Submitted:
27 January 2025
Posted:
28 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Description of Study Site
2.2. Socioeconomic Characteristics
2.3. Forest Cover Extent

3. Results
3.1. Land Cover Land-Use Categories of Mangroves from 1980-2022 in the DENP

3.2. Change Detection in Land Cover Land Use in the DENP

3.3. Conversion of Mangroves in the DENP from 1980 to 2022

3.4. Trends of Mangroves Predictions Following Different Time Matrices

4. Discussion


Authors Contribution
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Mašek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr 2010, 20, 154–159. [Google Scholar] [CrossRef]
- Osorio-Olvera L.; Rioja-Nieto R.; Guerra-Martínez F. Prediction of mangrove recovery in natural protected areas of the Yucatan Peninsula. Regional Environ Change 2024, 24:38. [CrossRef]
- Ajonina, N.G. Inventory and modeling mangroves forest stand dynamics following different levels of wood exploitation pressures in the Douala-Edea Atlantic Coast of Cameroon, Central Africa. Ph.D. thesis, Albert-Ludwigs-Universitat Freiburg im Breisgau, Germany, 2008.
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves, 2nd ed. The International Society for Mangrove Ecosystems, Okinawa, Japan 2010. 319pp.
- Ajonina, G.N; Chuyong, G.B. Vulnerability assessment of mangrove forest stands from anthropogenic wood exploitation pressures and sea level rise impacts following a re-census survey and analysis of eight-year-old permanent sample plots in the Douala-Edea Estuary, Cameroon. Report submitted to WWF Central Africa Regional Programme Office. September, 2011.
- Cayetano C.B.; Creencia L.A.; Sullivan E.; Clewely D.; Miller P.I. Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines: predicting future trends using a support vector machine algorithm and the Markov chain model. UCL Open: Environment 2023, (5):04. [CrossRef]
- Ellison, J.; Jungblut, V.; Anderson, P.; Slaven, C. Manual for Mangrove Monitoring in the Pacific Islands Region. 2012, ISBN: 978-982-04-0433-5 (print), 978-982-04-0434-2 (online).
- Khan, M.N.I.; Sharma, S.; Berger, U.; Koedam, N.; Dahdouh-Guebas, F.; Hagihara, A. How do tree competition and stand dynamics lead to spatial patterns in monospecific mangroves? Biogeosci Discuss 2013, 10: 1685–1716. [CrossRef]
- Ajonina, G.N.; Kairo, J.; Grimsditch, G.; Sembres, T.; Chuyong, G.; Diyouke E. Assessment of Mangrove Carbon Stocks in Cameroon, Gabon, the Republic of Congo (RoC), and the Democratic Republic of Congo (DRC) Including their Potential for Reducing Emissions from Deforestation and Forest Degradation (REDD+). Estuar. of the World 2014. [CrossRef]
- Giri, C.; Long, J.; Abbas, S.; Murali, R.M.; Qamer, F.M.; Pengra B.; Thau D.. Distribution and dynamics of mangrove forests of South Asia. J of Environ. Management 2014, xxx:1–11. [CrossRef]
- Sunkur R.; Kantamaneni K.; Bokhoree C.; Rathnayake U.; Fernado M. Mangrove mapping and monitoring using remote sensing techniques towards climate change resilience. Scientific Reports 2024, 14(1), 6949. [CrossRef]
- Diniz C.; Cortinhas L.; Nerino G.; Rodrigues J.; Sadeck L.; Adami M.; Walfir P.; Souza-Filho M. Brazilian Mangrove Status: Three Decades of Satellite Data Analysis. Remote Sens 2019, 11:808. [CrossRef]
- United Nations Environment Programme. Decades of mangrove forest change: what does it mean for nature, people, and the climate? UNEP 2023, Nairobi.
- Spalding, M.; Blasco, F.; Field, C. World Mangrove Atlas, Version 3, Routledge: Okinawa, Japan, 1997.
