Submitted:
22 January 2025
Posted:
23 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Overview of Scaffold Proteins
3. Scaffold Proteins in Pulmonary Fibrosis
3.1. Scaffold Proteins in Idiopathic Pulmonary Fibrosis
| Organ Fibrosis |
Diseases | Regulator | Function | Mechanism | Sample | References |
| Pulmonary Fibrosis |
IPF | ARRB1↑ | Promoting fibrosis. | Influencing fibroblast activity and AEC2 regeneration. | Bleomycin model in ARRB1-/- mice | [26] |
| IQGAP1↓ | Amplifing fibroblast activation, exacerbating fibrogenesis. | Promoting differentiation and matrix production. | Fibroblast, IQGAP1 KO mice | [27,28] | ||
| Cav1↓ | Exacerbating fibrogenesis. |
Promoting fibroblast activation and proliferation. | Fibroblast | [29,30] | ||
| P62/SQSTM1↑ | Promoting oxidative stress. | Promoting the interaction between P62 and SLC15A3. | Macrophage, bleomycin-mice model | [31] | ||
| P62/SQSTM1↑ | Disrupting autophagy flux and driving senescence. | Modulating the autophagy-lysosome pathway. | AT2 cells, bleomycin-induced mice model | [32] | ||
| AGGF1↓ | Exacerbating vascular remodeling, inflammation, and fibrosis. | Promoting Smad2/3 and ERK1/2 phosphorylation. | Mouse models of TAA | [33] | ||
| A6-Integrin↑ | Promoting proteolysis of basement membrane, facilitating myofibroblast invasion. | Enhancing the coupling with β1-integrin. | Myofibroblast | [34] | ||
| Axin1↓ | Promoting pulmonary fibrosis. | Promoting β-catenin degradation. | Fibroblast, bleomycin-induced mice | [35] | ||
| Axin1↓ | Promoting pulmonary fibrosis. | Activating Wnt signaling. | Fibroblasts, bleomycin-induced mice | [36] | ||
| TRPV4-PI3Kγ↑ | Promoting stiffened lung parenchyma. | Promoting myofibroblast differentiation and excessive ECM production | Myofibroblast, mice | [37,38] | ||
| HER2↑ | Promoting pulmonary fibrosis. | Enhancing , migration and ECM deposition. | Fibroblasts | [39] | ||
| IQGAP1↑ | Promoting pulmonary fibrosis. | Increasing TGF-β expression. | Myofibroblast, IQGAP1 KO mice | [40] | ||
| BRD4↑ | Promoting pulmonary fibrosis. | Recruiting acetyltransferase p300 to histones. Upregulating Nox4 expression. |
Aged mice with established lung fibrosis | [41] | ||
| TKS5↑ | Mediating ECM degradation. | Localizing proteases such as MMP2, MMP9, and MMP14. | Lung fibroblasts, bleomycin-treated mice | [42,43] | ||
| Numb↑ | Promoting ECM deposition and fibrosis. | Activating β-catenin signaling in lung epithelial cells. | ATII cells | [44] | ||
| TRAF6↑ | Promoting pulmonary fibrosis. | Activating the IL-33. | BMDM, Usp38−/− mice |
[45] | ||
| Silicosis | Cav-1↑ | Promoting Autophagy, apoptosis, and fibrosis. | Interacting with LC3BII and p62. | AEC , PM2.5-induced mice | [46,47,48,49] | |
| SULF1↑ | Promoting silicosis. | Enhancing WNT/β-catenin signaling. | Bronchial epithelial cells, SULF1 knockdown mice | [50] | ||
| STING signaling pathway↑ | Promoting senescence. Promoting fibrosis. |
Damaging mtDNA and activating the cGAS-STING-NF-κB axis. |
ATII cells | [51,52,53] | ||
| LGALS3↑ | Mediating endomt in Silicosis. Regulating Cellular Processes. |
Activating PI3K/AKT Pathway. Promoting endomt and Fibrosis. |
Silica-induced mouse | [54,55] | ||
| YWHAZ↑ | Promoting fibrosis and inflammation. | Enhancing Wnt/β-catenin and TGF-β Signaling. | Human bronchial epithelial cells | [56] | ||
| Cardiac fibrosis |
Myocardial infarction |
C-Cbl↑ | Promoting cardiac fibrosis. |
degradating SERCA2a, and impairing calcium cycling | Ischemic HF models |
[57] |
| JAK2↑ | Promoting cardiac fibrosis. | Elevating circulating PCSK9 levels via JAK2/STAT3 signaling. | Myofibroblast, rat MI models | [58] | ||
| PW1↑ | Promoting ECM production. |
Activating PFAS. | Cardiac fibroblasts, PW1 knockout mice | [59,60] | ||
| AKAP2↓ | Exacerbating cardiac dysfunction. | Inhibiting ERα via camp signaling. | Cardiomyocytes | [61,62] | ||
| NDP52↓ | Facilitating autophagosome-lysosome fusion and promoting mitophagy. |
Interacting with TBK1 and RAB7. | Cardiomyocyte | [63] | ||
| Heart failure |
ERBB2↑(HER2) | Promoting Heart Regeneration. | Activating YAP and triggering EMT-like processes. |
Cardiomyocytes | [64] | |
| Shank3↑ | Promoting cardiac fibrosis. | Altering Ca²⁺ homeostasis | Cardiomyocytes, overexpressing-Shank3 mice | [65] | ||
| BRD4↑ | Promoting fibroblast activation and cardiac dysfunction. | Facilitating the formation of IL-1β, activating RELA-dependent enhancers. | Heart failure models | [66,67] | ||
| Other cardiac fibrosis |
Cav1↓ | Promoting fibrosis and hypertrophy. | Reducing transverse tubule organization and Ca²⁺ homeostasis. |
Cav1 knockout mice | [68] | |
| Cav1↓ | Promoting diabetic cardiomyopathy. | Activating NF-κB pathway. | Models treated with PD | [69] | ||
| Peli1↑ | Facilitating fibroblast and inflammasome activation. | Activating NF-κB and AP-1, upregulating mir-494-3p |
CM-fibroblast | [70,71] | ||
| STRN↑ | Promoting left ventricular hypertrophy and cardiac fibrosis. | Modulating hypertrophic signaling | Cardiomyocyte | [72] | ||
| GIPC1↓ | Activating fibroblast and promoting ECM accumulation. | Stabilizing β1 receptors expression and modulating MAPK signaling. | Isoproterenol-induced cardiac fibrosis models | [73,74] | ||
| Grb2↑ | Promoting fibrotic remodeling of the heart. | Facilitating the activation of ERK1, and phosphorylating WAVE2. | Cardiac myofibroblast | [62] | ||
| BRD4↑ | Promoting pathological cardiac hypertrophy. | Increasing, ROS generation. | Fibroblast | [75,76] | ||
| Myd88↓ | Exacerbating cardiac fibrosis. | Modulates TCR-dependent signaling pathways. | T-cell | [77] | ||
| PML↑ | Activating fibroblast. | Stabilizing and activating p53, amplifying TGF-β1-driven profibrotic signaling. | Fibroblast | [78] | ||
| RACK1↓ | Exacerbating ECM production and cardiac fibrosis. |
Promoting Smad3-mediated CF activation. | TGF-β1-treated cardiac fibroblasts, MI mouse model | [79] | ||
| SHARPIN↑ | Promoting CF activity and ECM deposition. | Promoting fibroblast proliferation, and myofibroblast transformation. | An angio-induced MF mouse model | [80] | ||
| SKI↓ | Mitigating heart fibrosis. |
Repressing TGF-β1/Smad signaling and activating the Hippo pathway. | A post-MI rat model | [81] | ||
| RIP2↑ | Promoting pro-inflammatory responses and hypertrophic remodeling. | Facilitating activation of NF-κB and MAPK/GATA4/p300 pathways. | A mouse model of TAC | [82] | ||
| BCL10↑ | Fueling, cardiomyocyte hypertrophy and fibroblast-driven fibrosis. | Activating NF-κB. | Macrophages | [83] | ||
| Heptic fibrosis | Liver injury | AKAP12↓ | Exacerbating liver damage. | Increasing PCSK6 and enhancing STAT3 and NF-κB signaling. | Models of ALI and chronic liver fibrosis |
[84,85,86] |
| ARRB1↑ | Promoting liver fibrosis. | Activating Rab27A and amplifying the release of small EVs. | Murine models of CCI₄ or MCD | [87,88] | ||
| Cav1↑ | Promoting liver fibrosis. | Driving vesicular trafficking and exocytosis of TIMP-1. | HSCs | [89] | ||
| Gab1↓ | Promoting rapid regeneration and inflammation. | Enhancing Bcl-xl expression, and suppressing STAT3 signaling. | Mcl-1 knockout mice | [90,91,92] | ||
| MASH | Cbl↓ | Promoting liver fibrosis. | Inhibiting degrading PYK2, and promoting PYK2-JNK signaling. | CBL mutant cells | [93,94] | |
| FLNA↑ | Promoting inflammation and fibrogenesis. | Increasing TGF-β1 and CCL2 while inhibiting the activity of MMP-1 and MMP-2. | Macrophages, HSCs | [95] | ||
| SLC9A1 (NHE1)↑ | Promoting apoptosis and liver fibrosis. | Increasing inflammatory signaling through the p38 MAPK pathway. | PA-induced steatosis models in AML12 and hepg2 hepatocytes. | [96] | ||
| BRD4↑ | Promoting autophagy activation. | Suppressing the SIRT1/Beclin1 axis. | An ethanol-fed mouse model and Aml-12 hepatocytes | [97] | ||
| Myd88 ↑ | Promoting liver fibrosis. | Exacerbating B-cell activation. | Intrahepatic B cells | [98] | ||
| Hic-5↑ | Promoting MASH and liver fibrosis. | Modulating Smad2 phosphorylation and promoting LOX expression. | HSCs | [99] | ||
| TRAF6↑ | Promoting inflammation and fibrosis. | Promoting ASK1 activation. | Overexpression of OTUB1 in murine models | [100,101] | ||
| β-TrCP | Promoting liver fibrosis. | Targeting YAP/TAZ | HSCs | [102] | ||
| Other hepatic fibrosis | AKAP150↓ | Destroying cardiac function under stress. | Regulating calcium (Ca²⁺) cycling and myocardial contractility. | AKAP150 knockout mice | [103,104] | |
| AKAP150↑ | Contributing to hyperglycemia-induced fibrosis and dysfunction. | Modulating the Akt/GSK3β pathway, suppressing BK channel activity. | AKAP150 knockout mice | [103,104] | ||
| Arrb2↑ | Promoting liver fibrosis. | Promoting higher NOX4 and increasing ROS levels. | Arrb2-KO mice | [83,105,106,107] | ||
| GRAP↑ | Promoting liver fibrosis. | Activating ERK signaling. | HSCs | [108] | ||
| IQGAP1↑ | Promoting liver fibrosis. | Activating Cdc42/Rac1 signaling pathways. | high-fat diet-induced fibrotic mouse livers | [109] | ||
| PTPN12↓ | Exacerbating HSC activation and fibrosis. | Modulating NLRP3 signaling |
HSCs | [110] | ||
| P62 (SQSTM1)↑ | Promoting metabolic reprogramming and tumorigenesis. | Activating Nrf2 by sequestering Keap1. | Models of Atg5/Atg7 KO and Tsc1 KO | [111] | ||
| P62 (SQSTM1)↓ | Promoting HSC activation and fibrosis. | Mediating interactions with the vitamin D receptor. | Models of Atg5/Atg7 KO and Tsc1 KO | [111] | ||
| BRD4↑ | Driving HSC activation and excessive ECM deposition. | Enhancing PLK1 expression Through the P300/h3k27ac/PLK1 axis. |
HSCs |
[112] | ||
| PML↑ | Alleviating ECM production, and protecting the liver from fibrosis. | Interacting with TILAM, stabilizing the level of PML protein, regulating ECM gene expression. | HSCs | [113] | ||
| NCK2↑ | Contributing to oxidative stress and liver fibrosis. |
Regulating of T cell receptor signaling. | gut microbiome | [114] | ||
| TIRAP↑ | Driving HSC activation, ECM deposition, and persistent fibrotic phenotypes. | Enhancing TIRAP mRNA stability, activating, NF-κB and JNK/Smad2 pathways. | HSCs | [115] | ||
