Submitted:
06 February 2025
Posted:
07 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Study area and Methodology
2.1. Study Area Location
2.2. Pig farms in Yucatan
2.2. Methodology
2.2.1. Measurements of Water Quality in Wells and Cenotes
2.2.2. Monitoring of Wastewater Effluents in Industrial Pig Farming
2.2.3. Nitrogen Grey Water Footprint and Water Pollution Level Linked to Pig Farms at the Municipality Level
3. Results and Discussion
3.1. Water Quality in Wells and Cenotes
3.2. Wastewater Effluents in Industrial Pig Farms
3.3. Nitrogen Grey Water Footprint and Water Pollution Level Linked to Pig Farms at the Municipality Level
3.4. Criteria for Sustainable Growth in the Swine Industry
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GWF | Grey water footprint |
| WPL | Water Pollution Level |
| EC | Electric conductivity |
| COD | Chemical Oxygen Demand |
| TSS | Total Suspended Solids |
| TDS | Total Diluted Solids |
| PT | Total Phosphorous |
| BDO | Biochemical Demand of Oxygen |
References
- Govoni, C.; Chiarelli, D.D.; Luciano, A.; Pinotti, L.; Rulli, M.C. Global assessment of land and water resource demand for pork supply. Environ. Res. Lett. 2022, 17, 074003. [Google Scholar] [CrossRef]
- Wu, L.; Gong, X.; Chen, X.; Hu, W. Compromise Effect in Food Consumer Choices in China: An Analysis on Pork Products. Front. Psychol. 2020, 11, 1352. [Google Scholar] [CrossRef] [PubMed]
- Rulli, M.C.; D’odorico, P.; Galli, N.; Hayman, D.T.S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food 2021, 2, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow; The Livestock, Environment and Development Initiative (LEAD), Ed.; FAO: Rome, Italy, 2006; Available online: http://www.fao.org/docrep/010/a0701e/a0701e00.HTM (accessed on 11 January 2022).
- Schröder, J. Revisiting the agronomic benefits of manure: a correct assessment and exploitation of its fertilizer value spares the environment. 96. [CrossRef]
- Sims, J.; Bergström, L.; Bowman, B.; Oenema, O. Nutrient management for intensive animal agriculture: policies and practices for sustainability. Soil Use Manag. 2005, 21, 141–151. [Google Scholar] [CrossRef]
- Menzi, H. Oenema O., Burton C., Shipin O., Gerber P., Robinson T. and Franceschini G. 2013. Impacts of Intensive Livestock Production and Manure Management on the Environment. In Livestock in a Changing Landscape, Volume 1: Drivers, Consequences, and Responses (Island Press, 2013).
- FAO. 2018. World livestock: transforming the livestock sector through the sustainable development goals (available at:www.fao.org/3/CA1201EN/ca1201en.
- Wu, H.; Wang, S.; Gao, L.; Zhang, L.; Yuan, Z.; Fan, T.; Wei, K.; Huang, L. Nutrient-derived environmental impacts in Chinese agriculture during 1978–2015. J. Environ. Manag. 2018, 217, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, X.; Zhou, Z. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China. Int. J. Environ. Res. Public Heal. 2017, 14, 1524. [Google Scholar] [CrossRef]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of Lake Waters in China: Cost, Causes, and Control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef]
- Andretta, I.; Hauschild, L.; Kipper, M.; Pires, P.G.S.; Pomar, C. Environmental impacts of precision feeding programs applied in pig production. Animal 2018, 12, 1990–1998. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.-J.; Balasubramani, R.; Kim, J.-T. A Study on CO2 and NH3 Reduction during Composting of Chicken Manure by Activated Carbon Addition. J. Korea Soc. Waste Manag. 2020, 37, 69–75. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Oenema, O.; Oudendag, D.; Velthof, G.L. Nutrient losses from manure management in the European Union. 112. [CrossRef]
- Latruffe, L.; Desjeux, Y.; Bakucs, Z.; Fertő, I.; Fogarasi, J. Environmental Pressures and Technical Efficiency of Pig Farms in Hungary. Manag. Decis. Econ. 2013, 34, 409–416. [Google Scholar] [CrossRef]
- Park, J.-H.; Chung, E.-G.; Na, E.-H.; Kim, Y.-S. Operation Status and Effective Operation Management Model for On-Site Swine Wastewater Treatment Facilities. Water 2024, 16, 1794. [Google Scholar] [CrossRef]
- Giraldi-Díaz, M.R.; Castillo-González, E.; De Medina-Salas, L.; la Cruz, R.V.-D.; Huerta-Silva, H.D. Environmental Impacts Associated with Intensive Production in Pig Farms in Mexico through Life Cycle Assessment. Sustainability 2021, 13, 11248. [Google Scholar] [CrossRef]
- USDA. Dairy: World Markets and Trade. Available online: https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads (accessed on 10 October 2018).
