, and to provide an overview of key trial outcomes. Altogether, the progress of clinical and preclinical work must be critically evaluated in order to develop therapies for GBM with the strongest therapeutic efficacy.
Keywords:
1. Introduction
2. Molecular Pathogenesis of GBM
3. Emerging Therapeutic Targets Under Investigation
3.1. Targeting Growth Factor Receptors
3.2. Signal Transduction Pathway Inhibitors
3.3. Epigenetic Modulators
3.4. Immunotherapy
3.5. Immune Checkpoint Inhibitors (ICIs)
3.5.1. PD-1/PD-L1 Blockade
3.5.2. CTLA-4 Inhibition
3.5.3. Next-Generation Checkpoints (LAG-3, TIM-3, and Others)
3.6. Chimeric Antigen Receptor (CAR) T-Cell Therapy
Established Targets
3.7. Vaccines and Peptide-Based Immunotherapies Under Investigation Vaccines Aim to Induce or Enhance an Endogenous, Tumor-Specific Immune Response
3.7.1. Peptide-Based Vaccines
3.7.2. Dendritic Cell (DC) Vaccines
3.7.3. Cell-Penetrating and Tumor-Targeting Peptides
3.8. Oncolytic Virus Therapies
3.8.1. Virus Platforms
3.8.2. Mechanistic Synergies
3.9. Cytokine-Based Therapies
3.10. Targeting the Tumor Microenvironment: Tumor-Associated Macrophages (TAMs)
3.11. Targeting Tumor Metabolism
3.12. Bypassing Blood-Brain Barrier
3.13. Drug Repurposing and Combination Therapies
3.14. Oncolytic Viruses and Gene-Based Approaches
| Agent | Mechanism | Clinical Phase / Population | Findings |
|---|---|---|---|
| Gefitinib | 1st-generation EGFR tyrosine kinase inhibitor (TKI) | Phase II (Recurrent GBM) (e.g., NCT01520870) | - Poor BBB penetration - EGFR alterations in GBM are heterogeneous; not all tumors rely on EGFR signaling |
| Dacomitinib | Pan-EGFR TKI (inhibits EGFR, HER2, HER4) | Phase II (Recurrent GBM) (e.g., NCT02447419) | - Still challenged by BBB penetration - Broader than gefitinib, but GBM evolves alternate pathways |
| Osimertinib | 3rd-generation EGFR TKI, better BBB permeability | Early-Phase / Preclinical (Recurrent GBM) | - Promising in preclinical models due to improved BBB penetration - Further phase I/II trials needed to determine safety & efficacy |
| Nimotuzumab | Anti-EGFR monoclonal antibody (mAb) | Phase II / III (Various GBM populations) | - Mixed results: some modest improvements in specific subgroups - Reduced toxicity vs. other anti-EGFR mAbs because of intermediate affinity |
| Depatux-M (ABT-414) | Antibody–drug conjugate targeting EGFR; delivers cytotoxic agent | Phase II/III (EGFR-amplified GBM) (e.g., NCT02573324) | - Some efficacy in EGFR-amplified GBM - Ocular toxicity reported; highlights the need for careful dosing and patient selection |
| Challenges: | |||
| |||
| Agent | Mechanism | Clinical Phase / Population | Findings |
|---|---|---|---|
| Cabozantinib | Inhibits MET & VEGFR2 (angiogenesis) | Phase II (Recurrent GBM) (e.g., NCT00704288) | - Modest activity in heavily pretreated patients - Notable toxicities (hypertension, fatigue, etc.) |
| Capmatinib (INC280) | Selective MET inhibitor | Phase II (Recurrent GBM) (e.g., NCT01870726) | - Limited efficacy overall - Possible benefit in tumors with MET amplification or alterations |
| Erdafitinib | Pan-FGFR inhibitor (incl. FGFR3-TACC3 fusions) | Phase II (Recurrent GBM) (e.g., NCT01703481) | - Partial responses in some patients with FGFR alterations - Ongoing trials with biomarker selection |
Challenges:
| |||
| Agent | Mechanism | Clinical Phase / Population | Findings |
|---|---|---|---|
| Palbociclib | CDK4/6 inhibitor; blocks G1→S phase transition | Phase II (Recurrent GBM) (e.g., NCT01227434) | - No significant efficacy as monotherapy - Ongoing combos with radiation or targeted agents |
| Ribociclib | CDK4/6 inhibitor | Phase I/II (Recurrent GBM) (e.g., NCT02345824) | - Limited single-agent benefit - Potential synergy with other pathways (e.g., mTOR inhibitors) |
Challenges:
| |||
| Agent | Mechanism | Clinical Phase / Population | Findings |
|---|---|---|---|
| Bortezomib / Marizomib | Proteasome inhibitors (alter proteostasis) | Bortezomib: Phase I/II; Marizomib: Phase III (e.g., NCT03345095) | - Bortezomib limited by BBB & toxicity - Marizomib under combination trials (TMZ + RT), hoping synergy |