- Bunting, P.; Rosenqvist, A.; Lucas, R.; Rebelo, L.M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens 2018, 10, 1669. [Google Scholar] [CrossRef]
- Worthington, T.; Spalding, M. Mangrove Restoration Potential: Mangrove Restoration Potential. A Global Map Highlighting a Critical Opportunity; Cambridge University: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Thomas N.; Lucas R.; Bunting P.; Hardy A.; Rosenqvist A.; Simard M. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 2017, 12(6): e0179302. [CrossRef]
- Nwobi, C.; Williams, M; Mitchard, E.T. Rapid mangrove forest loss and Nypa palm (Nypa frutican) expansion in the Niger Delta, 2007–2017. Remote Sens 2020, 12: 2344. Available from:. [CrossRef]
- Tatuebu, T.C.; Sonwa, D.J.; Awono, A.; Mama, M.N.; Fongnzossie, E.; Ngala, M.R.; Essamba, à R.L.F.; Ntja, R.D. Land Cover and Land Use Changes between 1986 and 2018, and Preliminary Carbon Footprint Implications for Manoka Island (Littoral Region of Cameroon). Sustainability 2022, 14, 6301. [CrossRef]
- MINEPDED-RCM. Les Mangroves du Cameroun: État de Lieux et Gestion; MINEPDED-RCM: Cameroun, 2017; 191p. [Google Scholar]
- Ajonina, G.N.; Mumbang, C.; Oum, J.T.N.; Dogmo, F.M.; Eyango, M.T.; Tchoumbougnang, F. Comparing Smoked Fish Quality of Traditional and Improved Modern Ovens Using Dendro-Energy from Mangrove and Tropical Forest Woods and Implications for Conservation in Central African Atlantic Coast, Cameroon. Energy and Earth Sci 2023, 6, No. 1. [CrossRef]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Worthington, T.A.; Spalding, M.; Murray, N.J.; Rebelo, L.-M. Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sens 2022, 14, 3657. [Google Scholar] [CrossRef]
- Foahom, B. Biodiversity Planning Support Programme Integrating Biodiversity into the Forestry Sector: Cameroon Case Study. International workshop on "Integration of Biodiversity in National Forestry Planning Programme" held in CIFOR Headquarters, Bogor, Indonesia, 2001.
- Yengoh, G.T.; Hickler, T.; Tchuinte, A. Agro-climatic resources and challenges to food production in Cameroon. Geocarto International 2011, 26(4), 251–273. [Google Scholar] [CrossRef]
- Feka, N.Z.; Chuyong, G.B.; Ajonina, G.N. Sustainable utilization of mangroves using improved fish smoking systems: a management perspective from the Douala-Edea wildlife reserve, Cameroon. Tropical Conservation Sci 2009, 2(4), 450–468. [Google Scholar] [CrossRef]
- Moudingo, J.E.; Ajonina, G. N.; Diyouke, E.M. Mangrove Social and Ecological Resilience Geared in the Cameroon Estuary. Pyrex J. of Eco and the Natural Environment 2015, 1(4), 037–044. [Google Scholar]
- Ticheler, H. Fish Biodiversity in West African Wetlands. Wetlands International, Wageningen, The Netherlands 2000, 78p.
- CWCS. Activity Report 2000/Rapport d’activites 2000. Cameroon Wildlife Conservation Society (Mouanko, Cameroon) December 2001, 43pp.
- Ajonina, G.N.; Usongo, L. Preliminary Quantitative impact assessment of wood extraction on the mangroves of Douala-Edea Forest Reserve Cameroon. Tropical Biodivers 2001, 7(2), 137–149. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ 1991, 37(1), 35–46. [Google Scholar] [CrossRef]
- Trotter, C.M. Characterizing the topographic effect at red wavelengths using juvenile conifer canopies. International J Remote Sens 1998, 19(11), 2215–2221. [Google Scholar] [CrossRef]
- Campbell, J.B.; Randolph, H.W. Introduction to Remote Sensing. Fifth Edition. The Guilford Press, New York, USA, 2011; pp. 335-516.