| VCAM1↑ | Activating HSCs and promoting liver fibrosis. | Promoting LSEC capillarization. | Murine models induced by choline-deficient high-fat diet |
[116] | ||
| Shb↑ | Promoting liver fibrosis. | Reducing TGF-β/TGF-βRI/Smad2 and PDGFR-β pathways. | A ccl4-induced liver fibrosis model | [117] | ||
| FADD↑ | Activating caspase. | Enhancing NF-κB signaling and anti-apoptotic protein expression. | Hepatocytes |
[118] | ||
| Renal Fibrosis | Renal injury | AKAP12↑ | Promoting kidney fibrosis. |
Modulating TGF-β1-driven signaling pathways. | Murine models of unilateral ureteral obstruction | [119] |
| BRD4↑ | Promoting kidney fibrosis. |
Binding to acetylated histones, recruiting STAT3, STAT5, GR, and HNF4A. | AKI mice | [120] | ||
| Num↑ | Promoting autophagy initiation and kidney fibrosis. |
Disrupting the interaction between β-trcp2 and SKP1. | UUO model | [121] | ||
| Num↑ | Promoting renal interstitial fibrosis. |
Modulating HIF-1α protein stability. | Renal proximal tubular cells | [122] | ||
| DKD | C-Cbl↑ | Promoting diabetic renal fibrosis. | Enhancing interaction with Sirt1 and promoting K48-linked polyubiquitination. | high glucose (HG)-induced GMCs and kidneys of diabetic mice |
[123] | |
| NLRP3↑ | Exacerbating renal inflammation and fibrosis. | Increasing production of pro-inflammatory cytokines like IL-1β. | HK-2 cells, mouse mesangial cells, Male db/db mice |
[124] | ||
| CUL4B↑ | Promoting macrophage infiltration and fibrosis. | Repressing mir-194-5p transcription, elevating expression of integrin α9. | DKD models | [125] | ||
| CKIP-1↓ | Promoting renal fibrosis in diabetic models. | Inhibiting Nrf2 pathway activation. | CKIP-1 knockout mice. | [126] | ||
| CKIP-1↓ | Exacerbating diabetic renal fibrosis. | Promoting Src-mediated ubiquitination of CKIP-1. | Primary GMCs, CKIP-1−/− mice | [127] | ||
| Other renal fibrosis |
Bcl10↓ | Promoting kidney fibrosis. | Transducing Ang II and immune-receptor signals to NF-κB. | Mice lacking Bcl10 | [128] | |
| Dvl1↑ | Promoting renal fibrosis. |
driving Wnt/β-catenin aberrant activation |
Sprague Dawley rats | [129] | ||
| Lncrna6524, mir-92a-2-5p, and Dvl1↑ | Driving excessive ECM deposition and fibrosis. | Enhancing the Wnt/β-catenin pathway, inhibiting the GSK-3β-AXIN-APC complex. | TGF-β1-induced fibrosis in renal tubular cells | [130] | ||
| JAK2↑ | Contributing to pathological fibrosis. | Promoting the phosphorylation of STAT5. | A novel mouse model of chronic kidney disease | [131,132] | ||
| LGALS3↑ | Exacerbating kidney inflammation and fibrosis. | Enhancing NLRP3 inflammasome activation. | Gal-3 knockout models. | [133] | ||
| PDZK1↓ | Promoting kidney fibrosis. | Exacerbating TGF-β1-induced EMT under oxidative stress conditions. | Renal tubular epithelial cells | [134] | ||
| SPAG9 (JLP)↓ | Promoting TGF-β1-induced EMT, ECM production, apoptosis, and autophagy. | Regulating Beclin-1 and disrupting profibrotic signaling. | Mouse models. | [100] | ||
| P62 (SQSTM1)↑ | Promoting kidney fibrosis. | Suppressing MAP1LC3-II expression, and restoring MMP. | TGF-β-induced renal fibrosis | [135] | ||
| Myd88↑ | Driving inflammation, apoptosis, and fibrotic remodeling. | Activating myd88/p38 MAPK pathway. | A transgenic mouse model | [136] | ||
| SH2B3↑ | Driving renal inflammation, macrophage recruitment, and subsequent fibrosis. | Promoting IL-12 signaling, enhancing Stat4 phosphorylation and IFNγ production. | Immune cell | [137] | ||
| RACK1↑ | Promoting unilateral ureteral obstruction-induced renal fibrosis. | Enhancing interaction with FAK and activating downstream signaling pathways. | Fibroblast | [138,139] | ||
| ATP6V0C↓ | Promoting tubular cell G2/M arrest and ECM deposition. | Inhibiting interactions with SNARE proteins STX17 and VAMP8. | UUO-induced renal fibrosis models | [140] | ||
| STAP2 ↑ | Promoting fibroblast activation and ECM deposition. |
Promoting HSP27 phosphorylation and driving PI3K/AKT signaling. | UUO, IRI, HK-2 cells. |
[141] | ||
| TG2↑ | Amplifying M2 macrophage polarization. | Upregulating ALOX15. | UUO model | [142] |
3.2. Scaffold Proteins in Silicosis
4. Cardiac Fibrosis
5. Heptic Fibrosis
6. Renal Fibrosis
7. Therapeutic Applications of Scaffold Proteins in Treating Fibrotic Diseases of Visceral Organs
| Therapies/reagents | Intervention | Effect | References |
| Galectin-3 inhibitor | Reducing ECM deposition, suppressing TGF-β signal | Decreasing fibrosis. | [173] |
| TULP3 | Regulating profibrotic WNT and TGF-β signaling pathways. | Restoring functions and mitigating fibrosis. | [174] |
| The SLC15A3-p62 axis | Linking autophagy and oxidative stress. | Reducing oxidative stress-induced fibrosis and promoting intracellular clearance. | [31] |
| TOLLIP | Interacting with IRAK-1 and LC3, suppressing inflammatory pathways. | Restoring tissue homeostasis. | [175] |
| Monoclonal antibodies targeting TG2 | Inhibiting transamidase activity and ECM deposition. | Inhibiting fibrosis progression. | [176] |
| TG2 inhibitors | Inhibiting irreversible cross-linking of ECM proteins. | Inhibiting fibrosis progression. | [177] |
| NUDT21 | Inhibiting collagen cross-linking. | Reducing fibrosis in silicosis models. | [178] |
| Cav1-derived peptides | Inhibiting epithelial apoptosis, reducing ECM accumulation, improving lung function. | Inhibiting fibrosis progression. | [29,121] |
| Circtada2a | Upregulating Cav1 and Caveolin-2. | Countering fibrotic progression. | [29] |
| Cav1 | Suppressing NF-κB signaling. | Mitigating inflammation and fibrosis. | [121] |
| BA | Downregulating Wnt target genes. | Preventing fibrosis. | [179,180] |
| ARV-825 | Modulating chromatin remodeling and reducing the expression of profibrotic genes. | Preventing fibrosis. | [181] |
| C75 | Promoting β-catenin degradation. | Reducing fibroblast activation. | [35] |
| The AAV6-based CasRx system | Enhancing β-catenin stabilization. | Promoting alveolar regeneration and reducing fibrosis. | [36] |
| VCAM1-VNT-LPS platform | Delivering BCL-2 inhibitors. | Reducing fibrosis, suppressing migration of fibroblasts into foci, and enhancing drug accumulation in fibrotic lungs. | [182] |
| AAV1.SERCA2a gene therapy | Restoring calcium homeostasis and modulating critical signaling pathways. | Reducing fibrotic progression. | [183] |
| SKI | Suppressing TGF-β1 signaling. | Mitigating cardiac fibrosis. | [184] |
| Cav1 | Modulating NF-κB signaling. | Suppressing cardiac inflammation and ECM deposition. | [69,185] |
| Periostin | Reducing interaction with collagen and fibronectin. | Reducing fibrosis. | [186] |
| Carvedilol | Antagonizing β-arrestin2-biased. | Mitigating cardiac remodeling and fibrosis. | [187,188] |
| XSB | Downregulating β-arrestin 1 and fibrosis markers. | Preventing fibrosis. | [189] |
| BRD4 inhibitor | Modulating inflammatory and profibrotic gene expression. | Mitigating fibrosis and improve cardiac function. | [190,191,192] |
| Alamandine | Downregulating Cav-1. | Impairing glycolysis and suppressing fibrosis. | [193] |
| ISL | Suppressing GPX4 and upregulating TFR and DMT1. | Reducing fibrosis. | [194] |
| XHH2 | Disrupting the Gal-3/integrin-β1 interaction. | Suppressing HSC activation and fibrosis. | [195] |
| Numb | Ubiquitinating and degrading Notch. | Modulating HSC differentiation. | [196] |
| Hic-5 antisense oligonucleotides | Targeting Hic-5. | Inhibiting advanced hepatic fibrosis. | [99,197,198] |
| Salvianic acid A | Downregulating BRD4 to suppress HMGB1 translocation. | Alleviating alcoholic liver disease. | [99,197,198] |
| Spiroganodermaines | Enhancing IRS1 phosphorylation, promoting glucose uptake and suppressing fibrotic markers. | Inhibiting renal fibrosis. | [199] |
| ZLD2218 | Inhibiting BRD4 to inhibit TGF-β/Smad3 signaling and reduce α-SMA and collagen. | Reducing fibrosis in UUO models. | [200] |
| Xylitol | Reducing BRD4 levels. | Mitigating renal fibrosis. | [201] |
| AD-114 | Disrupting CXCR4-mediated signaling, reducing macrophage infiltration and cytokine expression. | Reducing renal fibrosis. | [202] |
8. Lung Fibrosis
9. Cardiac Fibrosis
10. Heptic Firobisis
11. Renal Fibrosis
12. Conclusions
Funding
Declaration of interests
References
- H.H. Chen, C.W. Chen, Y.Y. Chang, T.L. Shen, C.H. Hsu, Preliminary crystallographic characterization of the Grb2 SH2 domain in complex with a FAK-derived phosphotyrosyl peptide, Acta Crystallogr Sect F Struct Biol Cryst Commun, 66 (2010) 195-197. [CrossRef]
- D.D. Schlaepfer, S.K. Hanks, T. Hunter, P. van der Geer, Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase, Nature, 372 (1994) 786-791. [CrossRef]
- H. Kouhara, Y.R. Hadari, T. Spivak-Kroizman, J. Schilling, D. Bar-Sagi, I. Lax, J. Schlessinger, A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway, Cell, 89 (1997) 693-702. [CrossRef]
- A.K. Howe, Regulation of actin-based cell migration by cAMP/PKA, Biochim Biophys Acta, 1692 (2004) 159-174.
- F.D. Smith, J.L. Esseltine, P.J. Nygren, D. Veesler, D.P. Byrne, M. Vonderach, I. Strashnov, C.E. Eyers, P.A. Eyers, L.K. Langeberg, J.D. Scott, Local protein kinase A action proceeds through intact holoenzymes, Science, 356 (2017) 1288-1293. [CrossRef]
- K. Matsuo, S. Asamitsu, K. Maeda, H. Suzuki, K. Kawakubo, G. Komiya, K. Kudo, Y. Sakai, K. Hori, S. Ikenoshita, S. Usuki, S. Funahashi, H. Oizumi, A. Takeda, Y. Kawata, T. Mizobata, N. Shioda, Y. Yabuki, RNA G-quadruplexes form scaffolds that promote neuropathological alpha-synuclein aggregation, Cell, 187 (2024) 6835-6848 e6820.
- G. Bai, Y. Wang, M. Zhang, Gephyrin-mediated formation of inhibitory postsynaptic density sheet via phase separation, Cell Res, 31 (2021) 312-325. [CrossRef]
- G.Y. Zhang, Q. Yu, T. Cheng, T. Liao, C.L. Nie, A.Y. Wang, X. Zheng, X.G. Xie, A.E. Albers, W.Y. Gao, Role of caveolin-1 in the pathogenesis of tissue fibrosis by keloid-derived fibroblasts in vitro, Br J Dermatol, 164 (2011) 623-627. [CrossRef]
- J.F. Santibanez, F.J. Blanco, E.M. Garrido-Martin, F. Sanz-Rodriguez, M.A. del Pozo, C. Bernabeu, Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae, Cardiovasc Res, 77 (2008) 791-799.