| Bevacizumab | Anti-VEGF mAb (angiogenesis blockade) | Approved for Recurrent GBM | - Improves progression-free survival, less proven benefit in overall survival - Combined with chemo or RT |
Challenges:
| |||
| Agent | Target | Clinical Phase / Population | Key Findings & Rationale |
|---|---|---|---|
| EGFRvIII-targeted CAR T Cells | EGFRvIII mutation (common in GBM) | Early-phase (e.g., NCT02209376) | - Safe but limited efficacy due to antigen loss and immunosuppressive microenvironment |
| IL13Rα2-targeted CAR T Cells | IL13Rα2 (overexpressed in GBM) | Phase I (Case reports) | - Dramatic regression in a single case report - Studies ongoing to confirm broad efficacy and overcome tumor heterogeneity |
| HER2-targeted CAR T Cells | HER2 receptor | Early-phase | - Preliminary safety established; potential synergy with other immunotherapies |
Challenges:
| |||
| Agent | Mechanism | Clinical Phase / Population | Key Findings & Rationale |
|---|---|---|---|
| Rindopepimut | Peptide vaccine targeting EGFRvIII | Phase III (ACT IV; NCT01480479) | - Did not improve OS vs. control - Trial halted; underscores how GBM escapes single-target therapies |
| DCVax®-L | Dendritic cell vaccine with autologous tumor lysate | Phase III (NCT00045968) | - Interim data suggest possible survival benefit - Full results pending; likely works best in low tumor burden |
Challenges:
| |||
| Agent | Virus Type / Target | Clinical Phase / Population | Key Findings & Rationale |
|---|---|---|---|
| PVSRIPO | Engineered poliovirus targeting CD155 | Phase I/II (Recurrent GBM) | - Demonstrated safety; some patients have prolonged survival - Requires strong anti-tumor immune response |
| DNX-2401 | Oncolytic adenovirus selectively replicating in GBM | Phase I (Recurrent GBM) (NCT00805376) |
- Induces immune response; some durable remissions - Combining with other immunotherapies is under investigation |
| G47Δ | Genetically engineered herpes simplex virus | Phase II (Japan) | - Conditional approval in Japan for recurrent GBM - Showed improved survival vs. historical controls |
Challenges:
| |||
| Agent | Mechanism | Clinical Phase / Population | Key Findings & Rationale |
|---|---|---|---|
| Vorinostat | HDAC inhibitor; alters gene expression, induces apoptosis | Phase II | - Limited efficacy as monotherapy - Combining with RT or chemo being explored |
| Azacitidine | DNMT inhibitor; demethylates DNA to restore tumor suppressor genes | Phase II (NCT03666559) | - Ongoing; rationale is that epigenetic changes in GBM may re-sensitize to therapy |
Challenges:
| |||
3.15. Nanotechnology and Drug Delivery Systems
3.16. Molecular Profiling and Biomarkers
3.17. Combination Therapies
4. Challenges and Future Directions
5. Conclusions
References
- Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803-820. [CrossRef]
- Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492-507. [CrossRef]
- Sottoriva A, Spiteri I, Piccirillo SG, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013;110(10):4009-4014. [CrossRef]
- Wesseling P, Capper D. WHO 2016 Classification of gliomas. Neuropathol Appl Neurobiol. 2018;44(2):139-150. [CrossRef]
- Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan J. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro Oncol. 2018. [CrossRef]
- Thakkar JP, Dolecek TA, Horbinski C, Pugh SL, Weisenburger DD, Ligon AH, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014;23(10):1985-1996. [CrossRef]
- Ostrom QT, Bauchet L, Davis FG, Liao P, McLendon R, Vitanza N, et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol. 2014;16(7):896-913. [CrossRef]
- Bondy ML, Scheurer ME, Malmer B, Alberts DS, Reaman GH, Sklar CA, et al. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer. 2008;113(7 Suppl):1953-1968. [CrossRef]
- Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987-996. [CrossRef]
- Shaw R, Basu M, Karmakar S, Ghosh MK. MGMT in TMZ-based glioma therapy: multifaceted insights and clinical trial perspectives. Biochim Biophys Acta Mol Cell Res. 2024;1871(3):119673. [CrossRef]