- Ahmad, F.; Goparaju, L.; Qayum, A. LULC analysis of urban spaces using Markov chain predictive model at Ranchi in India. Spat. Inf. Res 2017. [Google Scholar] [CrossRef]
- Disperati, L.; Pasquale S., G. Assessment of land-use and land-cover changes from 1965 to 2014 in Tam Giang-Cau Hai Lagoon, central Vietnam. Applied Geography 2015, 58, 48–64. [Google Scholar] [CrossRef]
- Mishra, P. K.; Rai, A.; Rai, S.C. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. The Egyptian J of Remote Sens and Space Sci 2019, S1110982318302035. [Google Scholar] [CrossRef]
- Kashaigili, J. J.; Boniface P.M.; Matthew M.; Fredrick L.M. Dynamics of Usangu plains wetlands: Use of remote sensing and GIS as management decision tools. Physics and Chemistry of the Earth 31, 2006, 967–975. [CrossRef]
- Zanvo, M.G.S.; Barima, Y.S.S.; Salako, K.V.; Koua, K.A.N.; Kolawole, M.A.; Assogbadjo, A. E.; Glèlè, K.R. Mapping spatio-temporal changes in mangroves cover and projection in 2050 of their future state in Benin. Bois et Forêts des Tropiques 2021, 350, 29-42. [CrossRef]
- Barenblitt, A.; Fatoyinbo, L.; Thomas, N.; Stovall, A.; Sousa, C.; Nwobi, C.; Duncanson, L. Invasion in the Niger Delta: remote sensing of mangrove conversion to invasive Nypa frutican from 2015 to 2020. Remote Sens in Eco and Conservation 2023, 1–19. [Google Scholar] [CrossRef]
- Feka, N.Z.; Ajonina, G.N. Drivers causing decline of mangrove in west-Central Africa: a review. International J of Biodivers Sci, Eco Serv and Management 2011, 7, 217–230. [CrossRef]
- Moudingo, J.H; Ajonina, G.; Dibong, D.; Tomedi, M. Introduction, Distribution and Drivers of Non-native Mangrove Palm Nypa fruticans Van Wurmb (Arecaceae) in Cameroon, Gulf of Guinea. Advances in Eco and Environ Research 2019, 1–13. [Google Scholar]
- Numbere, A.O. Impact of Invasive Nypa Palm (Nypa fruticans) on Mangroves in Coastal Areas of the Niger Delta Region, Nigeria. 2019, Chapter 13, pp. 425-453.
- Findi, E.N.; Wantim, M.N. Using Remote Sensing and GIS to Evaluate Mangrove Forest Dynamics in Douala-Edea Reserve, Cameroon. Journal of Materials and Environmental Science 2022, 13(3), 222–235. [Google Scholar]
- Sardar, P.; Samadder, S.R. Understanding the dynamics of landscape of greater Sundarban area using multi-layer perceptron Markov chain and landscape statistics approach. Ecological Indicators 2021, 121, 106914. [Google Scholar] [CrossRef]
- De Jong, S.M.; Shen, Y.; De Vries, J.; Bijnaar, G.; Van, M.B.; Augustinus, P.; Verweij, P. Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. International J of Appl Earth Observation and Geoinfor 2021, 97, 102293. [Google Scholar] [CrossRef]
- Chen C.F.; Nguyen-Thanh S.; Chang N.B.; Chen R.C.; Chang L.Y.; Valdez M.; Centeno G.; Thompson C.A.; and Aceituno J.L. Multi-Decadal Mangrove Forest Change Detection and Prediction in Honduras, Central America, with Landsat Imagery and a Markov Chain Model. Remote Sens 2013, 5: 6408-6426. [CrossRef]
- Cameroon Mangrove Conservation Network (CMN). Informing and educating the Cameroonian public on mangrove conservation issues. Matanda News, 2007, Vol 1 No1.