- A.S. Marudamuthu, Y.P. Bhandary, L. Fan, V. Radhakrishnan, B. MacKenzie, E. Maier, S.K. Shetty, M.R. Nagaraja, V. Gopu, N. Tiwari, Y. Zhang, A.B. Watts, R.O. Williams, 3rd, G.J. Criner, S. Bolla, N. Marchetti, S. Idell, S. Shetty, Caveolin-1-derived peptide limits development of pulmonary fibrosis, Sci Transl Med, 11 (2019).
- J. Saliez, C. Bouzin, G. Rath, P. Ghisdal, F. Desjardins, R. Rezzani, L.F. Rodella, J. Vriens, B. Nilius, O. Feron, J.L. Balligand, C. Dessy, Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells, Circulation, 117 (2008) 1065-1074.
- I.A. Aliyu, K.H. Ling, N. Md Hashim, H.Y. Chee, Annexin A2 extracellular translocation and virus interaction: A potential target for antivirus-drug discovery, Rev Med Virol, 29 (2019) e2038. [CrossRef]
- E.S. Witze, M.K. Connacher, S. Houel, M.P. Schwartz, M.K. Morphew, L. Reid, D.B. Sacks, K.S. Anseth, N.G. Ahn, Wnt5a directs polarized calcium gradients by recruiting cortical endoplasmic reticulum to the cell trailing edge, Dev Cell, 26 (2013) 645-657. [CrossRef]
- M.D. Brown, D.B. Sacks, IQGAP1 in cellular signaling: bridging the GAP, Trends Cell Biol, 16 (2006) 242-249. [CrossRef]
- M.K. Malleshaiah, V. Shahrezaei, P.S. Swain, S.W. Michnick, The scaffold protein Ste5 directly controls a switch-like mating decision in yeast, Nature, 465 (2010) 101-105. [CrossRef]
- M.V. Repetto, M.J. Winters, A. Bush, W. Reiter, D.M. Hollenstein, G. Ammerer, P.M. Pryciak, A. Colman-Lerner, CDK and MAPK Synergistically Regulate Signaling Dynamics via a Shared Multi-site Phosphorylation Region on the Scaffold Protein Ste5, Mol Cell, 69 (2018) 938-952 e936. [CrossRef]
- J. Lilja, T. Zacharchenko, M. Georgiadou, G. Jacquemet, N. De Franceschi, E. Peuhu, H. Hamidi, J. Pouwels, V. Martens, F.H. Nia, M. Beifuss, T. Boeckers, H.J. Kreienkamp, I.L. Barsukov, J. Ivaska, SHANK proteins limit integrin activation by directly interacting with Rap1 and R-Ras, Nat Cell Biol, 19 (2017) 292-305. [CrossRef]
- P. Monteiro, G. Feng, SHANK proteins: roles at the synapse and in autism spectrum disorder, Nat Rev Neurosci, 18 (2017) 147-157. [CrossRef]
- S.A. Nordeen, D.L. Turman, T.U. Schwartz, Yeast Nup84-Nup133 complex structure details flexibility and reveals conservation of the membrane anchoring ALPS motif, Nat Commun, 11 (2020) 6060. [CrossRef]
- I.H. Hernandez, J.R. Cabrera, M. Santos-Galindo, M. Sanchez-Martin, V. Dominguez, R. Garcia-Escudero, M.J. Perez-Alvarez, B. Pintado, J.J. Lucas, Pathogenic SREK1 decrease in Huntington's disease lowers TAF1 mimicking X-linked dystonia parkinsonism, Brain, 143 (2020) 2207-2219.
- S. Ayala-Pena, Role of oxidative DNA damage in mitochondrial dysfunction and Huntington's disease pathogenesis, Free Radic Biol Med, 62 (2013) 102-110. [CrossRef]
- R. Ullah, Q. Yin, A.H. Snell, L. Wan, RAF-MEK-ERK pathway in cancer evolution and treatment, Semin Cancer Biol, 85 (2022) 123-154. [CrossRef]
- A.R. Froese, C. Shimbori, P.S. Bellaye, M. Inman, S. Obex, S. Fatima, G. Jenkins, J. Gauldie, K. Ask, M. Kolb, Stretch-induced Activation of Transforming Growth Factor-beta1 in Pulmonary Fibrosis, Am J Respir Crit Care Med, 194 (2016) 84-96.
- L. Yang, X. Wei, P. Sun, J. Wang, X. Zhou, X. Zhang, W. Luo, Y. Zhou, W. Zhang, S. Fang, J. Chao, Deciphering the spatial organization of fibrotic microenvironment in silica particles-induced pulmonary fibrosis, J Hazard Mater, 478 (2024) 135540. [CrossRef]
- M.G. Jones, L. Richeldi, Recent Advances and Future Needs in Interstitial Lung Diseases, Semin Respir Crit Care Med, 37 (2016) 477-484. [CrossRef]
- A.K. Lovgren, J.J. Kovacs, T. Xie, E.N. Potts, Y. Li, W.M. Foster, J. Liang, E.B. Meltzer, D. Jiang, R.J. Lefkowitz, P.W. Noble, beta-arrestin deficiency protects against pulmonary fibrosis in mice and prevents fibroblast invasion of extracellular matrix, Sci Transl Med, 3 (2011) 74ra23.
- K.L. Jameson, P.K. Mazur, A.M. Zehnder, J. Zhang, B. Zarnegar, J. Sage, P.A. Khavari, IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors, Nat Med, 19 (2013) 626-630. [CrossRef]
- V.J. Iyer, J.E. Donahue, M.A. Osman, Role of scaffold proteins in the heterogeneity of glioblastoma, Cell Commun Signal, 22 (2024) 477. [CrossRef]
- J. Li, P. Li, G. Zhang, P. Qin, D. Zhang, W. Zhao, CircRNA TADA2A relieves idiopathic pulmonary fibrosis by inhibiting proliferation and activation of fibroblasts, Cell Death Dis, 11 (2020) 553. [CrossRef]
- X.M. Wang, Y. Zhang, H.P. Kim, Z. Zhou, C.A. Feghali-Bostwick, F. Liu, E. Ifedigbo, X. Xu, T.D. Oury, N. Kaminski, A.M. Choi, Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis, J Exp Med, 203 (2006) 2895-2906. [CrossRef]
- J. Luo, P. Li, M. Dong, Y. Zhang, S. Lu, M. Chen, H. Zhou, N. Lin, H. Jiang, Y. Wang, SLC15A3 plays a crucial role in pulmonary fibrosis by regulating macrophage oxidative stress, Cell Death Differ, 31 (2024) 417-430. [CrossRef]
- Z. Qi, W. Yang, B. Xue, T. Chen, X. Lu, R. Zhang, Z. Li, X. Zhao, Y. Zhang, F. Han, X. Kong, R. Liu, X. Yao, R. Jia, S. Feng, ROS-mediated lysosomal membrane permeabilization and autophagy inhibition regulate bleomycin-induced cellular senescence, Autophagy, 20 (2024) 2000-2016. [CrossRef]
- X. Da, Z. Li, X. Huang, Z. He, Y. Yu, T. Tian, C. Xu, Y. Yao, Q.K. Wang, AGGF1 therapy inhibits thoracic aortic aneurysms by enhancing integrin alpha7-mediated inhibition of TGF-beta1 maturation and ERK1/2 signaling, Nat Commun, 14 (2023) 2265.
- H. Chen, J. Qu, X. Huang, A. Kurundkar, L. Zhu, N. Yang, A. Venado, Q. Ding, G. Liu, V.B. Antony, V.J. Thannickal, Y. Zhou, Mechanosensing by the alpha6-integrin confers an invasive fibroblast phenotype and mediates lung fibrosis, Nat Commun, 7 (2016) 12564. [CrossRef]
- H. Lian, Y. Zhang, Z. Zhu, R. Wan, Z. Wang, K. Yang, S. Ma, Y. Wang, K. Xu, L. Cheng, W. Zhao, Y. Li, L. Wang, G. Yu, Fatty acid synthase inhibition alleviates lung fibrosis via beta-catenin signal in fibroblasts, Life Sci Alliance, 8 (2025).
- S. Shen, P. Wang, P. Wu, P. Huang, T. Chi, W. Xu, Y. Xi, CasRx-based Wnt activation promotes alveolar regeneration while ameliorating pulmonary fibrosis in a mouse model of lung injury, Mol Ther, 32 (2024) 3974-3989.
- S.O. Rahaman, L.M. Grove, S. Paruchuri, B.D. Southern, S. Abraham, K.A. Niese, R.G. Scheraga, S. Ghosh, C.K. Thodeti, D.X. Zhang, M.M. Moran, W.P. Schilling, D.J. Tschumperlin, M.A. Olman, TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice, J Clin Invest, 124 (2014) 5225-5238. [CrossRef]
- L.M. Grove, M.L. Mohan, S. Abraham, R.G. Scheraga, B.D. Southern, J.F. Crish, S.V. Naga Prasad, M.A. Olman, Translocation of TRPV4-PI3Kgamma complexes to the plasma membrane drives myofibroblast transdifferentiation, Sci Signal, 12 (2019).
- X. Liu, Y. Geng, J. Liang, A.L. Coelho, C. Yao, N. Deng, Y. Wang, K. Dai, G. Huang, T. Xie, N. Liu, S.C. Rowan, F. Taghavifar, V. Kulur, Z. Liu, B.R. Stripp, C.M. Hogaboam, D. Jiang, P.W. Noble, HER2 drives lung fibrosis by activating a metastatic cancer signature in invasive lung fibroblasts, J Exp Med, 219 (2022). [CrossRef]
- T. Akter, I. Atanelishvili, R.M. Silver, G.S. Bogatkevich, IQGAP1 Regulates Actin Polymerization and Contributes to Bleomycin-Induced Lung Fibrosis, Int J Mol Sci, 25 (2024). [CrossRef]
- Y.Y. Sanders, X. Lyv, Q.J. Zhou, Z. Xiang, D. Stanford, S. Bodduluri, S.M. Rowe, V.J. Thannickal, Brd4-p300 inhibition downregulates Nox4 and accelerates lung fibrosis resolution in aged mice, JCI Insight, 5 (2020). [CrossRef]
- I. Barbayianni, P. Kanellopoulou, D. Fanidis, D. Nastos, E.D. Ntouskou, A. Galaris, V. Harokopos, P. Hatzis, E. Tsitoura, R. Homer, N. Kaminski, K.M. Antoniou, B. Crestani, A. Tzouvelekis, V. Aidinis, SRC and TKS5 mediated podosome formation in fibroblasts promotes extracellular matrix invasion and pulmonary fibrosis, Nat Commun, 14 (2023) 5882. [CrossRef]
- M. Lebel, D.O. Cliche, M. Charbonneau, D. Adam, E. Brochiero, C.M. Dubois, A.M. Cantin, Invadosome Formation by Lung Fibroblasts in Idiopathic Pulmonary Fibrosis, Int J Mol Sci, 24 (2022). [CrossRef]
- A. Ianni, M. Hofmann, P. Kumari, S. Tarighi, H.M. Al-Tamari, A. Gorgens, B. Giebel, H. Nolte, M. Kruger, I. Salwig, S.S. Pullamsetti, A. Gunther, A. Schneider, T. Braun, Depletion of Numb and Numblike in Murine Lung Epithelial Cells Ameliorates Bleomycin-Induced Lung Fibrosis by Inhibiting the beta-Catenin Signaling Pathway, Front Cell Dev Biol, 9 (2021) 639162.