- Weller M, Stupp R, Hegi ME, et al. Personalized care in neuro-oncology coming of age: why we need MGMT and 1p/19q testing in glioma patients in clinical practice. Neuro Oncol. 2012;14. [CrossRef]
- Sanai N, Berger MS. Surgical oncology for gliomas: the state of the art. Nat Rev Clin Oncol. 2018;15(2):112-125. [CrossRef]
- Tsuchiya T, Kawauchi D, Ohno M, Miyakita Y, Takahashi M, Yanagisawa S, Osawa S, Fujita S, Omura T, Narita Y. Risk factors of distant recurrence and dissemination of IDH wild-type glioblastoma: a single-center study and meta-analysis. Cancers. [CrossRef]
- Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3-14. [CrossRef]
- Almeida JP, Chaichana KL, Rincon-Torroella J, Quinones-Hinojosa A. The value of extent of resection of glioblastomas: clinical evidence and current approach. Curr Neurol Neurosci Rep. 2015;15(1):517. [CrossRef]
- Keime-Guibert F, Chinot O, Taillandier L, et al. Radiotherapy for glioblastoma in the elderly. N Engl J Med. 2007;356(15):1527-1535. [CrossRef]
- Hegi ME, Diserens AC, Bady P, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997-1003. [CrossRef]
- Brandes AA, Franceschi E, Tosoni A, et al. Temozolomide concomitant and adjuvant to radiotherapy in elderly patients with glioblastoma: correlation with MGMT promoter methylation status. Cancer. 2009;115(14):3512-3518. [CrossRef]
- Friedman HS, Kerby T, Calvert H. Temozolomide and treatment of malignant glioma. Clin Cancer Res. 2000;6(7):2585-2597.
- Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392-401. [CrossRef]
- Coburger J, Seifert V, Delbridge C, et al. Intraoperative magnetic resonance imaging-guided resection of glioblastomas: a prospective observational study. J Neurosurg. 2012;117(3):465-473.
- Kubben PL, ter Laak H, Valkenburg L, et al. Intraoperative MRI-guided resection in glioblastoma: impact on extent of resection and survival. Acta Neurochir. 2010;152(8):1337-1345.
- Armstrong TS, Lacour N, Gilbert MR. Mental health in glioblastoma patients: is it time to look beyond physical function? Neuro Oncol. 2013;15(7):875-876.
- Tan AC, Ashley DM, López GY, et al. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299-312. [CrossRef]
- Lacroix M, Abi-Said D, Madden MW, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190-198. [CrossRef]
- Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98-110. [CrossRef]
- Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21(21):2683-2710. [CrossRef]
- Brennan CW, Verhaak RG, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462-477. [CrossRef]
- Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Cancer Sci. 2007;98(10):1515-1523. [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061-1068. [CrossRef]
- Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. Am J Cancer Res. 2013;3(1):221-237. [CrossRef]
- Wanis HA, Møller H, Ashkan K, Davies EA. The incidence of major subtypes of primary brain tumors in adults in England, 1995–2017. Neuro Oncol. 2021;23(8):1371–1382. [CrossRef]
- Thakkar JP, Dolecek TA, Horbinski C, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014;23(10):1985–1996. [CrossRef]
- Louis DN, Ohgaki H, Wiestler OD, et al. The 2016 World Health Organization classification of tumors of the central nervous system. Acta Neuropathol. 2016;131(6):803–820. [CrossRef]
- Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170(5):1445–1453. [CrossRef]
- Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–773. [CrossRef]
- Brennan CW, Verhaak RG, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–477. [CrossRef]
- Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. [CrossRef]
- Brown TJ, Brennan MC, Li M, et al. Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol. 2016;2(11):1460–1469. [CrossRef]
- Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–996. [CrossRef]
- Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. [CrossRef]
- Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401. [CrossRef]
- Ursu R, Perial L, Darlix A, et al. Feasibility, safety and impact on overall survival of awake craniotomy for glioblastoma patients in eloquent areas. J Neurooncol. 2021;151(1):113–121.