- Eleisegui, P.; Greenfield, P. 2024; Drugs, hormones and excrement: the polluting pig mega-farms supplying pork to the world. The Guardian. https://www.theguardian. 2024. [Google Scholar]
- Vazquéz, H.L. , 2023. The Cenote Is My Neighbor: Litigation From Below And More Than Human Ethics Of Care Against Meat Extractivism In Mexico. PhD Thesis, Clark University, Massachusets.
- Ponette-González, A.G.; Fry, M. Pig pandemic: Industrial hog farming in eastern Mexico. Land Use Policy 2010, 27, 1107–1110. [Google Scholar] [CrossRef]
- Fabro, A.Y.R.; Ávila, J.G.P.; Alberich, M.V.E.; Sansores, S.A.C.; Camargo-Valero, M.A. Spatial distribution of nitrate health risk associated with groundwater use as drinking water in Merida, Mexico. Appl. Geogr. 2015, 65, 49–57. [Google Scholar] [CrossRef]
- Martínez-Salvador, C.; Moreno-Gómez, M.; Liedl, R. Estimating Pollutant Residence Time and NO3 Concentrations in the Yucatan Karst Aquifer; Considerations for an Integrated Karst Aquifer Vulnerability Methodology. Water 2019, 11, 1431. [Google Scholar] [CrossRef]
- Moreno-Gómez, M.; Martínez-Salvador, C.; Liedl, R.; Stefan, C.; Pacheco, J. First application of the Integrated Karst Aquifer Vulnerability (IKAV) method – potential and actual vulnerability in Yucatán, Mexico. Nat. Hazards Earth Syst. Sci. 2022, 22, 1591–1608. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water. Environ. Sci. Technol. 2015, 49, 12860–12868. [Google Scholar] [CrossRef]
- Hoekstra, A. Chapagain, A., Aldaya, M., Mekonnen, M. (2011). The Water Footprint Assessment Manual: Setting the Global Standard.
- INEGI, 2020. Censo de Población y Vivienda 2020. Instituto Nacional de Estadística Geografía e Informática, México.
- Steinich, B.; Marín, L.E. Determination of flow characteristics in the aquifer of the Northwestern Peninsula of Yucatan, Mexico. J. Hydrol. 1997, 191, 315–331. [Google Scholar] [CrossRef]
- A. , J.P.; S., A.C. Groundwater Contamination by Nitrates in the Yucatan Peninsula, Mexico. Hydrogeol. J. 1997, 5, 47–53. [Google Scholar] [CrossRef]
- A Escolero, O.; E Marin, L.; Steinich, B.; Pacheco, J. Delimitation of a hydrogeological reserve for a city within a karstic aquifer: the Merida, Yucatan example. Landsc. Urban Plan. 2000, 51, 53–62. [Google Scholar] [CrossRef]
- Bauer-Gottwein, P.; Gondwe, B.R.N.; Charvet, G.; Marín, L.E.; Rebolledo-Vieyra, M.; Merediz-Alonso, G. Review: The Yucatán Peninsula karst aquifer, Mexico. Hydrogeol. J. 2011, 19, 507–524. [Google Scholar] [CrossRef]
- CONAGUA, 2020. Actualización de la Disponibilidad Media Anual De Agua en el Acuífero Península De Yucatan (3105), Estado De Yucatan. Subdirección General Técnica, Gerencia de Aguas subterráneas. Comisión Nacional del Agua.