- X.M. Yi, M. Li, Y.D. Chen, H.B. Shu, S. Li, Reciprocal regulation of IL-33 receptor-mediated inflammatory response and pulmonary fibrosis by TRAF6 and USP38, Proc Natl Acad Sci U S A, 119 (2022) e2116279119. [CrossRef]
- S. Venkatesan, L. Fan, H. Tang, N.V. Konduru, S. Shetty, Caveolin-1 scaffolding domain peptide abrogates autophagy dysregulation in pulmonary fibrosis, Sci Rep, 12 (2022) 11086. [CrossRef]
- Y.P. Bhandary, S.K. Shetty, A.S. Marudamuthu, J. Fu, B.M. Pinson, J. Levin, S. Shetty, Role of p53-fibrinolytic system cross-talk in the regulation of quartz-induced lung injury, Toxicol Appl Pharmacol, 283 (2015) 92-98. [CrossRef]
- G. Li, Q. Xu, D. Cheng, W. Sun, Y. Liu, D. Ma, Y. Wang, S. Zhou, C. Ni, Caveolin-1 and Its Functional Peptide CSP7 Affect Silica-Induced Pulmonary Fibrosis by Regulating Fibroblast Glutaminolysis, Toxicol Sci, 190 (2022) 41-53. [CrossRef]
- H. Liu, W. Lai, H. Nie, Y. Shi, L. Zhu, L. Yang, L. Tian, K. Li, L. Bian, Z. Xi, B. Lin, PM(2.5) triggers autophagic degradation of Caveolin-1 via endoplasmic reticulum stress (ERS) to enhance the TGF-beta1/Smad3 axis promoting pulmonary fibrosis, Environ Int, 181 (2023) 108290.
- T.N. Perkins, P.M. Peeters, C. Albrecht, R.P.F. Schins, M.A. Dentener, B.T. Mossman, E.F.M. Wouters, N.L. Reynaert, Crystalline silica alters Sulfatase-1 expression in rat lungs which influences hyper-proliferative and fibrogenic effects in human lung epithelial cells, Toxicol Appl Pharmacol, 348 (2018) 43-53. [CrossRef]
- Q. Zhou, G. Yi, M. Chang, N. Li, Y. Bai, H. Li, S. Yao, Activation of Sirtuin3 by honokiol ameliorates alveolar epithelial cell senescence in experimental silicosis via the cGAS-STING pathway, Redox Biol, 74 (2024) 103224.
- S. Benmerzoug, S. Rose, B. Bounab, D. Gosset, L. Duneau, P. Chenuet, L. Mollet, M. Le Bert, C. Lambers, S. Geleff, M. Roth, L. Fauconnier, D. Sedda, C. Carvalho, O. Perche, D. Laurenceau, B. Ryffel, L. Apetoh, A. Kiziltunc, H. Uslu, F.S. Albez, M. Akgun, D. Togbe, V.F.J. Quesniaux, STING-dependent sensing of self-DNA drives silica-induced lung inflammation, Nat Commun, 9 (2018) 5226. [CrossRef]
- L. Ou, P. Zhang, Z. Huang, Y. Cheng, Q. Miao, R. Niu, Y. Hu, Y. Chen, Targeting STING-mediated pro-inflammatory and pro-fibrotic effects of alveolar macrophages and fibroblasts blunts silicosis caused by silica particles, J Hazard Mater, 458 (2023) 131907. [CrossRef]
- D. Cheng, W. Lian, X. Jia, T. Wang, W. Sun, Y. Liu, C. Ni, LGALS3 regulates endothelial-to-mesenchymal transition via PI3K/AKT signaling pathway in silica-induced pulmonary fibrosis, Toxicology, 509 (2024) 153962. [CrossRef]
- Q. Jia, Y. Yang, S. Yao, X. Chen, Z. Hu, Emerging Roles of Galectin-3 in Pulmonary Diseases, Lung, 202 (2024) 385-403. [CrossRef]
- B.G. Kim, P.H. Lee, J. Hong, A.S. Jang, Analyzing the Impact of Diesel Exhaust Particles on Lung Fibrosis Using Dual PCR Array and Proteomics: YWHAZ Signaling, Toxics, 11 (2023). [CrossRef]
- S. Yu, Z. Sun, X. Wang, T. Ju, C. Wang, Y. Liu, Z. Qu, K. Liu, Z. Mei, N. Li, M. Lu, F. Wu, M. Huang, X. Pang, Y. Jia, Y. Li, Y. Zhang, S. Dou, J. Jiang, X. Li, B. Yang, W. Du, Mettl13 protects against cardiac contractile dysfunction by negatively regulating C-Cbl-mediated ubiquitination of SERCA2a in ischemic heart failure, Sci China Life Sci, 66 (2023) 2786-2804. [CrossRef]
- H. Bao, X. Wang, H. Zhou, W. Zhou, F. Liao, F. Wei, S. Yang, Z. Luo, W. Li, PCSK9 regulates myofibroblast transformation through the JAK2/STAT3 pathway to regulate fibrosis after myocardial infarction, Biochem Pharmacol, 220 (2024) 115996.
- S. Kou, Z. Lu, D. Deng, M. Ye, Y. Sui, L. Qin, T. Feng, Z. Jiang, J. Meng, C.P. Lin, X. Li, C. Liu, J. Tang, H. Zhang, Activation of Imprinted Gene PW1 Promotes Cardiac Fibrosis After Ischemic Injury, Circulation, (2024). [CrossRef]
- E. Yaniz-Galende, M. Roux, S. Nadaud, N. Mougenot, M. Bouvet, O. Claude, G. Lebreton, C. Blanc, F. Pinet, F. Atassi, C. Perret, F. Dierick, S. Dussaud, P. Leprince, D.A. Tregouet, G. Marazzi, D. Sassoon, J.S. Hulot, Fibrogenic Potential of PW1/Peg3 Expressing Cardiac Stem Cells, J Am Coll Cardiol, 70 (2017) 728-741.
- D. Maric, A. Paterek, M. Delaunay, I.P. Lopez, M. Arambasic, D. Diviani, A-Kinase Anchoring Protein 2 Promotes Protection against Myocardial Infarction, Cells, 10 (2021). [CrossRef]
- M. Delaunay, A. Paterek, I. Gautschi, G. Scherler, D. Diviani, AKAP2-anchored extracellular signal-regulated kinase 1 (ERK1) regulates cardiac myofibroblast migration, Biochim Biophys Acta Mol Cell Res, 1871 (2024) 119674. [CrossRef]
- M. Sun, W. Zhang, Y. Bi, H. Xu, M. Abudureyimu, H. Peng, Y. Zhang, J. Ren, NDP52 Protects Against Myocardial Infarction-Provoked Cardiac Anomalies Through Promoting Autophagosome-Lysosome Fusion via Recruiting TBK1 and RAB7, Antioxid Redox Signal, 36 (2022) 1119-1135. [CrossRef]
- A. Aharonov, A. Shakked, K.B. Umansky, A. Savidor, A. Genzelinakh, D. Kain, D. Lendengolts, O.Y. Revach, Y. Morikawa, J. Dong, Y. Levin, B. Geiger, J.F. Martin, E. Tzahor, ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration, Nat Cell Biol, 22 (2020) 1346-1356. [CrossRef]
- T.H. Ko, Y. Kim, C. Jin, B. Yu, M. Lee, P.K. Luong, T.N. Trinh, Y. Yang, H. Kang, Y. Zhang, R. Ma, K. Yoo, J. Choi, J.Y. Kim, S.H. Woo, K. Han, J.I. Choi, Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes, Korean Circ J, (2024). [CrossRef]
- X. Li, X. Chen, L. Zheng, M. Chen, Y. Zhang, R. Zhu, J. Chen, J. Gu, Q. Yin, H. Jiang, X. Wu, X. Ji, X. Tang, M. Dong, Q. Li, Y. Gao, H. Chen, Non-canonical STING-PERK pathway dependent epigenetic regulation of vascular endothelial dysfunction via integrating IRF3 and NF-kappaB in inflammatory response, Acta Pharm Sin B, 13 (2023) 4765-4784.
- M. Alexanian, A. Padmanabhan, T. Nishino, J.G. Travers, L. Ye, A. Pelonero, C.Y. Lee, N. Sadagopan, Y. Huang, K. Auclair, A. Zhu, Y. An, C.A. Ekstrand, C. Martinez, B.G. Teran, W.R. Flanigan, C.K. Kim, K. Lumbao-Conradson, Z. Gardner, L. Li, M.W. Costa, R. Jain, I. Charo, A.J. Combes, S.M. Haldar, K.S. Pollard, R.J. Vagnozzi, T.A. McKinsey, P.F. Przytycki, D. Srivastava, Chromatin remodelling drives immune cell-fibroblast communication in heart failure, Nature, 635 (2024) 434-443. [CrossRef]
- J. Wang, B. Chen, Q. Shi, G. Ciampa, W. Zhao, G. Zhang, R.M. Weiss, T. Peng, D.D. Hall, L.S. Song, Preventing Site-Specific Calpain Proteolysis of Junctophilin-2 Protects Against Stress-Induced Excitation-Contraction Uncoupling and Heart Failure Development, Circulation, (2024). [CrossRef]
- W. Gong, N. Zhang, X. Sun, Y. Zhang, Y. Wang, D. Lv, H. Luo, Y. Liu, Z. Chen, Q. Lei, G. Zhao, L. Bai, Q. Jiao, Cardioprotective effects of polydatin against myocardial injury in HFD/stz and high glucose-induced diabetes via a Caveolin 1-dependent mechanism, Phytomedicine, 135 (2024) 156055. [CrossRef]
- C. Tang, Y.X. Hou, P.X. Shi, C.H. Zhu, X. Lu, X.L. Wang, L.L. Que, G.Q. Zhu, L. Liu, Q. Chen, C.F. Li, Y. Xu, J.T. Li, Y.H. Li, Cardiomyocyte-specific Peli1 contributes to the pressure overload-induced cardiac fibrosis through miR-494-3p-dependent exosomal communication, FASEB J, 37 (2023) e22699.
- M. Thirunavukkarasu, S.R. Pradeep, G. Ukani, S. Abunnaja, M. Youssef, D. Accorsi, S. Swaminathan, S.T. Lim, V. Parker, J. Campbell, M. Tipu Rishi, J.A. Palesty, N. Maulik, Gene therapy with Pellino-1 improves perfusion and decreases tissue loss in Flk-1 heterozygous mice but fails in MAPKAP Kinase-2 knockout murine hind limb ischemia model, Microvasc Res, 141 (2022) 104311. [CrossRef]
- J.J. Cull, S.T.E. Cooper, H.O. Alharbi, S.P. Chothani, O.J.L. Rackham, D.N. Meijles, P.R. Dash, R. Kerkela, N. Ruparelia, P.H. Sugden, A. Clerk, Striatin plays a major role in angiotensin II-induced cardiomyocyte and cardiac hypertrophy in mice in vivo, Clin Sci (Lond), 138 (2024) 573-597. [CrossRef]
- X. Sun, Y. Han, Y. Yu, Y. Chen, C. Dong, Y. Lv, H. Qu, Z. Fan, Y. Yu, Y. Sang, W. Tang, Y. Liu, J. Ju, D. Zhao, Y. Bai, Overexpressing of the GIPC1 protects against pathological cardiac remodelling, Eur J Pharmacol, 971 (2024) 176488. [CrossRef]
- F. Sun, W. Duan, Y. Zhang, L. Zhang, M. Qile, Z. Liu, F. Qiu, D. Zhao, Y. Lu, W. Chu, Simvastatin alleviates cardiac fibrosis induced by infarction via up-regulation of TGF-beta receptor III expression, Br J Pharmacol, 172 (2015) 3779-3792.
- W. Zhu, R.D. Wu, Y.G. Lv, Y.M. Liu, H. Huang, J.Q. Xu, BRD4 blockage alleviates pathological cardiac hypertrophy through the suppression of fibrosis and inflammation via reducing ROS generation, Biomed Pharmacother, 121 (2020) 109368. [CrossRef]
- P. Chelladurai, O. Boucherat, K. Stenmark, M. Kracht, W. Seeger, U.M. Bauer, S. Bonnet, S.S. Pullamsetti, Targeting histone acetylation in pulmonary hypertension and right ventricular hypertrophy, Br J Pharmacol, 178 (2021) 54-71. [CrossRef]
- A.L. Bayer, S. Smolgovsky, N. Ngwenyama, A. Hernandez-Martinez, K. Kaur, K. Sulka, J. Amrute, M. Aronovitz, K. Lavine, S. Sharma, P. Alcaide, T-Cell MyD88 Is a Novel Regulator of Cardiac Fibrosis Through Modulation of T-Cell Activation, Circ Res, 133 (2023) 412-429. [CrossRef]
- D. Huang, D. Zhao, M. Li, S.Y. Chang, Y.D. Xue, N. Xu, S.J. Li, N.N. Tang, L.L. Gong, Y.N. Liu, H. Yu, Q.S. Li, P.Y. Li, J.L. Liu, H.X. Chen, M.B. Liu, W.Y. Zhang, X.M. Zhao, X.Z. Lang, Z.D. Li, Y. Liu, Z.Y. Ma, J.M. Li, N. Wang, H. Tian, B.Z. Cai, Crosstalk between PML and p53 in response to TGF-beta1: A new mechanism of cardiac fibroblast activation, Int J Biol Sci, 19 (2023) 994-1006.