- Zhao YH, Wang ZF, Pan ZY, et al. A meta-analysis of survival outcomes following reoperation in recurrent glioblastoma: time to consider the timing of reoperation. Front Neurol. 2019;10:286. [CrossRef]
- Stupp R, Taillibert S, Kanner AA, et al. Effect of tumor-treating fields plus maintenance temozolomide vs temozolomide alone on survival in glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306–2316. [CrossRef]
- Chinot OL, Wick W, Cloughesy T, et al. Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–722. [CrossRef]
- Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma (CheckMate 143): a randomized clinical trial. JAMA Oncol. 2020;6(7):1003–1010. [CrossRef]
- Weller M, Butowski N, Tran DD, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomized, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–1385. [CrossRef]
- O'Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9(399):eaaa0984. [CrossRef]
- Ahmed N, Brawley VS, O'Neill K, et al. HER2-specific chimeric antigen receptor–modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3(8):1094–1101. [CrossRef]
- Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell. 2017;31(3):326–341. [CrossRef]
- Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401. [CrossRef]
- Perry JR, Laperriere N, O'Callaghan CJ, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376(11):1027–1037. [CrossRef]
- Desjardins A, Sampson JH, Friedman AH, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150–161. [CrossRef]
- Sottoriva A, Spiteri I, Piccirillo SG, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013;110(10):4009–4014. [CrossRef]
- Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396–1401. [CrossRef]
- Lang FF, Conrad C, Gomez-Manzano C, et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus as monotherapy or in combination with interferon alfa-2b for recurrent glioblastoma. J Clin Oncol. 2018;36(14):1419–1427.
- Todo T, Itoh T, Ozawa T, et al. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat Med. 2022;28(8):1630–1639. [CrossRef]
- Brown CE, Alizadeh D, Starr R, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–2569. [CrossRef]
- Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. [CrossRef]
- Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. 2018;392(10145):432–446. [CrossRef]
- Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti–PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477–486. [CrossRef]
- Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol. 2021;23(Suppl 3):iii1–iii105. [CrossRef]
- Huse JT, Holland EC. Targeting brain cancer: advances in the understanding of brain tumor biology and their impact on patient care. Nat Rev Cancer. 2010;10(5):319–326.
- Adamson C, Kanu OO, Mehta AI, et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs. 2009;18(8):1061–1083. [CrossRef]
- Tan AC, Ashley DM, López GY, et al. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. [CrossRef]
- Eleveld TF, Vernooij L, Schild L, Koopmans B, Alles LK, Ebus ME, et al. MEK inhibition causes BIM stabilization and increased sensitivity to BCL-2 family member inhibitors in RAS-MAPK-mutated neuroblastoma. Front Oncol. 2023 Feb 21;13:1130034. [CrossRef]
- Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–442. [CrossRef]
- Wick W, Platten M, Meisner C, et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomized, phase 3 trial. Lancet Oncol. 2012;13(7):707–715. [CrossRef]
- Gilbert MR, Wang M, Aldape KD, et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol. 2013;31(32):4085–4091. [CrossRef]
- Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–4740. [CrossRef]
- Westphal M, Hilt DC, Bortey E, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers in patients with primary malignant glioma. Neuro Oncol. 2003;5(2):79–88. [CrossRef]
- Herrlinger U, Schäfer N, Steinbach JP, et al. Lomustine-temozolomide combination therapy vs standard temozolomide in newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomized, multicentre, open-label, phase 3 trial. Lancet. 2019;393(10172):678–688. [CrossRef]
- Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708. [CrossRef]
- Sanai N, Polley MY, McDermott MW, et al. An extent of resection threshold for glioblastoma survival. J Neurosurg. 2011;115(3):567–573.
- Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21(8):1624–1636. [CrossRef]
- Weller M, Cloughesy T, Perry JR, et al. Standards of care for treatment of recurrent glioblastoma—are we there yet? Neuro Oncol. 2013;15(1):4–27. [CrossRef]
- Weller M, Cloughesy T, Twelves C, et al. Bevacizumab plus CCNU in recurrent glioblastoma (EORTC 26101): a randomized, open-label, multicentre phase 3 trial. Lancet Oncol. 2017;18(9):1305–1316.
- Liau LM, Ashkan K, Brem S, Campian JL, Trusheim JE, Iwamoto FM, et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol. 2023;9(1):112-21. [CrossRef]
- Bao S, Wu Q, McLendon RE, et al. Stem cell-like glioma cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–760. [CrossRef]
- Berghoff AS, Kiesel B, Widhalm G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 2015;17(8):1064–1075. [CrossRef]
- Van Meir EG, Hadjipanayis CG, Norden AD, et al. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 2010;60(3):166–193. [CrossRef]
- Sulman EP, Ismaila N, Armstrong TS, et al. Radiotherapy for glioblastoma: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35(21):2432–2438. [CrossRef]
- Miller TE, Lathia JD, Awad O, et al. Stem cell pathways and targeted therapies in glioblastoma. J Mol Med (Berl). 2017;95(5):463–480.