- Bautista, F.; Aguilar, Y.; Gijón, N. LAS GRANJAS PORCINAS EN ZONAS DE KARST: ¿CÓMO PASAMOS DE LA CONTAMINACIÓN A LA SUSTENTABILIDAD? Trop. Subtrop. Agroecosystems 2022, 25. [Google Scholar] [CrossRef]
- de la Rorsa, E.P.; Cuevas, F.I.H.; Loeza, D.E.C.; Barreto, M.F.L.; García, J.B. La lucha socioambiental de proyectos alternativos. El caso del cerdo pelón en Yucatán. 2021; 79. [Google Scholar] [CrossRef]
- SEMARNAT, 2023. Dictamen diagnóstico ambiental de la actividad porcícola en Yucatan. Secretaría de Medio Ambiente y Recursos Naturales, Gobierno de México. 100 pp. https://www.gob.
- Norma Oficial Mexicana NOM-001-SEMARNAT-2021 Que establece los límites permisibles de contaminantes en las descargas de aguas residuales en cuerpos receptores propiedad de la nación. DOF - Diario Oficial de la Federación. (s/f). Gob.mx. Recuperado el 3 de marzo de 2023, de https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022.
- Food and Water Watch. (2020). Factory Farm Nation: 2020 Edition. Food & Water Watch, , www.foodandwaterwatch.org/sites/default/files/ib_2004_updfacfarmmaps-web2.pdf. 12 May.
- Ruddy, B.C., D.L. Lorenz, and D.K. Mueller. 2006. County-level estimates of nutrient inputs to the land surface of the conterminous United States, 1982–2001: U.S. Geological Survey Scientific Investigations Report 2006-5012.
- DEFRA (2007) The protection of waters against pollution from agriculture Accessed Sept, 2022.
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.M.; Hoekstra, A.Y. Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water. Environ. Sci. Technol. 2015, 49, 12860–12868. [Google Scholar] [CrossRef]
- Liu, C.; Kroeze, C.; Hoekstra, A.Y.; Gerbens-Leenes, W. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol. Indic. 2012, 18, 42–49. [Google Scholar] [CrossRef]
- Walton, N. Electrical Conductivity and Total Dissolved Solids—What is Their Precise Relationship? Desalination 1989, 72, 275–292. [Google Scholar] [CrossRef]
- Hubert, E.; Wolkersdorfer, C. Establishing a conversion factor between electrical conductivity and total dissolved solids in South African mine waters. Water SA 2015, 41, 490. [Google Scholar] [CrossRef]
- Delgado, C.; Pacheco, J.; Cabrera, A.; Batllori, E.; Orellana, R.; Bautista, F. Quality of groundwater for irrigation in tropical karst environment: The case of Yucatán, Mexico. Agric. Water Manag. 2010, 97, 1423–1433. [Google Scholar] [CrossRef]
- Zamora-Luria, J.C.; Perera-Burgos, J.A.; González-Calderón, A.; Stillman, L.E.M.; Leal-Bautista, R.M. Control of fracture networks on a coastal karstic aquifer: a case study from northeastern Yucatan Peninsula (Mexico). Hydrogeol. J. 2020, 28, 2765–2777. [Google Scholar] [CrossRef]
- Bai, Z.H.; Ma, L.; Qin, W.; Chen, Q.; Oenema, O.; Zhang, F.S. Changes in Pig Production in China and Their Effects on Nitrogen and Phosphorus Use and Losses. Environ. Sci. Technol. 2014, 48, 12742–12749. [Google Scholar] [CrossRef]
- Xie, D. , Zhuo, L., xie, P., Liu, Y., Feng, B., Wu, P. (2020). Spatiotemporal variations and developtments of waterfootprints of pig feeding and pork production in China (2004-2013). Agriculture, Ecosystems and Environment. 297, 106932.