- Global Mangrove Watch (GMW). Integrating Mangrove Ecosystems into NDCs with the Global Mangrove Watch. globalmangrovewatch.org, Updated version, 2024.
- Leal, M.; Spalding, M.D (editors). The State of the World’s Mangroves 2024. Global Mangrove Alliance, 2024. 71 pp. [CrossRef]
- Al-huqail, A.A.; Islam, Z.; Al-Harbi, H.F. Mangroves trend and their impact on surface temperature in Al-Wajh Lagoon: a study aligned with Saudi Arabia’s vision 2030. Fronts in Environ Sci 2024, 12:1439425. [CrossRef]
- Syafina, H.A.; Hartoko, A.; Max, R.M.; Febrianto, S. Assessing mangrove cover shifts in Segara Anakan, Cilacap through Land Use Land Cover based on multitemporal satellite images. AACL Bioflux 2024, 17(2), 798 - 810.
- Saoum, M.R.; Sarkar, S.K. Monitoring mangrove forest change and its impacts on the environment. Ecol Indicators, 2024, 159, 111666. [CrossRef]
- Munji, C.A.; Bele, M.Y.; Idinoba, M.E.; Sonwa, D.J. Floods and mangrove forests, friends or foes? Perceptions of relationships and risks in Cameroon coastal mangroves. Estuar. Coast. Shelf Sci. 2014, 140, 67–75. [Google Scholar] [CrossRef]
- Bissonnette, J.-F.; Dossa, K.F.; Nsangou, C.A.; Satchie, Y.A.; Moussa, H.; Miassi, Y.E.; Gravel, N.; Marie, G.; Onguene, R. What Occurs within the Mangrove Ecosystems of the Douala Region in Cameroon? Exploring the Challenging Governance of Readily Available Woody Resources in the Wouri Estuary. Environments 2024, 11, 121. [Google Scholar] [CrossRef]


| Image date | Image type | Resolution | Image name |
|---|---|---|---|
| 1980 | Landsat 1 | 30m | LM01_L1TP_200058_19800201_20200909_02_T2 |
| 1990 | Landsat 5 | 30m | LM05_L1TP_186057_19901221_20200830_02_T2 |
| 2000 | Landsat 7 | 30m | LE07_186058_20000426_20299917_02_T1 |
| 2010 | Landsat 7 | 30m | LE07_L1TP_186058_20100426_20200917_02_T1 |
| 2022 | Landsat 8 | 30m | LC08_L1TP_186057_20221221_20211229_01_T1 |
| Classes | 1980 | 1990 | 2000 | 2010 | 2022 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Size (ha) | % | Size (ha) | % | Size (ha) | % | Size (ha) | % | Size (ha) | % | |
| Bare ground | 1562.93 | 0.54 | 3702.7 | 1.36 | 2645.91 | 0.95 | 6016.12 | 2.21 | 3934.7 | 1.41 |
| Nypa palmed | 3014.1 | 1.04 | 4877.02 | 1.79 | 5123.64 | 1.84 | 5119.4 | 1.88 | 5435.5 | 1.95 |
| Settlement | 3633.93 | 1.25 | 5874.57 | 2.15 | 14018.47 | 5.05 | 4146.1 | 1.53 | 3270.25 | 1.17 |
| Coastal sedimentation | 1032.66 | 0.36 | 7501.81 | 2.75 | 483.59 | 0.17 | 499.38 | 0.18 | 542.36 | 0.19 |