- Johnson DR, O'Neill BP. Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol. 2012;107(2):359–364. [CrossRef]
- Yasumoto Y, Miyazaki H, Vaidyan LK, Kagawa Y, Ebrahimi M, Yamamoto Y, et al. Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells. PLoS One. 2016;11(1):e0147717. [CrossRef]
- Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, et al. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med. 2024 Dec 5;22(1):578. [CrossRef]
- Di Stefano AL, Fucci A, Frattini V, et al. Detection, characterisation, and inhibition of FGFR-TACC fusions in IDH wild-type glioma. Clin Cancer Res. 2015;21(14):3307–3315. [CrossRef]
- Bauchet L, Mathieu-Daudé H, Fabbro-Peray P, et al. Oncogenesis of diffuse gliomas: what have we learned from clinical, pathological, and molecular features of protracted (>5 year) survivors. Brain Pathol. 2010;20(1):84–91.
- Zhang Y, Zhang J, Jiang D, Zhang D, Qian Z, Liu C, et al. Inhibition of autophagy potentiated the apoptosis induced by the PI3K/mTOR inhibitor NVP-BEZ235 in renal cell carcinoma cells. Cell Death Dis. 2013 Dec 12;4:e832.
- Taal W, Oosterkamp HM, Walenkamp AM, et al. Single-agent bevacizumab or lomustine in recurrent glioblastoma: results of the randomized BELOB trial. JAMA Oncol. 2015;1(3):230–237.
- Weller M, van den Bent M, Hopkins K, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014;15(9):e395–e403. [CrossRef]
- McLendon RE, Friedman AH, Bigner DD, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–1068. [CrossRef]
- Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6(6):425–436. [CrossRef]
- Sampson JH, Maus MV, June CH. Immunotherapy for brain tumors. J Clin Oncol. 2017;35(21):2450–2456. [CrossRef]
- Weller M, Wick W, Aldape K, et al. Glioblastoma: ESMO consensus recommendations on diagnosis and treatment. Ann Oncol. 2021;32(10):1428–1447.
- Zong H, Verhaak RG, Canoll P. The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev Mol Diagn. 2012;12(4):383–394. [CrossRef]
- Killela PJ, Pirozzi CJ, Reitman ZJ, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A. 2013;110(15):6021–6026. [CrossRef]
- Lim M, Xue W, Bernstock JD, et al. Current state of vaccine therapies for glioblastoma. J Neurooncol. 2015;123(3):347–367.
- Marchini A, Daeffler L, Pozdeev VI, Angelova A, Rommelaere J. Immune conversion of tumor microenvironment by oncolytic viruses: the protoparvovirus H-1PV case study. Front Immunol. 2019;10:1848. [CrossRef]
- Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. [CrossRef]
- Sesen J, Dahan P, Scotland SJ, et al. Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response. PLoS One. 2015;10(4). [CrossRef]
- Wang Y, Malik S, Suh HW, Xiao Y, Deng Y, Fan R, et al. Anti-seed PNAs targeting multiple oncomiRs for brain tumor therapy. Sci Adv. 2023;9(6). [CrossRef]
- Marino A, Almici E, Migliorin S, Tapeinos C, Battaglini M, Cappello V, et al. Piezoelectric Barium Titanate Nanostimulators for the Treatment of Glioblastoma Multiforme. J Colloid Interface Sci. 2019;538:449-461. [CrossRef]
- Vahab SA, Vyshma KV, Kumar VS. Exosome-based drug delivery systems for enhanced neurological therapeutics. Drug Deliv Transl Res. 2024 Sep 26. [CrossRef]
- Ghaznavi H, Afzalipour R, Khoei S, Sargazi S, Shirvalilou S, Sheervalilou R. New insights into targeted therapy of glioblastoma using smart nanoparticles. Cancer Cell Int. 2024;24:160. [CrossRef]
- Devi CM, Deka K, Das AK, Talukdar A, Sola P. Recent advances in marine-derived nanoformulation for the management of glioblastoma. Mol Biotechnol. 2024 Sep 26. [CrossRef]
- Harris MA, Kuang H, Schneiderman Z, Shiao ML, Crane AT, Chrostek MR, et al. ssDNA nanotubes for selective targeting of glioblastoma and delivery of doxorubicin for enhanced survival. Sci Adv. 2021;7(49). [CrossRef]
- Ghaznavi H, Afzalipour R, Khoei S, Sargazi S, Shirvalilou S, Sheervalilou R. New insights into targeted therapy of glioblastoma using smart nanoparticles. Cancer Cell Int. 2024;24:160. [CrossRef]
- Pyonteck SM, Akkari L, Schuhmacher AJ, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264–1272. [CrossRef]
- Butowski N, Colman H, De Groot JF, et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol. 2016;18(4):557–564. [CrossRef]
- Mitchell DA, Batich KA, Gunn MD, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015;519(7527):366–369. [CrossRef]
- Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008 Jun;108(6):2064-110. [CrossRef]
- Liau LM, Ashkan K, Tran DD, et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142. [CrossRef]
- van Kuppevelt TH, Dennissen MA, van Venrooij WJ, et al. Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology: novel tools in exploring structural-functional relationships in heparan sulfate. J Neurosci. 1998;18(14):10112–10123.