- W. Yang, Y. Zhuang, H. Wu, S. Su, Y. Li, C. Wang, Z. Tian, L. Peng, X. Zhang, J. Liu, X. Pei, W. Yuan, X. Hu, B. Meng, D. Li, Y. Zhang, H. Shan, Z. Pan, Y. Lu, Substrate-dependent interaction of SPOP and RACK1 aggravates cardiac fibrosis following myocardial infarction, Cell Chem Biol, 30 (2023) 1248-1260 e1244. [CrossRef]
- C. Zhai, Y. Zhao, Z. Zhang, X. Wang, L. Li, J. Li, Mechanism of multifunctional adaptor protein SHARPIN regulating myocardial fibrosis and how SNP mutation affect the prognosis of myocardial infarction, Biochim Biophys Acta Mol Basis Dis, 1870 (2024) 167467. [CrossRef]
- N.M. Landry, S.G. Rattan, K.L. Filomeno, T.W. Meier, S.C. Meier, S.J. Foran, C.F. Meier, N. Koleini, R.R. Fandrich, E. Kardami, T.A. Duhamel, I.M.C. Dixon, SKI activates the Hippo pathway via LIMD1 to inhibit cardiac fibroblast activation, Basic Res Cardiol, 116 (2021) 25. [CrossRef]
- H.B. Lin, K. Naito, Y. Oh, G. Farber, G. Kanaan, A. Valaperti, F. Dawood, L. Zhang, G.H. Li, D. Smyth, M. Moon, Y. Liu, W. Liang, B. Rotstein, D.J. Philpott, K.H. Kim, M.E. Harper, P.P. Liu, Innate Immune Nod1/RIP2 Signaling Is Essential for Cardiac Hypertrophy but Requires Mitochondrial Antiviral Signaling Protein for Signal Transductions and Energy Balance, Circulation, 142 (2020) 2240-2258.
- J.J. Du, J.C. Sun, N. Li, X.Q. Li, W.Y. Sun, W. Wei, beta-Arrestin2 deficiency attenuates oxidative stress in mouse hepatic fibrosis through modulation of NOX4, Acta Pharmacol Sin, 42 (2021) 1090-1100.
- X. Wu, Y. Luo, S. Wang, Y. Li, M. Bao, Y. Shang, L. Chen, W. Liu, AKAP12 ameliorates liver injury via targeting PI3K/AKT/PCSK6 pathway, Redox Biol, 53 (2022) 102328. [CrossRef]
- H.S. Lee, J. Choi, T. Son, H.J. Wee, S.J. Bae, J.H. Seo, J.H. Park, S.H. Ryu, D. Lee, M.K. Jang, E. Yu, Y.H. Chung, K.W. Kim, Altered AKAP12 expression in portal fibroblasts and liver sinusoids mediates transition from hepatic fibrogenesis to fibrosis resolution, Exp Mol Med, 50 (2018) 1-13. [CrossRef]
- K. Ramani, N. Mavila, A. Abeynayake, M.L. Tomasi, J. Wang, M. Matsuda, E. Seki, Targeting A-kinase anchoring protein 12 phosphorylation in hepatic stellate cells regulates liver injury and fibrosis in mouse models, Elife, 11 (2022).
- H. Abe, D. Schuppan, beta-arrestin: Dr Jekyll and Mr Hyde in NASH and fibrosis, J Hepatol, 72 (2020) 813-815.
- X. Liu, S. Tan, H. Liu, J. Jiang, X. Wang, L. Li, B. Wu, Hepatocyte-derived MASP1-enriched small extracellular vesicles activate HSCs to promote liver fibrosis, Hepatology, 77 (2023) 1181-1197. [CrossRef]
- D. Lachowski, C. Matellan, S. Gopal, E. Cortes, B.K. Robinson, A. Saiani, A.F. Miller, M.M. Stevens, A.E. Del Rio Hernandez, Substrate Stiffness-Driven Membrane Tension Modulates Vesicular Trafficking via Caveolin-1, ACS Nano, 16 (2022) 4322-4337. [CrossRef]
- L. Zhou, C.Y. Shao, Y.J. Xie, N. Wang, S.M. Xu, B.Y. Luo, Z.Y. Wu, Y.H. Ke, M. Qiu, Y. Shen, Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination, Elife, 9 (2020). [CrossRef]
- D.E. Nam, S.J. Park, S. Omole, E. Um, R.M. Hakami, Y.S. Hahn, Activated Gab1 drives hepatocyte proliferation and anti-apoptosis in liver fibrosis via potential involvement of the HGF/c-Met signaling axis, PLoS One, 19 (2024) e0306345. [CrossRef]
- Y. Chen, Y. Gong, M. Shi, H. Zhu, Y. Tang, D. Huang, W. Wang, C. Shi, X. Xia, Y. Zhang, J. Liu, J. Huang, M. Liu, H. Chen, Y. Ma, Z. Wang, L. Wang, W. Tu, Y. Zhao, J. Lin, L. Jin, J.H. Distler, W. Wu, J. Wang, X. Shi, miR-3606-3p alleviates skin fibrosis by integratively suppressing the integrin/FAK, p-AKT/p-ERK, and TGF-beta signaling cascades, J Adv Res, (2024). [CrossRef]
- R. Belizaire, S.H.J. Koochaki, N.D. Udeshi, A. Vedder, L. Sun, T. Svinkina, C. Hartigan, M. McConkey, V. Kovalcik, A. Bizuayehu, C. Stanclift, M. Schenone, S.A. Carr, E. Padron, B.L. Ebert, CBL mutations drive PI3K/AKT signaling via increased interaction with LYN and PIK3R1, Blood, 137 (2021) 2209-2220. [CrossRef]
- M. Xu, J. Zhao, L. Zhu, C. Ge, Y. Sun, R. Wang, Y. Li, X. Dai, Q. Kuang, L. Hu, J. Luo, G. Kuang, Y. Ren, B. Wang, J. Tan, S. Shi, Targeting PYK2 with heterobifunctional T6BP helps mitigate MASLD and MASH-HCC progression, J Hepatol, (2024). [CrossRef]
- Y. Lu, M. Wang, M. Zhao, Q. Zhang, R. Qian, Z. Hu, Q. Ke, L. Yu, L. Wang, Q. Lai, Z. Liu, X. Jiang, B. Zhang, J. Yang, Y. Yao, Filamin A is overexpressed in non-alcoholic steatohepatitis and contributes to the progression of inflammation and fibrosis, Biochem Biophys Res Commun, 653 (2023) 93-101. [CrossRef]
- M.R. Greco, L. Moro, S. Forciniti, K. Alfarouk, S. Cannone, R.A. Cardone, S.J. Reshkin, Integrin-Linked Kinase Links Integrin Activation to Invadopodia Function and Invasion via the p(T567)-Ezrin/NHERF1/NHE1 Pathway, Int J Mol Sci, 22 (2021).
- J.Y. Liu, Z.L. Liu, M. Yang, C.L. Du, Y. Zhu, L.J. Sun, X.W. Lv, C. Huang, J. Li, Involvement of BRD4 in Alcoholic Liver Injury: Autophagy Modulation via Regulation of the SIRT1/Beclin1 Axis, Lab Invest, 104 (2024) 102134.
- F. Barrow, S. Khan, G. Fredrickson, H. Wang, K. Dietsche, P. Parthiban, S. Robert, T. Kaiser, S. Winer, A. Herman, O. Adeyi, M. Mouzaki, A. Khoruts, K.A. Hogquist, C. Staley, D.A. Winer, X.S. Revelo, Microbiota-Driven Activation of Intrahepatic B Cells Aggravates NASH Through Innate and Adaptive Signaling, Hepatology, 74 (2021) 704-722. [CrossRef]
- M. Noguchi, A. Miyauchi, Y. Masaki, M. Sakaki, X.F. Lei, M. Kobayashi-Tanabe, A. Miyazaki, T. Aoki, H. Yoshida, K. Seio, J.R. Kim-Kaneyama, Hic-5 antisense oligonucleotide inhibits advanced hepatic fibrosis and steatosis in vivo, JHEP Rep, 6 (2024) 101195. [CrossRef]
- Q. Yan, K. Zhu, L. Zhang, Q. Fu, Z. Chen, S. Liu, D. Fu, R. Nakazato, K. Yoshioka, B. Diao, G. Ding, X. Li, H. Wang, A negative feedback loop between JNK-associated leucine zipper protein and TGF-beta1 regulates kidney fibrosis, Commun Biol, 3 (2020) 288.
- J.L. Zhang, B.B. Du, D.H. Zhang, H. Li, L.Y. Kong, G.J. Fan, Y.P. Li, P.C. Li, C. Liang, Z. Wang, L.L. Yang, Z.Y. Hao, L.M. Wu, Z. Huang, J.Z. Dong, J.Y. Zhang, R. Yao, S.J. Wang, Y.Z. Zhang, OTUB1 alleviates NASH through inhibition of the TRAF6-ASK1 signaling pathways, Hepatology, 75 (2022) 1218-1234. [CrossRef]
- S. Alsamman, S.A. Christenson, A. Yu, N.M.E. Ayad, M.S. Mooring, J.M. Segal, J.K. Hu, J.R. Schaub, S.S. Ho, V. Rao, M.M. Marlow, S.M. Turner, M. Sedki, L. Pantano, S. Ghoshal, D.D.S. Ferreira, H.Y. Ma, C.C. Duwaerts, R. Espanol-Suner, L. Wei, B. Newcomb, I. Mileva, D. Canals, Y.A. Hannun, R.T. Chung, A.N. Mattis, B.C. Fuchs, A.M. Tager, D. Yimlamai, V.M. Weaver, A.C. Mullen, D. Sheppard, J.Y. Chen, Targeting acid ceramidase inhibits YAP/TAZ signaling to reduce fibrosis in mice, Sci Transl Med, 12 (2020). [CrossRef]
- L. Li, J. Li, B.M. Drum, Y. Chen, H. Yin, X. Guo, S.W. Luckey, M.L. Gilbert, G.S. McKnight, J.D. Scott, L.F. Santana, Q. Liu, Loss of AKAP150 promotes pathological remodelling and heart failure propensity by disrupting calcium cycling and contractile reserve, Cardiovasc Res, 113 (2017) 147-159. [CrossRef]
- Y.R. Zhu, X.X. Jiang, P. Ye, Z.M. Wang, Y. Zheng, Z. Liu, S.L. Chen, D.M. Zhang, Knockout of AKAP150 improves impaired BK channel-mediated vascular dysfunction through the Akt/GSK3beta signalling pathway in diabetes mellitus, J Cell Mol Med, 24 (2020) 4716-4725.
- T.T. Chen, X.Q. Li, N. Li, Y.P. Xu, Y.H. Wang, Z.Y. Wang, S.N. Zhang, M. Qi, S.H. Zhang, W. Wei, H. Wang, W.Y. Sun, beta-arrestin2 deficiency ameliorates S-100-induced autoimmune hepatitis in mice by inhibiting infiltration of monocyte-derived macrophage and attenuating hepatocyte apoptosis, Acta Pharmacol Sin, 44 (2023) 2048-2064.
- Y.Y. Sun, Y.X. Zhao, X.F. Li, C. Huang, X.M. Meng, J. Li, beta-Arrestin 2 Promotes Hepatocyte Apoptosis by Inhibiting Akt Pathway in Alcoholic Liver Disease, Front Pharmacol, 9 (2018) 1031.