| River sedimentation | 5427.1 | 1.87 | 8519.16 | 3.12 | 1437.72 | 0.52 | 2814.95 | 1.04 | 18837.27 | 6.76 |
| Regeneration | 1417.87 | 0.49 | 6397.35 | 2.34 | 1600.27 | 0.58 | 12631.84 | 4.65 | 20432.84 | 7.33 |
| Mature mangrove | 80628.78 | 27.83 | 56005.26 | 20.52 | 52809.52 | 19.01 | 41598.83 | 15.31 | 28555.16 | 10.24 |
| Dense forest | 79731.84 | 27.52 | 75927 | 27.81 | 96432.38 | 34.71 | 92590.18 | 34.07 | 91186.22 | 32.71 |
| Waterbody | 113298.2 | 39.10 | 104190.9 | 38.17 | 103263.7 | 37.17 | 106354.7 | 39.13 | 106614.8 | 38.24 |
| Total | 289747.4 | 100 | 272995.7 | 100 | 277815.2 | 100 | 271771.5 | 100 | 278809.1 | 100 |
| 1980 - 1990 Matrix | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Class | Bare ground | Nypa palmed | Settlement | Coastal sedimentation | River sedimentation | Regeneration | Mature mangrove | Dense forest | Waterbody |
| Bare ground | 10.53 | 8.64 | 7.17 | 12.8 | 12.25 | 25.71 | 4.81 | 10.01 | 0.53 |
| Nypa palmed | 2.43 | 2.85 | 1.58 | 1.6 | 1.64 | 1.15 | 2.37 | 3.06 | 0.08 |
| Settlement | 3.93 | 4.14 | 4.64 | 6.28 | 6.97 | 1.99 | 3.70 | 1.89 | 2.92 |
| Coastal sedimentation | 1.61 | 1.39 | 2.80 | 1.23 | 1.73 | 1.67 | 0.61 | 0.68 | 0.97 |
| River sedimentation | 0.45 | 0.83 | 1.18 | 0.42 | 0.26 | 5.06 | 0.55 | 1.42 | 0.15 |
| Regeneration | 0.65 | 0.54 | 0.46 | 0.67 | 0.62 | 0.00 | 0.55 | 0.63 | 0.01 |
| Mature mangrove | 9.74 | 15.67 | 15.32 | 5.48 | 5.5 | 5.58 | 31.09 | 13.66 | 5.83 |
| Dense forest | 31.85 | 40.32 | 33.21 | 27.77 | 27.9 | 31.92 | 43.42 | 53.51 | 5.44 |
| Waterbody | 37.99 | 24.46 | 33.35 | 42.06 | 42.87 | 26.73 | 11.97 | 14.10 | 84.06 |
| Eigenvalues | 86.147 | 18.968 | 6.28788 | 5.275392 | 3.270026 | -0.12715 | -2.983 | -6.455 | -67.34 |
| Overall Accuracy = 99.28 %; Kappa Coefficient = 0.99 | |||||||||
| 1990-2000 Matrix | |||||||||
| Class | Bare ground | Nypa palmed | Settlement | Coastal sedimentation | River sedimentation | Regeneration | Mature mangrove | Dense forest | Waterbody |
| Bare ground | 8.87 | 5.68 | 6.18 | 3.41 | 0.91 | 11.12 | 2.50 | 1.28 | 0.28 |
| Nypa palmed | 2.73 | 12.22 | 4.38 | 8.09 | 3.63 | 3.44 | 14.87 | 1.64 | 0.78 |
| Settlement | 4.16 | 5.61 | 5.57 | 12.02 | 13.17 | 6.03 | 8.51 | 1.78 | 1.86 |
| Coastal sedimentation | 1.71 | 2.37 | 0.92 | 0.26 | 0.05 | 1.42 | 1.11 | 0.29 | 0.19 |
| River sedimentation | 5.01 | 4.82 | 2.37 | 2.05 | 0.96 | 4.14 | 1.74 | 0.61 | 0.22 |
| Regeneration | 19.91 | 1.06 | 4.48 | 1.36 | 1.81 | 5.64 | 0.80 | 1.11 | 0.03 |