- Takeuchi T, Futaki S. Current understanding of direct translocation of arginine-rich cell-penetrating peptides and its internalization mechanisms. Chem Pharm Bull (Tokyo). 2016;64(10):1431–1437. [CrossRef]
- Banks WA. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275–292. [CrossRef]
- Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12. [CrossRef]
- Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302–325. [CrossRef]
- Wu L, Mendoza-Garcia A, Li Q, Sun S. Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev. 2016;116(10):10473–10512. [CrossRef]
- Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011;63(9):789–808. [CrossRef]
- Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3). [CrossRef]
- Shen Y, Fu X, Fu W, Li Z. Biodegradable stimuli-responsive polypeptide materials for biomedical applications. Macromol Rapid Commun. 2015;36(2):142–157.
- Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–522. [CrossRef]
- Brem H, Piantadosi S, Burger PC, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet. 1995;345(8940):1008–1012. [CrossRef]
- Nguyen MK, Lee DS. Injectable biodegradable hydrogels. Macromol Biosci. 2010;10(6):563–579. [CrossRef]
- Xu H, Das M, Reilly MA, et al. Injectable biodegradable hybrid hydrogels based on a poly(amino acid) and poly(ethylene glycol) for locally targeted drug delivery. Macromolecules. 2010;43(7):4305–4313.
- Huang X, Zeng B, Zhang Y, et al. Nanoparticle-delivered bioresponsive immunostimulatory gas therapy for glioblastoma. Small. 2020;16(13).
- He H, Chen S, Zhou J, et al. Smart nano-delivery systems for glioblastoma treatment. Front Bioeng Biotechnol. 2020;8:724.
- Sun Q, Zhou Z, Qiu N, Shen Y. Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv Mater. 2017;29(14):1606628. [CrossRef]
- Cheng R, Meng F, Deng C, et al. Dual-responsive mesoporous silica nanoparticle-based multicore/shell nanogels for targeted and triggered intracellular drug release. Biomaterials. 2013;34(15):3647–3657.
- Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. [CrossRef]
- Brennan CW, Verhaak RG, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–477. [CrossRef]
- Mellinghoff IK, Cloughesy TF, Mischel PS. PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res. 2007;13(2 Pt 1):378–381. [CrossRef]
- Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(9):1842–1850. [CrossRef]
- Yousefi Y, Nejati R, Eslahi A, Alizadeh F, Farrokhi S, Asoodeh A, et al. Enhancing Temozolomide (TMZ) chemosensitivity using CRISPR-dCas9-mediated downregulation of O6-methylguanine DNA methyltransferase (MGMT). J Neurooncol. 2024;169:129–135. [CrossRef]
- Van Meir EG, Hadjipanayis CG, Norden AD, et al. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 2010;60(3):166–193. [CrossRef]
- Hainsworth JD, Ervin T, Friedman E, et al. Concurrent radiotherapy and temozolomide followed by temozolomide and bevacizumab in patients with newly diagnosed glioblastoma multiforme. Cancer. 2010;116(16):3663–3671. [CrossRef]
- Duerinck J, Awada G, Van Den Mooter T, et al. Immune checkpoint inhibitors: new hope for glioblastoma patients? Cancer Manag Res. 2018;10:7159–7168.
- Batchelor TT, Duda DG, di Tomaso E, et al. Phase II study of cediranib, an oral pan-VEGF receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol. 2010;28(9):2817–2823. [CrossRef]
- Gomez-Manzano C, Fueyo J. Targeting multiple pathways in glioblastoma. J Clin Oncol. 2012;30(23):4058–4059.
- Piccirillo SG, Colman S, Potter NE, et al. Genetic and functional diversity of propagating cells in glioblastoma. Stem Cell Reports. 2015;4(1):7–15. [CrossRef]
- Houshmand M, Simonetti M, Circosta P, et al. Dual inhibition of DNA-PK and ATM sensitizes cancer cells to DNA-damaging agents and overcomes a major pathway of resistance. Clin Cancer Res. 2019;25(10):2964–2976.