- C. Qu, J.Y. Park, M.W. Yun, Q.T. He, F. Yang, K. Kim, D. Ham, R.R. Li, T.M. Iverson, V.V. Gurevich, J.P. Sun, K.Y. Chung, Scaffolding mechanism of arrestin-2 in the cRaf/MEK1/ERK signaling cascade, Proc Natl Acad Sci U S A, 118 (2021).
- X. Wu, Y. Zhu, Y. Guo, Z. Zhao, Z. Li, Grb2-related adaptor protein GRAP is a novel regulator of liver fibrosis, Life Sci, 327 (2023) 121861. [CrossRef]
- Y. Ma, N. Chang, Y. Liu, F. Liu, C. Dong, L. Hou, C. Qi, L. Yang, L. Li, Silencing IQGAP1 alleviates hepatic fibrogenesis via blocking bone marrow mesenchymal stromal cell recruitment to fibrotic liver, Mol Ther Nucleic Acids, 27 (2022) 471-483. [CrossRef]
- J.W. Kim, H.C. Tung, M. Ke, P. Xu, X. Cai, Y. Xi, M. Xu, S. Ren, Y. Huang, A. Bhowmik, K.S. Carroll, Y.S. Bae, S. Li, W. Xie, The de-sulfinylation enzyme sulfiredoxin-1 attenuates hepatic stellate cell activation and liver fibrosis by modulating the PTPN12-NLRP3 axis, Hepatology, (2024).
- X. Chao, S. Wang, S. Fulte, X. Ma, F. Ahamed, W. Cui, Z. Liu, T. Rulicke, K. Zatloukal, W.X. Zong, W. Liu, H.M. Ni, W.X. Ding, Hepatocytic p62 suppresses ductular reaction and tumorigenesis in mouse livers with mTORC1 activation and defective autophagy, J Hepatol, 76 (2022) 639-651. [CrossRef]
- M. Cheng, J.J. Li, X.N. Niu, L. Zhu, J.Y. Liu, P.C. Jia, S. Zhu, H.W. Meng, X.W. Lv, C. Huang, J. Li, BRD4 promotes hepatic stellate cells activation and hepatic fibrosis via mediating P300/H3K27ac/PLK1 axis, Biochem Pharmacol, 210 (2023) 115497.
- C. Sun, C. Zhou, K. Daneshvar, A. Ben Saad, A.J. Kratkiewicz, B.J. Toles, N. Arghiani, A. Hess, J.Y. Chen, J.V. Pondick, S.R. York, W. Li, S.P. Moran, S.D. Gentile, R.U. Rahman, Z. Li, P. Zhou, R.P. Sparks, T. Habboub, B.M. Kim, M.Y. Choi, S. Affo, R.F. Schwabe, Y.V. Popov, A.C. Mullen, Conserved long noncoding RNA TILAM promotes liver fibrosis through interaction with PML in HSCs, Hepatology, (2024). [CrossRef]
- S.Y. Kwan, J. Jiao, A. Joon, P. Wei, L.E. Petty, J.E. Below, C.R. Daniel, X. Wu, J. Zhang, R.R. Jenq, P.A. Futreal, E.T. Hawk, J.B. McCormick, S.P. Fisher-Hoch, L. Beretta, Gut microbiome features associated with liver fibrosis in Hispanics, a population at high risk for fatty liver disease, Hepatology, 75 (2022) 955-967. [CrossRef]
- Y. Chen, P. Zhou, Y. Deng, X. Cai, M. Sun, Y. Sun, D. Wu, ALKBH5-mediated m(6) A demethylation of TIRAP mRNA promotes radiation-induced liver fibrosis and decreases radiosensitivity of hepatocellular carcinoma, Clin Transl Med, 13 (2023) e1198. [CrossRef]
- Q. Guo, K. Furuta, S. Islam, N. Caporarello, E. Kostallari, K. Dielis, D.J. Tschumperlin, P. Hirsova, S.H. Ibrahim, Liver sinusoidal endothelial cell expressed vascular cell adhesion molecule 1 promotes liver fibrosis, Front Immunol, 13 (2022) 983255. [CrossRef]
- A.A. Noah, N.S. El-Mezayen, S.O. El-Ganainy, I.E. Darwish, E.A. Afify, Reversal of fibrosis and portal hypertension by Empagliflozin treatment of CCl(4)-induced liver fibrosis: Emphasis on gal-1/NRP-1/TGF-beta and gal-1/NRP-1/VEGFR2 pathways, Eur J Pharmacol, 959 (2023) 176066.
- L. Verboom, A. Martens, D. Priem, E. Hoste, M. Sze, H. Vikkula, L. Van Hove, S. Voet, J. Roels, J. Maelfait, L. Bongiovanni, A. de Bruin, C.L. Scott, Y. Saeys, M. Pasparakis, M.J.M. Bertrand, G. van Loo, OTULIN Prevents Liver Inflammation and Hepatocellular Carcinoma by Inhibiting FADD- and RIPK1 Kinase-Mediated Hepatocyte Apoptosis, Cell Rep, 30 (2020) 2237-2247 e2236. [CrossRef]
- D.F. Higgins, D.W. Lappin, N.E. Kieran, H.J. Anders, R.W. Watson, F. Strutz, D. Schlondorff, V.H. Haase, J.M. Fitzpatrick, C. Godson, H.R. Brady, DNA oligonucleotide microarray technology identifies fisp-12 among other potential fibrogenic genes following murine unilateral ureteral obstruction (UUO): modulation during epithelial-mesenchymal transition, Kidney Int, 64 (2003) 2079-2091. [CrossRef]
- J. Wilflingseder, M. Willi, H.K. Lee, H. Olauson, J. Jankowski, T. Ichimura, R. Erben, M.T. Valerius, L. Hennighausen, J.V. Bonventre, Enhancer and super-enhancer dynamics in repair after ischemic acute kidney injury, Nat Commun, 11 (2020) 3383. [CrossRef]
- H. Li, S. Shu, M. Zhou, Y. Chen, A. Xiao, Y. Ma, F. Zhu, Z. Hu, J. Nie, NUMB facilitates autophagy initiation through targeting SCF(beta-TrCP2) complex, Cell Death Differ, 29 (2022) 1409-1422.
- F. Zhu, H. Li, T. Long, M. Zhou, J. Wan, J. Tian, Z. Zhou, Z. Hu, J. Nie, Tubular Numb promotes renal interstitial fibrosis via modulating HIF-1alpha protein stability, Biochim Biophys Acta Mol Basis Dis, 1867 (2021) 166081. [CrossRef]
- S. Li, Z. Lin, H. Xiao, Z. Xu, C. Li, J. Zeng, X. Xie, L. Deng, H. Huang, Fyn deficiency inhibits oxidative stress by decreasing c-Cbl-mediated ubiquitination of Sirt1 to attenuate diabetic renal fibrosis, Metabolism, 139 (2023) 155378. [CrossRef]
- Y. Wang, Y.K. You, J. Guo, J. Wang, B. Shao, H. Li, X. Meng, H.Y. Lan, H. Chen, C-reactive protein promotes diabetic kidney disease via Smad3-mediated NLRP3 inflammasome activation, Mol Ther, (2024).
- S. Jin, Y. Song, L. Zhou, W. Jiang, L. Qin, Y. Wang, R. Yu, Y. Liu, Y. Diao, F. Zhang, K. Liu, P. Li, H. Hu, B. Jiang, W. Tang, F. Yi, Y. Gong, G. Liu, G. Sun, Depletion of CUL4B in macrophages ameliorates diabetic kidney disease via miR-194-5p/ITGA9 axis, Cell Rep, 42 (2023) 112550. [CrossRef]
- Y. Yang, J. Li, L. Zhang, Z. Lin, H. Xiao, X. Sun, M. Zhang, P. Liu, H. Huang, CKIP-1 acts downstream to Cx43 on the activation of Nrf2 signaling pathway to protect from renal fibrosis in diabetes, Pharmacol Res, 163 (2021) 105333. [CrossRef]
- Y. Yang, H. Xiao, Z. Lin, R. Chen, S. Li, C. Li, X. Sun, Z. Hei, W. Gong, H. Huang, The ubiquitination of CKIP-1 mediated by Src aggravates diabetic renal fibrosis (original article), Biochem Pharmacol, 206 (2022) 115339. [CrossRef]
- L. Marko, J.K. Park, N. Henke, S. Rong, A. Balogh, S. Klamer, H. Bartolomaeus, N. Wilck, J. Ruland, S.K. Forslund, F.C. Luft, R. Dechend, D.N. Muller, B-cell lymphoma/leukaemia 10 and angiotensin II-induced kidney injury, Cardiovasc Res, 116 (2020) 1059-1070. [CrossRef]
- T. Lin, J. Tao, Y. Chen, Y. Zhang, F. Li, Y. Zhang, X. Han, Z. Zhao, G. Liu, H. Li, Selenium Deficiency Leads to Changes in Renal Fibrosis Marker Proteins and Wnt/beta-Catenin Signaling Pathway Components, Biol Trace Elem Res, 200 (2022) 1127-1139.
- Y. Xie, G. Zhang, J. Pan, S. Qiu, D. Zhang, The LncRNA6524/miR-92a-2-5p/Dvl1/Wnt/beta-catenin axis promotes renal fibrosis in the UUO mouse model, Arch Biochem Biophys, 761 (2024) 110175.
- B. Liu, A. Shalamu, Z. Pei, L. Liu, Z. Wei, Y. Qu, S. Song, W. Luo, Z. Dong, X. Weng, J. Ge, A novel mouse model of heart failure with preserved ejection fraction after chronic kidney disease induced by retinol through JAK/STAT pathway, Int J Biol Sci, 19 (2023) 3661-3677. [CrossRef]
- X. Li, L. Lin, Y. Li, W. Zhang, Z. Lang, J. Zheng, ATF3-mediated transactivation of CXCL14 in HSCs during liver fibrosis, Clin Transl Med, 14 (2024) e70040. [CrossRef]
- Y.L. Chou, H.L. Chen, B.G. Hsu, C.Y. Yang, C.H. Chen, Y.C. Lee, I.L. Tsai, C.C. Sung, C.C. Wu, S.R. Yang, Y. Suzuki, E. Yates, K.F. Hua, L.G. Yu, F.T. Liu, A. Chen, S.M. Ka, Galectin-3 contributes to pathogenesis of IgA nephropathy, Kidney Int, 106 (2024) 658-670. [CrossRef]
- S. Lu, X. Chen, Y. Chen, Y. Zhang, J. Luo, H. Jiang, L. Fang, H. Zhou, Downregulation of PDZK1 by TGF-beta1 promotes renal fibrosis via inducing epithelial-mesenchymal transition of renal tubular cells, Biochem Pharmacol, 220 (2024) 116015.
- Y. Wang, Z. Ping, H. Gao, Z. Liu, Q. Xv, X. Jiang, W. Yu, LYC inhibits the AKT signaling pathway to activate autophagy and ameliorate TGFB-induced renal fibrosis, Autophagy, 20 (2024) 1114-1133. [CrossRef]
- X. Yu, D. Lu, X. Qi, R.R. Paudel, H. Lin, B.L. Holloman, F. Jin, L. Xu, L. Ding, W. Peng, M.C. Wang, X. Chen, J. Wang, Development of a RIPK1 degrader to enhance antitumor immunity, Nat Commun, 15 (2024) 10683. [CrossRef]
- M.R. Alexander, S. Hank, B.L. Dale, L. Himmel, X. Zhong, C.D. Smart, D.J. Fehrenbach, Y. Chen, N. Prabakaran, B. Tirado, M. Centrella, M. Ao, L. Du, Y. Shyr, D. Levy, M.S. Madhur, A Single Nucleotide Polymorphism in SH2B3/LNK Promotes Hypertension Development and Renal Damage, Circ Res, 131 (2022) 731-747.