| Mature mangrove forest | 5.71 | 14.01 | 9.61 | 9.45 | 12.75 | 5.01 | 22.66 | 37.18 | 1.2 |
| Dense forest | 47.42 | 31.07 | 54.05 | 49.83 | 64.59 | 61.63 | 23.77 | 54.69 | 1.29 |
| Waterbody | 4.48 | 23.17 | 12.43 | 13.53 | 2.13 | 1.56 | 24.04 | 1.41 | 94.14 |
| Eigenvalue | 48.074 | 9.7198 | 8.267054 | 2.913851 | -1.5569 | -3.61043 | -5.06613 | -8.704 | -10.04 |
| Overall Accuracy = 99.88 %; Kappa Coefficient = 0.99 | |||||||||
| 2000-2010 Confusion Matrix | |||||||||
| Class | Bare ground | Nypa palmed | Settlement | Coastal sedimentation | River sedimentation | Regeneration | Mature mangrove | Dense forest | Waterbody |
| Bare ground | 10.66 | 1.90 | 11.07 | 7.52 | 14.39 | 21.96 | 1.06 | 2.02 | 0.02 |
| Nypa palmed | 1.44 | 28.96 | 1.16 | 1.77 | 1.49 | 2.36 | 29.37 | 9.75 | 3.48 |
| Settlement | 1.18 | 0.66 | 2.58 | 0.92 | 1.67 | 1.77 | 0.41 | 0.26 | 0.02 |
| Coastal sedimentation | 0.13 | 0.37 | 0.22 | 0.74 | 0.49 | 0.05 | 0.15 | 0.06 | 0.01 |
| River sedimentation | 0.12 | 0.25 | 0.05 | 0.39 | 0.25 | 0.02 | 0.06 | 0.03 | 0.01 |
| Regeneration | 1.04 | 0.05 | 2.17 | 1.11 | 3.95 | 2.38 | 0.03 | 0.10 | 0.00 |
| Mature mangrove | 2.88 | 21.33 | 3.04 | 3.92 | 3.66 | 2.02 | 18.98 | 6.78 | 2.99 |
| Dense forest | 68.91 | 16.38 | 76.64 | 27.74 | 65.30 | 67.75 | 28.36 | 76.68 | 0.36 |
| Waterbody | 13.64 | 30.1 | 3.09 | 55.89 | 8.81 | 1.70 | 21.58 | 4.32 | 93.11 |
| Eigenvalue | 51.123 | 7.9746 | 6.003135 | 1.545931 | 0.989714 | -2.18137 | -4.24709 | -7.855 | -14.35 |
| Overall Accuracy = 99.54 %; Kappa Coefficient = 0.99 | |||||||||
| 2010-2022 Confusion Matrix | |||||||||
| Class | Bare ground | Nypa palmed | Settlement | Coastal sedimentation | River sedimentation | Regeneration | Mature mangrove | Dense forest | Waterbody |
| Bare ground | 1.01 | 2.16 | 1.49 | 0.43 | 1.08 | 2.74 | 2.80 | 3.03 | 1.06 |
| Nypa palmed | 4.35 | 4.17 | 4.99 | 0.00 | 5.75 | 4.65 | 3.20 | 1.99 | 1.26 |
| Settlement | 1.32 | 1.84 | 0.85 | 1.73 | 0.54 | 2.29 | 2.92 | 2.98 | 0.47 |
| Coastal sedimentation | 0.47 | 0.22 | 0.11 | 0.00 | 0.05 | 0.33 | 0.32 | 0.31 | 0.74 |
| River sedimentation | 4.02 | 1.11 | 0.42 | 3.03 | 0.18 | 2.21 | 2.64 | 2.35 | 0.58 |
| Regeneration | 1.93 | 7.45 | 6.63 | 2.60 | 6.34 | 12.40 | 7.33 | 9.86 | 2.54 |
| Mature mangrove | 7.08 | 6.98 | 7.87 | 0.00 | 8.75 | 6.98 | 6.25 | 4.28 | 2.28 |
| Dense forest | 19.85 | 38.19 | 40.41 | 15.58 | 33.63 | 50.27 | 31.81 | 44.16 | 5.69 |
| Waterbody | 59.97 | 37.89 | 37.23 | 76.62 | 43.69 | 18.12 | 42.74 | 31.04 | 85.38 |