- Kumar HR, Zhong X, Sandoval JA, Hickey RJ, Malkas LH. Applications of emerging molecular technologies in glioblastoma multiforme. Expert Review of Molecular Diagnostics. 2014;8(10):1497-1506. [CrossRef]
- Hasan I, Roy S, Ehexige E, Wu R, Chen Y, Gao Z, et al. A state-of-the-art liposome technology for glioblastoma treatment. Nanoscale. 2023;15(37):18108-18138. [CrossRef]
- Lin SH, Hu GG, Chen J, et al. Isocitrate dehydrogenase mutation detection using targeted next-generation sequencing in adult glioma. J Mol Diagn. 2014;16(5):531–540.
- Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127–157. [CrossRef]
- Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol. 2017;28(7):1457–1472. [CrossRef]
- Taphoorn MJ, Henriksson R, Bottomley A, et al. Health-related quality of life in a randomized phase III study of bevacizumab with temozolomide and radiotherapy in newly diagnosed glioblastoma. J Clin Oncol. 2015;33(11):2166–2175. [CrossRef]
- Bagley SJ, Kothari S, Aggarwal V, et al. Accelerating clinical trials for neuro-oncology therapies. Clin Cancer Res. 2020;26(14):5962–5973.
- Aldape K, Brindle KM, Chesler L, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. 2019;16(8):509–520. [CrossRef]
| Genetic Mutation/Epigenetic Modification | Frequency in GBM (% of Cases) | Impact on Tumor Biology | Potential Approaches under Investigation |
|---|---|---|---|
| TP53 Mutations | 31–38% overall; up to 65% in secondary GBMs | Disrupts cell cycle control and apoptosis | Potential for therapies targeting p53 pathways |
| PTEN Mutations | 24–37% (mainly in primary GBMs) | Activates PI3K/Akt signaling, promoting proliferation and survival | Use of PI3K/Akt pathway inhibitors |
| EGFR Amplification and Mutations | 36–60% in primary GBMs; EGFRvIII in 20–50% of amplified cases | Enhances cell growth via receptor activation | EGFR inhibitors and antibodies targeting EGFRvIII variant |
| NF1 Mutations or Deletions | 15–17% | Affects RAS/MAPK signaling pathways | Therapies targeting RAS/MAPK components |
| PIK3CA and PIK3R1 Mutations | PIK3CA: 7–10%; PIK3R1: 7–8% | Activates PI3K/Akt pathway | PI3K inhibitors |
| RB1 Mutations | 8–13% | Impairs cell cycle regulation via retinoblastoma pathway | CDK inhibitors targeting cell cycle dysregulation |
| CDKN2A Deletion (p16^INK4) and p14^ARF) | 31–78% in primary GBMs | Loss of cell cycle inhibition, increased proliferation | CDK4/6 inhibitors; restoring cell cycle checkpoints |
| ATRX Mutations | Common in secondary GBMs and lower-grade gliomas | Involved in telomere maintenance | Targeting telomere elongation mechanisms |
| TERT Promoter Mutations | 58% in primary; 28% in secondary GBMs | Increases telomerase activity (anti-senescence), | Telomerase inhibitors |
| MGMT Promoter Hypermethylation | 36% in primary; 75% in secondary GBMs | Reduces DNA repair capacity; better response to alkylating agents | Predictive biomarker for temozolomide efficacy |
| Hypermethylation of Tumor Suppressor Genes | RB1: 14% primary, 43% secondary; CDKN2A-p14^ARF: 6% primary, 31% secondary | Silencing of genes critical for cell cycle and apoptosis | Use of demethylating agents to reactivate tumor suppressor genes |
| Loss of Heterozygosity (LOH) on Chromosome 10 | Up to 70% in primary GBMs | Associated with PTEN loss; contributes to tumor progression | Important to target PTEN pathway |
| Chromosome 9p21 Deletion | 31–78% in primary GBMs | Loss of CDKN2A locus, leading to cell cycle dysregulation | Need for therapies targeting cell cycle control |
| Signaling Pathway | Key Components | Role in GBM Progression | Potential Targeted Therapies |
|---|---|---|---|
| p53 Pathway | TP53 gene, MDM2, p21 | Regulates cell cycle and apoptosis; mutations lead to uncontrolled cell proliferation and impaired cell death | MDM2 inhibitors (e.g., RG7112), compounds restoring p53 function (e.g., PRIMA-1) |