- Q. Bao, A. Wang, W. Hong, Y. Wang, B. Li, L. He, X. Yuan, G. Ma, The c-Abl-RACK1-FAK signaling axis promotes renal fibrosis in mice through regulating fibroblast-myofibroblast transition, Cell Commun Signal, 22 (2024) 247. [CrossRef]
- L. Hou, Y. Du, Neuropilin 1 promotes unilateral ureteral obstruction-induced renal fibrosis via RACK1 in renal tubular epithelial cells, Am J Physiol Renal Physiol, 325 (2023) F870-F884. [CrossRef]
- X. Ren, J. Wang, H. Wei, X. Li, Y. Tian, Z. Wang, Y. Yin, Z. Guo, Z. Qin, M. Wu, X. Zeng, Impaired TFEB-mediated autophagy-lysosome fusion promotes tubular cell cycle G2/M arrest and renal fibrosis by suppressing ATP6V0C expression and interacting with SNAREs, Int J Biol Sci, 20 (2024) 1905-1926. [CrossRef]
- Y. Yuan, X. Wei, X. Xiong, X. Wang, W. Jiang, Q. Kuang, K. Zhu, C. Chen, J. Gan, J. Li, J. Yang, L. Li, P. Luo, STAP2 promotes the progression of renal fibrosis via HSP27, J Transl Med, 22 (2024) 1018.
- Y. Shinoda, H. Tatsukawa, A. Yonaga, R. Wakita, T. Takeuchi, T. Tsuji, M. Tanaka, T. Suganami, K. Hitomi, Tissue transglutaminase exacerbates renal fibrosis via alternative activation of monocyte-derived macrophages, Cell Death Dis, 14 (2023) 136. [CrossRef]
- C. Zong, X. Zhang, Y. Xie, J. Cheng, Transforming growth factor-beta inhibits IQ motif containing guanosine triphosphatase activating protein 1 expression in lung fibroblasts via the nuclear factor-kappaB signaling pathway, Mol Med Rep, 12 (2015) 442-448.
- N.S. Corsini, A. Martin-Villalba, Integrin alpha 6: anchors away for glioma stem cells, Cell Stem Cell, 6 (2010) 403-404. [CrossRef]
- Y. Liu, D. Zhao, F. Qiu, L.L. Zhang, S.K. Liu, Y.Y. Li, M.T. Liu, D. Wu, J.X. Wang, X.Q. Ding, Y.X. Liu, C.J. Dong, X.Q. Shao, B.F. Yang, W.F. Chu, Manipulating PML SUMOylation via Silencing UBC9 and RNF4 Regulates Cardiac Fibrosis, Mol Ther, 25 (2017) 666-678. [CrossRef]
- J. Qian, Q. Wang, J. Xu, S. Liang, Q. Zheng, X. Guo, W. Luo, W. Huang, X. Long, J. Min, Y. Wang, G. Wu, G. Liang, Macrophage OTUD1-CARD9 axis drives isoproterenol-induced inflammatory heart remodelling, Clin Transl Med, 14 (2024) e1790. [CrossRef]
- F. Xu, S. Lu, N. Pan, F. Zhao, X. Jia, S. Wang, Y. Zhang, Y. Zhou, Bromodomain protein 4 is a key molecular driver of TGFbeta1-induced hepatic stellate cell activation, Biochim Biophys Acta Mol Cell Res, 1870 (2023) 119569.
- H. Tian, F. Xu, F. Zhao, N. Pan, S. Lu, X. Jia, Y. Zhou, Early-immediate gene Egr1 is associated with TGFbeta1 regulation of epigenetic reader Bromodomain-containing protein 4 via the canonical Smad3 signaling in hepatic stellate cells in vitro and in vivo, FASEB J, 36 (2022) e22605.
- F. Xu, S. Lu, X. Jia, Y. Zhou, Bromodomain protein 4 mediates the roles of TGFbeta1-induced Stat3 signaling in mouse liver fibrogenesis, Toxicol Lett, 385 (2023) 42-50.
- L. Feng, G. Wang, Y. Chen, G. He, B. Liu, J. Liu, C.M. Chiang, L. Ouyang, Dual-target inhibitors of bromodomain and extra-terminal proteins in cancer: A review from medicinal chemistry perspectives, Med Res Rev, 42 (2022) 710-743. [CrossRef]
- Y. Wang, H. Wen, J. Fu, L. Cai, P.L. Li, C.L. Zhao, Z.F. Dong, J.P. Ma, X. Wang, H. Tian, Y. Zhang, Y. Liu, J. Cai, Z.G. She, Z. Huang, W. Li, H. Li, Hepatocyte TNF Receptor-Associated Factor 6 Aggravates Hepatic Inflammation and Fibrosis by Promoting Lysine 6-Linked Polyubiquitination of Apoptosis Signal-Regulating Kinase 1, Hepatology, 71 (2020) 93-111. [CrossRef]
- R. Fernandez-Gines, J.A. Encinar, M. Escoll, D. Carnicero-Senabre, J. Jimenez-Villegas, A.J. Garcia-Yague, A. Gonzalez-Rodriguez, I. Garcia-Martinez, A.M. Valverde, A.I. Rojo, A. Cuadrado, Specific targeting of the NRF2/beta-TrCP axis promotes beneficial effects in NASH, Redox Biol, 69 (2024) 103027.
- M. Zhang, H. Lan, M. Jiang, M. Yang, H. Chen, S. Peng, X. Wang, Y. Zhang, X. Huang, L. Li, C. Chen, J. Hong, NLRP3 inflammasome mediates pyroptosis of alveolar macrophages to induce radiation lung injury, J Hazard Mater, 484 (2024) 136740. [CrossRef]
- J. Chi, W. Li, Y. Xu, X. Li, X. Zhang, Z. Shi, C. Liu, W. Liu, M. Zhao, Y. Meng, D. Zhao, PDZK1 improves ventricular remodeling in hypertensive rats by regulating the stability of the Mas receptor, Amino Acids, 55 (2023) 1573-1585. [CrossRef]
- E. Nazari, G. Khalili-Tanha, A. Asadnia, G. Pourali, M. Maftooh, M. Khazaei, M. Nasiri, S.M. Hassanian, M. Ghayour-Mobarhan, G.A. Ferns, M.A. Kiani, A. Avan, Bioinformatics analysis and machine learning approach applied to the identification of novel key genes involved in non-alcoholic fatty liver disease, Sci Rep, 13 (2023) 20489. [CrossRef]
- S. Yu, X. Gu, Q. Zheng, Y. Liu, T. Suhas, W. Du, L. Xie, Z. Fang, Y. Zhao, M. Yang, J. Xu, Y. Wang, M.H. Lin, X. Pan, J.H. Miner, Y. Jin, J. Xie, Tauroursodeoxycholic acid ameliorates renal injury induced by COL4A3 mutation, Kidney Int, 106 (2024) 433-449. [CrossRef]
- W. Sun, C.H. Byon, D.H. Kim, H.I. Choi, J.S. Park, S.Y. Joo, I.J. Kim, I. Jung, E.H. Bae, S.K. Ma, S.W. Kim, Renoprotective Effects of Maslinic Acid on Experimental Renal Fibrosis in Unilateral Ureteral Obstruction Model via Targeting MyD88, Front Pharmacol, 12 (2021) 708575. [CrossRef]
- J.S. Chung, E.M. Hartman, E.J. Mertick-Sykes, E.B. Pimentel, J.D. Martell, Hyper-Expandable Cross-Linked Protein Crystals as Scaffolds for Catalytic Reactions, ACS Appl Mater Interfaces, (2024). [CrossRef]
- N.A. Kalogriopoulos, R. Tei, Y. Yan, P.M. Klein, M. Ravalin, B. Cai, I. Soltesz, Y. Li, A. Ting, Synthetic GPCRs for programmable sensing and control of cell behaviour, Nature, 637 (2025) 230-239. [CrossRef]
- T. Chen, Z. Chen, J. Du, M. Zhang, Z. Chen, Q. Gao, A. Chen, Q. Meng, Y. Sun, Y. Liu, L. Song, X. Wang, P.P. Edavi, C. Xu, H. Zhang, J. Huang, Y. Jiang, Reprogramming of iPSCs to NPCEC-like cells by biomimetic scaffolds for zonular fiber reconstruction, Bioact Mater, 45 (2025) 446-458. [CrossRef]
- H. Du, J. Liu, K.M. Jude, X. Yang, Y. Li, B. Bell, H. Yang, A. Kassardjian, W. Blackson, A. Mobedi, U. Parekh, R.A. Parra Sperberg, J.P. Julien, E.D. Mellins, K.C. Garcia, P.S. Huang, A general system for targeting MHC class II-antigen complex via a single adaptable loop, Nat Biotechnol, (2024). [CrossRef]
- N. Sun, Q. Chen, H. Chen, P. Sun, Y. Liu, D. Song, D. Yu, P. Wang, Y. Song, J. Qin, K. Tian, J. Zhong, W. Ma, H. Xuan, D. Qian, Y. Yuan, T. Chen, X. Wang, C. Jiang, J. Cai, X. Meng, A novel nuclear RNA HSD52 scaffolding NONO/SFPQ complex modulates DNA damage repair to facilitate temozolomide resistance, Neuro Oncol, (2024). [CrossRef]
- Z.W. Hao, Z.Y. Zhang, Z.P. Wang, Y. Wang, J.Y. Chen, T.H. Chen, G. Shi, H.K. Li, J.W. Wang, M.C. Dong, L. Hong, J.F. Li, Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential, Mil Med Res, 11 (2024) 75. [CrossRef]
- J.I. Kim, J.Y. Kim, G. Bhattarai, H.S. So, S.H. Kook, J.C. Lee, Periodontal Ligament-Mimetic Fibrous Scaffolds Regulate YAP-Associated Fibroblast Behaviors and Promote Regeneration of Periodontal Defect in Relation to the Scaffold Topography, ACS Appl Mater Interfaces, 15 (2023) 599-616. [CrossRef]
- H.S. Kim, Y.M. Yoon, M.K. Meang, Y.E. Park, J.Y. Lee, T.H. Lee, J.E. Lee, I.H. Kim, B.S. Youn, Reversion of in vivo fibrogenesis by novel chromone scaffolds, EBioMedicine, 39 (2019) 484-496. [CrossRef]
- Q. Mao, X. Zhang, J. Yang, Q. Kong, H. Cheng, W. Yu, X. Cao, Y. Li, C. Li, L. Liu, Z. Ding, HSPA12A acts as a scaffolding protein to inhibit cardiac fibroblast activation and cardiac fibrosis, J Adv Res, 67 (2025) 217-229. [CrossRef]
- V. Kuzmuk, I. Pranke, R. Rollason, M. Butler, W.Y. Ding, M. Beesley, A.M. Waters, R.J. Coward, R. Sessions, J. Tuffin, R.R. Foster, G. Mollet, C. Antignac, A. Edelman, G.I. Welsh, M.A. Saleem, A small molecule chaperone rescues keratin-8 mediated trafficking of misfolded podocin to correct genetic Nephrotic Syndrome, Kidney Int, 105 (2024) 744-758. [CrossRef]
- Q. Wei, C. Gan, M. Sun, Y. Xie, H. Liu, T. Xue, C. Deng, C. Mo, T. Ye, BRD4: an effective target for organ fibrosis, Biomark Res, 12 (2024) 92. [CrossRef]
- X. Guo, A. Olajuyin, T.A. Tucker, S. Idell, G. Qian, BRD4 as a Therapeutic Target in Pulmonary Diseases, Int J Mol Sci, 24 (2023). [CrossRef]
- Z. Gui, Y. Zhang, A. Zhang, W. Xia, Z. Jia, CARMA3: A potential therapeutic target in non-cancer diseases, Front Immunol, 13 (2022) 1057980. [CrossRef]
- J. Fan, S. Zheng, M. Wang, X. Yuan, The critical roles of caveolin-1 in lung diseases, Front Pharmacol, 15 (2024) 1417834. [CrossRef]
- H. Tatsukawa, K. Hitomi, Role of Transglutaminase 2 in Cell Death, Survival, and Fibrosis, Cells, 10 (2021). [CrossRef]
- F.R. Zetterberg, A. MacKinnon, T. Brimert, L. Gravelle, R.E. Johnsson, B. Kahl-Knutson, H. Leffler, U.J. Nilsson, A. Pedersen, K. Peterson, J.A. Roper, H. Schambye, R.J. Slack, S. Tantawi, Discovery and Optimization of the First Highly Effective and Orally Available Galectin-3 Inhibitors for Treatment of Fibrotic Disease, J Med Chem, 65 (2022) 12626-12638. [CrossRef]
- J. Devane, E. Ott, E.G. Olinger, D. Epting, E. Decker, A. Friedrich, N. Bachmann, G. Renschler, T. Eisenberger, A. Briem-Richter, E.F. Grabhorn, L. Powell, I.J. Wilson, S.J. Rice, C.G. Miles, K. Wood, C. Genomics England Research, P. Trivedi, G. Hirschfield, A. Pietrobattista, E. Wohler, A. Mezina, N. Sobreira, E. Agolini, G. Maggiore, M. Dahmer-Heath, A. Yilmaz, M. Boerries, P. Metzger, C. Schell, I. Grunewald, M. Konrad, J. Konig, B. Schlevogt, J.A. Sayer, C. Bergmann, Progressive liver, kidney, and heart degeneration in children and adults affected by TULP3 mutations, Am J Hum Genet, 109 (2022) 928-943. [CrossRef]
- X. Li, G.C. Goobie, A.D. Gregory, D.J. Kass, Y. Zhang, Toll-Interacting Protein in Pulmonary Diseases. Abiding by the Goldilocks Principle, Am J Respir Cell Mol Biol, 64 (2021) 536-546. [CrossRef]
- M. Maamra, O.M. Benayad, D. Matthews, C. Kettleborough, J. Atkinson, K. Cain, H. Bon, H. Brand, M. Parkinson, P.F. Watson, T.S. Johnson, Transglutaminase 2: Development of therapeutic antibodies reveals four inhibitory epitopes and confirms extracellular function in fibrotic remodelling, Br J Pharmacol, 179 (2022) 2697-2712. [CrossRef]
- E. Pinilla, S. Comerma-Steffensen, J. Prat-Duran, L. Rivera, V.V. Matchkov, N.H. Buus, U. Simonsen, Transglutaminase 2 Inhibitor LDN 27219 Age-Dependently Lowers Blood Pressure and Improves Endothelium-Dependent Vasodilation in Resistance Arteries, Hypertension, 77 (2021) 216-227. [CrossRef]
- L. Peng, W. Sun, D. Cheng, X. Jia, W. Lian, Z. Li, H. Xiong, T. Wang, Y. Liu, C. Ni, NUDT21 regulates lysyl oxidase-like 2(LOXL2) to influence ECM protein cross-linking in silica-induced pulmonary fibrosis, Ecotoxicol Environ Saf, 290 (2024) 117572. [CrossRef]
- X. Li, X. Liu, R. Deng, S. Gao, Q. Jiang, R. Liu, H. Li, Y. Miao, Y. Zhai, S. Zhang, Z. Wang, Y. Ren, W. Ning, H. Zhou, C. Yang, Betulinic acid attenuated bleomycin-induced pulmonary fibrosis by effectively intervening Wnt/beta-catenin signaling, Phytomedicine, 81 (2021) 153428.