| Eigenvalue | 50.194 | 12.182 | 5.623 | 3.435 | 0.999 | -1.662 | -4.439 | -8.826 | -10.51 |
| Overall Accuracy = 99.75 %; Kappa Coefficient = 0.99 | |||||||||
| 1980-2022 Confusion Matrix | |||||||||
| Class | Bare ground | Nypa palmed | Settlement | Coastal sedimentation | River sedimentation | Regeneration | Mature mangrove | Dense forest | Waterbody |
| Bare ground | 8.47 | 4.51 | 4.23 | 0.00 | 5.59 | 4.89 | 4.91 | 4.01 | 1.61 |
| Nypa palmed | 1.35 | 2.09 | 1.36 | 0.00 | 1.40 | 1.53 | 2.13 | 1.98 | 0.33 |
| Settlement | 4.46 | 3.33 | 2.98 | 0.00 | 3.93 | 2.65 | 3.40 | 2.82 | 2.70 |
| Coastal sedimentation | 1.55 | 0.88 | 0.69 | 0.00 | 0.89 | 0.30 | 0.61 | 0.38 | 1.52 |
| River sedimentation | 0.62 | 0.60 | 0.51 | 0.00 | 0.98 | 0.48 | 0.33 | 0.57 | 0.36 |
| Regeneration | 0.32 | 0.47 | 0.31 | 0.00 | 0.26 | 0.27 | 0.50 | 0.37 | 0.11 |
| Mature mangrove | 10.64 | 14.51 | 19.84 | 9.38 | 16.01 | 21.59 | 12.51 | 22.70 | 1.75 |
| Dense forest | 23.71 | 31.53 | 36.27 | 0.00 | 33.77 | 37.88 | 30.60 | 25.37 | 4.06 |
| Waterbody | 48.53 | 41.36 | 33.32 | 90.63 | 36.66 | 29.60 | 44.41 | 40.92 | 87.51 |
| Eigenvalue | 47.225 | 7.554 | 4.181 | 1.372 | -0.142 | -2.107 | -3.655 | -7.189 | -10.239 |
| Overall Accuracy = 95.45 %; Kappa Coefficient = 0.95 | |||||||||
| Classes | 1980 – 1990 | 1990 - 2000 | 2000 - 2010 | 2010-2022 | 1980 - 2022 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Size (ha) | % | Size (ha) | % | Size (ha) | % | Size (ha) | % | Size (ha) | % | |
| Bare ground | 2139.77 | 0.82 | -1056.79 | -0.40 | 3370.21 | 1.26 | -2081.42 | -0.80 | 2371.77 | 0.87 |
| Nypa palmed | 1862.92 | 0.75 | 246.62 | 0.06 | -4.24 | 0.04 | 316.1 | 0.07 | 2421.4 | 0.91 |
| Settlement | 2240.64 | 0.90 | 8143.9 | 2.89 | -9872.37 | -3.52 | -875.85 | -0.35 | -363.68 | -0.08 |
| Coastal sedimentation | 6469.15 | 2.39 | -7018.22 | -2.57 | 15.79 | 0.01 | 42.98 | 0.01 | -490.3 | -0.16 |
| River sedimentation | 3092.06 | 1.25 | -7081.44 | -2.60 | 1377.23 | 0.52 | 16022.32 | 5.72 | 13410.17 | 4.88 |
| Regeneration | 4979.48 | 1.85 | -4797.08 | -1.77 | 11031.57 | 4.07 | 7801 | 2.68 | 19014.97 | 6.84 |
| Mature mangrove | -24623.5 | -7.31 | -3195.74 | -1.51 | -11210.7 | -3.70 | -13043.7 | -5.06 | -52073.6 | -17.59 |
| Dense forest | -3804.84 | 0.29 | 20505.38 | 6.90 | -3842.2 | -0.64 | -1403.96 | -1.36 | 11454.38 | 5.19 |
| Waterbody | -9107.37 | -0.94 | -927.17 | -1.00 | 3091.04 | 1.96 | 260.09 | -0.89 | -6683.41 | -0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