| PI3K/AKT/mTOR Pathway | PI3K (PIK3CA), AKT, mTOR, PTEN | Promotes cellular growth, survival, and metabolism; frequently activated due to PTEN loss or PIK3CA mutations | PI3K inhibitors (e.g., BKM120), AKT inhibitors (e.g., perifosine), mTOR inhibitors (e.g., everolimus) |
| EGFR Pathway | EGFR, EGFRvIII mutant, downstream effectors (RAS, AKT) | Enhances tumor cell proliferation and survival; EGFR amplification/mutation leads to constitutive activation | EGFR tyrosine kinase inhibitors (e.g., erlotinib), monoclonal antibodies, vaccines targeting EGFRvIII |
| NF-κB Pathway | NF-κB proteins (p65, p50), IκB kinase (IKK) complex | Drives inflammation, promotes tumor growth and resistance to apoptosis | NF-κB inhibitors (e.g., parthenolide, BAY 11-7082) |
| Wnt Signaling Pathway | Wnt ligands, Frizzled receptors, β-catenin | Regulates cell proliferation and differentiation; aberrant activation contributes to tumor aggressiveness | Wnt pathway inhibitors (under investigation) |
| TERT Pathway | Telomerase reverse transcriptase (TERT) | Maintains telomere length, allowing unlimited cell division | Telomerase inhibitors, TERT-targeted therapies |
| CDKN2A/pRB Pathway | CDKN2A gene (p16^INK4A, p14^ARF), RB1 protein | Controls cell cycle progression; loss leads to unchecked proliferation | CDK4/6 inhibitors (e.g., palbociclib), strategies to restore pathway function |
| c-Met Pathway | c-Met receptor, hepatocyte growth factor (HGF) | Promotes cell growth, invasion, and angiogenesis | c-Met inhibitors (e.g., crizotinib, cabozantinib), monoclonal antibodies (e.g., onartuzumab) |
| FGFR Pathway | FGFR receptors, FGF ligands | Involved in cell proliferation and survival; less commonly altered in GBM | FGFR inhibitors (e.g., futibatinib, pemigatinib) |
| BRAF Pathway | BRAF kinase (V600E mutation) | Activates MAPK/ERK pathway, promoting growth | BRAF inhibitors (e.g., dabrafenib, vemurafenib) |
| Src Pathway | Src family kinases | Facilitates proliferation and invasion | Src inhibitors (e.g., dasatinib) |
| RAS/MAPK Pathway | RAS proteins, RAF, MEK, ERK | Controls cell proliferation and differentiation; overactivation leads to tumor growth | MEK inhibitors, oncolytic viruses targeting RAS pathway |
| MGMT | O6-Methylguanine-DNA methyltransferase | Repairs DNA damage from alkylating agents; | MGMT inhibitors, |
| VEGF Signaling | Vascular endothelial growth factor (VEGF), VEGF receptors | Stimulates angiogenesis, supporting tumor vascularization | Anti-VEGF therapies (e.g., bevacizumab) |
| TGF-β Pathway | Transforming growth factor-beta (TGF-β) | Promotes invasion and immunosuppression | TGF-β inhibitors (e.g., galunisertib) |
| HDAC Pathway | Histone deacetylases | Epigenetic regulation; overactivity leads to aberrant gene expression | HDAC inhibitors (e.g., vorinostat, panobinostat) |
| Notch Pathway | Receptors (Notch1–4), Ligands (Dll1, Dll3, Dll4, Jagged1–2), γ-secretase, RBPJK | Maintains GSCs, promotes treatment resistance, drives tumor growth, angiogenesis, and stemness under hypoxia. | GSIs (DAPT, RO4929097), ASIs (INCB3619), miRNAs (miR-34a, miR-181c), Arsenic trioxide, Tipifarnib, CB-103 |
| Hedgehog pathway | Sonic Hedgehog (SHH), Patched (PTCH1/2), Smoothened (SMO), GLI1/2/3 | Regulates tumor growth, stem cell maintenance, drug resistance, and promotes angiogenesis and invasion. | SMO inhibitors (e.g., Vismodegib, Sonidegib), GLI inhibitors (e.g., GANT-61), combination therapies to overcome resistance. |
| MAPK Pathway | EGFR, PDGFRA, BRAF, MAPK kinases | Promotes cell proliferation, survival, and therapy resistance via pathway hyperactivation (High MAPK activity correlates with poor survival and increased tumor aggressiveness) | MAPK inhibitors (e.g., BRAF inhibitors); potential for combination therapies targeting MAPK and PI3K/AKT pathways. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).