- Willems, J. , van Grinsven, H.J.M., Jacobsen, B.H. Jensen, T., Dalgaard, T., Westhoek, H., Silleback Krinstensen I., (2016). Why Danish pig farms have far more land and pigs than Dutch farms? Agricultural Systems, 144, 122-132.
- Bai, Z.; Zhao, J.; Wei, Z.; Jin, X.; Ma, L. Socio-economic drivers of pig production and their effects on achieving sustainable development goals in China. J. Integr. Environ. Sci. 2019, 16, 141–155. [Google Scholar] [CrossRef]









| Pig farm id | Number of pigs | Volume of the effluent (m3/d) | Number of treatment systems | |
|---|---|---|---|---|
| Farm 1 | 48 000 | 386 | 1 | |
| Farm 2 | 13 984 | 150 | 2 | |
| Farm 3 | 13 700 | 123 | 1 | |
| Farm 4 | 6 912 | 123 | 1 | |
| Farm 5 | 39 000 | 856 | 3 | |
| Farm 6 | 101 568 | 1223 | 2 | |
| Farm 7 | 8 000 | 144 | 1 | |
| Farm 8 | 48 640 | 781 | 2 | |
| Farm 9 | 12 000 | 146 | 1 | |
| Farm 10 | 10 000 | 98 | 1 |
| No. | Well name | pH | EC (µS/cm) | TDS (ppm) | Dissolved Oxygen (mg/L) | T (°C) |
|---|---|---|---|---|---|---|
| 1 | Franboyan | 8.2 | 1577.4 | 1119.9 | 2.0 | 28.2 |
| 2 | Chicxulub | 7.1 | 1150.5 | 816.8 | 2.9 | 28.4 |
| 3 | Conkal | 7.3 | 1125.6 | 798.8 | 7.4 | 27.5 |
| 4 | Sierra Papacal | 7.1 | 2432.5 | 1727.1 | 1.7 | 29.8 |
| 5 | San Ignacio | 7.0 | 3908.0 | 2774.7 | 1.8 | 28.2 |
| 6 | Cheuman | 7.5 | 1709.5 | 1213.7 | 5.2 | 27.8 |
| 7 | Kanasin | 7.0 | 1166.5 | 828.2 | 5.0 | 27.4 |
| 8 | La Central | 7.2 | 1185.4 | 841.6 | 5.7 | 28.5 |
| 9 | Acanceh | 7.1 | 1148.6 | 815.5 | 6.3 | 27.4 |
| 10 | Cuzama | 7.1 | 1142.4 | 811.1 | 7.7 | 28.8 |
| 11 | Hocaba | 7.0 | 1199.2 | 851.4 | 5.5 | 27.4 |
| 12 | Opichen | 5.8 | 2990.0 | 2122.9 | 6.6 | 28.2 |
| 13 | Poxila | 7.0 | 1737.3 | 1233.5 | 4.1 | 27.8 |
| 14 | Dzibikak | 7.0 | 968.8 | 687.8 | 3.2 | 27.7 |
| 15 | Texan Palomeque | 6.9 | 1135.8 | 806.4 | 4.2 | 27.6 |
| 16 | Hunucma | 7.0 | 1366.4 | 970.1 | 4.2 | 27.6 |
| 17 | Kinchil | 7.1 | 1813.8 | 1287.8 | 4.7 | 27.8 |
| 18 | Nohuayun | 7.1 | 1683.2 | 1195 | 3.9 | 28.4 |
| 19 | San Jose Tzal | 7.0 | 1371.1 | 973.5 | 5.9 | 28.6 |
| 20 | Cacalchen | 7.4 | 744.0 | 528.2 | 7.4 | 29.4 |
| 21 | Motul | 7.0 | 1076.0 | 763.9 | 6.1 | 27.5 |
| 22 | San Francisco | 6.9 | 1265.6 | 898.6 | 4.9 | 27.4 |


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