- Y. Qian, Z. Ma, Z. Xu, Y. Duan, Y. Xiong, R. Xia, X. Zhu, Z. Zhang, X. Tian, H. Yin, J. Liu, J. Song, Y. Lu, A. Zhang, C. Guo, L. Jin, W.J. Kim, J. Ke, F. Xu, Z. Huang, Y. He, Structural basis of Frizzled 4 in recognition of Dishevelled 2 unveils mechanism of WNT signaling activation, Nat Commun, 15 (2024) 7644. [CrossRef]
- S. Sato, K. Koyama, H. Ogawa, K. Murakami, T. Imakura, Y. Yamashita, K. Kagawa, H. Kawano, E. Hara, Y. Nishioka, A novel BRD4 degrader, ARV-825, attenuates lung fibrosis through senolysis and antifibrotic effect, Respir Investig, 61 (2023) 781-792. [CrossRef]
- R. Diwan, H.N. Bhatt, R. Dong, I.L. Estevao, A. Varela-Ramirez, M. Nurunnabi, Cell selective BCL-2 inhibition enabled by lipid nanoparticles alleviates lung fibrosis, J Control Release, 370 (2024) 421-437. [CrossRef]
- M. Bisserier, J. Milara, Y. Abdeldjebbar, S. Gubara, C. Jones, C. Bueno-Beti, E. Chepurko, E. Kohlbrenner, M.G. Katz, S. Tarzami, J. Cortijo, J. Leopold, R.J. Hajjar, Y. Sassi, L. Hadri, AAV1.SERCA2a Gene Therapy Reverses Pulmonary Fibrosis by Blocking the STAT3/FOXM1 Pathway and Promoting the SNON/SKI Axis, Mol Ther, 28 (2020) 394-410.
- R. de Oliveira Camargo, B. Abual'anaz, S.G. Rattan, K.L. Filomeno, I.M.C. Dixon, Novel factors that activate and deactivate cardiac fibroblasts: A new perspective for treatment of cardiac fibrosis, Wound Repair Regen, 29 (2021) 667-677. [CrossRef]
- W. Gong, Q. Jiao, J. Yuan, H. Luo, Y. Liu, Y. Zhang, Z. Chen, X. Xu, L. Bai, X. Zhang, Cardioprotective and anti-inflammatory effects of Caveolin 1 in experimental diabetic cardiomyopathy, Clin Sci (Lond), 137 (2023) 511-525. [CrossRef]
- B. Qiao, X. Liu, B. Wang, S. Wei, The role of periostin in cardiac fibrosis, Heart Fail Rev, 29 (2024) 191-206. [CrossRef]
- W.S. Ibrahim, I. Ibrahim, M.F. Mahmoud, A.A.A. Mahmoud, Carvedilol Diminishes Cardiac Remodeling Induced by High-Fructose/High-Fat Diet in Mice via Enhancing Cardiac beta-Arrestin2 Signaling, J Cardiovasc Pharmacol Ther, 25 (2020) 354-363.
- W.S. Ibrahim, H.M.S. Ahmed, A.A.A. Mahmoud, M.F. Mahmoud, I. Ibrahim, Propranolol and low-dose isoproterenol ameliorate insulin resistance, enhance beta-arrestin2 signaling, and reduce cardiac remodeling in high-fructose, high-fat diet-fed mice: Comparative study with metformin, Life Sci, 286 (2021) 120055. [CrossRef]
- F. Zhang, X. Xu, J. Hou, H. Xiao, F. Guo, X. Li, H. Yang, Cardioprotective efficacy of Xin-shu-bao tablet in heart failure with reduced ejection fraction by modulating THBD/ARRB1/FGF1/STIM1 signaling, Biomed Pharmacother, 165 (2023) 115119.
- N.G. Frangogiannis, Targeting galectin-3 in myocardial infarction: a unique opportunity for biomarker-guided therapy, Cardiovasc Res, 119 (2023) 2495-2496. [CrossRef]
- I.M. Seropian, M. El-Diasty, A.H. El-Sherbini, G.E. Gonzalez, G.A. Rabinovich, Central role of Galectin-3 at the cross-roads of cardiac inflammation and fibrosis: Implications for heart failure and transplantation, Cytokine Growth Factor Rev, 80 (2024) 47-58. [CrossRef]
- Z. He, H. Jiao, Q. An, X. Zhang, D. Zengyangzong, J. Xu, H. Liu, L. Ma, W. Zhao, Discovery of novel 4-phenylquinazoline-based BRD4 inhibitors for cardiac fibrosis, Acta Pharm Sin B, 12 (2022) 291-307. [CrossRef]
- Y. Zhang, Y. Zhang, T. Chen, Y. Lin, J. Gong, Q. Xu, J. Wang, J. Li, Y. Meng, Y. Li, X. Li, Caveolin-1 depletion attenuates hepatic fibrosis via promoting SQSTM1-mediated PFKL degradation in HSCs, Free Radic Biol Med, 204 (2023) 95-107. [CrossRef]
- S. Huang, Y. Wang, S. Xie, Y. Lai, C. Mo, T. Zeng, S. Kuang, C. Zhou, Z. Zeng, Y. Chen, S. Huang, L. Gao, Z. Lv, Isoliquiritigenin alleviates liver fibrosis through caveolin-1-mediated hepatic stellate cells ferroptosis in zebrafish and mice, Phytomedicine, 101 (2022) 154117. [CrossRef]
- B. Tang, C. Jin, M. Li, S. Liu, X. Zhang, J. Li, K. Ding, Y. Zang, A novel pectin-like polysaccharide from Crocus sativus targets Galectin-3 to inhibit hepatic stellate cells activation and liver fibrosis, Carbohydr Polym, 348 (2025) 122826. [CrossRef]
- Y.N. Xu, W. Xu, X. Zhang, D.Y. Wang, X.R. Zheng, W. Liu, J.M. Chen, G.F. Chen, C.H. Liu, P. Liu, Y.P. Mu, BM-MSCs overexpressing the Numb enhance the therapeutic effect on cholestatic liver fibrosis by inhibiting the ductular reaction, Stem Cell Res Ther, 14 (2023) 45. [CrossRef]
- S. Piera-Velazquez, J. Fertala, G. Huaman-Vargas, N. Louneva, S.A. Jimenez, Increased expression of the transforming growth factor beta-inducible gene HIC-5 in systemic sclerosis skin and fibroblasts: a novel antifibrotic therapeutic target, Rheumatology (Oxford), 59 (2020) 3092-3098.
- Y. Lan, R. Yan, W. Shan, J. Chu, R. Sun, R. Wang, Y. Zhao, Z. Wang, N. Zhang, J. Yao, Salvianic acid A alleviates chronic alcoholic liver disease by inhibiting HMGB1 translocation via down-regulating BRD4, J Cell Mol Med, 24 (2020) 8518-8531. [CrossRef]
- G. Tang, S. Li, C. Zhang, H. Chen, N. Wang, Y. Feng, Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management, Acta Pharm Sin B, 11 (2021) 2749-2767. [CrossRef]
- S. Tao, S. Tao, F. Guo, L. Zhang, L. Zhao, P. Fu, L. Ma, Discovery of indol-6-yl-pyrrolo[2,3-c]pyridin-7-one derivatives as bromodomain-containing protein 4 (BRD4) inhibitors for the treatment of kidney fibrosis, Eur J Med Chem, 231 (2022) 114153. [CrossRef]
- Z. Tan, Z. Wang, Q. Zeng, X. Liu, Y. Zhang, S. Li, J. Huang, Y. Zeng, Z. Huang, C. Jin, N. Fu, Q. Zhao, Y. Mu, Z. Wang, J. Xiao, H. Yang, G. Ke, Natural intestinal metabolite xylitol reduces BRD4 levels to mitigate renal fibrosis, Clin Transl Sci, 17 (2024) e13770. [CrossRef]
- Q. Cao, C. Huang, H. Yi, A.J. Gill, A. Chou, M. Foley, C.G. Hosking, K.K. Lim, C.F. Triffon, Y. Shi, X.M. Chen, C.A. Pollock, A single-domain i-body, AD-114, attenuates renal fibrosis through blockade of CXCR4, JCI Insight, 7 (2022). [CrossRef]
- C. Umana-Diaz, C. Pichol-Thievend, M.F. Marchand, Y. Atlas, R. Salza, M. Malbouyres, A. Barret, J. Teillon, C. Ardidie-Robouant, F. Ruggiero, C. Monnot, P. Girard, C. Guilluy, S. Ricard-Blum, S. Germain, L. Muller, Scavenger Receptor Cysteine-Rich domains of Lysyl Oxidase-Like2 regulate endothelial ECM and angiogenesis through non-catalytic scaffolding mechanisms, Matrix Biol, 88 (2020) 33-52. [CrossRef]
- R. He, X. Yuan, X. Lv, Q. Liu, L. Tao, J. Meng, Caveolin-1 negatively regulates inflammation and fibrosis in silicosis, J Cell Mol Med, 26 (2022) 99-107. [CrossRef]
- K.W. Ko, S.Y. Park, E.H. Lee, Y.I. Yoo, D.S. Kim, J.Y. Kim, T.G. Kwon, D.K. Han, Integrated Bioactive Scaffold with Polydeoxyribonucleotide and Stem-Cell-Derived Extracellular Vesicles for Kidney Regeneration, ACS Nano, 15 (2021) 7575-7585. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
