Submitted:
16 January 2025
Posted:
17 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. An Overview of NLRP3 Inflammasome Structure, Assembly and Activation
3. NLRP3 Implication in the Pathogenesis of Cardiovascular Diseases
3.1. Atherosclerosis
3.2. Hypertension
3.3. Myocardial Infarction and Ischemic Reperfusion Injury
3.4. Pericarditis
3.5. Cardiotoxicity
3.6. Diabetic Cardiomyopathy
3.7. Heart Failure
4. Inhibitors of NLRP3 Inflammasome
4.1. Sulphonylurea NLRP3 Inhibitors
4.1.1. Glyburide
4.1.2. Second-Generation glyburide-Based Inhibitors: JC121, JC124, JC171, YQ128
4.1.3. CRID3
4.1.4. Second-Generation CRID3-Based Inhibitors
4.2. NLRP3-Inhibiting Compounds (NIC)
4.3. Boron-Based NLRP3 Inflammasome Inhibitors
4.4. Acrylic Acid Derivatives (INF Compounds)
4.5. Nitrostyrene Analogs
4.6. Phenyl Vinyl Sulfones
4.7. Benzoxathiole Derivatives
4.8. Benzimidazoles Derivatives (Fc11a-2, TBZ-09, TBZ-21)
4.9. Benzo[d]imidazol-2-One Compounds (HS-203873, HS-206461)
4.10. Glitazones (CY-09)
4.11. Sulfonyl Nitrile Derivatives (OLT1177 Dapansutrile)
4.12. Tryptophane Derivatives (Tranilast)
4.13. Other Synthetic NLRP3 Inhibitors (Quinazolin-4(3H)-Ones, Oxazole, Triazinone, and Tetrahydroquinoline Derivatives & ODZ10117)
4.14. Novel Phytochemicals and Phytoestrogen Targeting NLRP3 Inhibitors
5. Conclusions
References
- Newton, K. and V.M. Dixit, Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol, 2012. 4(3). [CrossRef]
- Wang, L., et al., PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem, 2002. 277(33): p. 29874-80.
- Martinon, F., K. Burns, and J. Tschopp, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 2002. 10(2): p. 417-26.
- Sanders, M.G., et al., Single-cell imaging of inflammatory caspase dimerization reveals differential recruitment to inflammasomes. Cell Death & Disease, 2015. 6(7): p. e1813-e1813. [CrossRef]
- Schroder, K. and J. Tschopp, The inflammasomes. Cell, 2010. 140(6): p. 821-32.
- Minkiewicz, J., J.P. de Rivero Vaccari, and R.W. Keane, Human astrocytes express a novel NLRP2 inflammasome. Glia, 2013. 61(7): p. 1113-21. [CrossRef]
- Ramachandran, R., et al., NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Experimental & Molecular Medicine, 2024. 56(7): p. 1488-1500. [CrossRef]
- Chen, Y., et al., The NLRP3 inflammasome: contributions to inflammation-related diseases. Cellular & Molecular Biology Letters, 2023. 28(1): p. 51. [CrossRef]
- Broderick, L., et al., The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol, 2015. 10: p. 395-424. [CrossRef]
- Py, B.F., et al., Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell, 2013. 49(2): p. 331-8. [CrossRef]
- Tang, J., et al., Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. J Exp Med, 2020. 217(4). [CrossRef]
- Spalinger, M.R., et al., NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. J Clin Invest, 2016. 126(5): p. 1783-800.
- Tang, J., et al., Tyrosine phosphorylation of NLRP3 by the Src family kinase Lyn suppresses the activity of the NLRP3 inflammasome. Sci Signal, 2021. 14(706): p. eabe3410. [CrossRef]
- MacDonald, J.A., et al., Biochemical and structural aspects of the ATP-binding domain in inflammasome-forming human NLRP proteins. IUBMB Life, 2013. 65(10): p. 851-62. [CrossRef]
- Sharif, H., et al., Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature, 2019. 570(7761): p. 338-343. [CrossRef]
- Andreeva, L., et al., NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell, 2021. 184(26): p. 6299-6312.e22. [CrossRef]
- He, Y., et al., NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature, 2016. 530(7590): p. 354-357. [CrossRef]
- Shi, H., et al., NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nature Immunology, 2016. 17(3): p. 250-258. [CrossRef]
- Schmid-Burgk, J.L., et al., A Genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation. J Biol Chem, 2016. 291(1): p. 103-9. [CrossRef]
- Lu, A., et al., Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell, 2014. 156(6): p. 1193-1206. [CrossRef]
- Schmidt, F.I., et al., A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. J Exp Med, 2016. 213(5): p. 771-90. [CrossRef]
- Fernandes-Alnemri, T., et al., The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death & Differentiation, 2007. 14(9): p. 1590-1604. [CrossRef]
- Ketelut-Carneiro, N. and K.A. Fitzgerald, Apoptosis, Pyroptosis, and Necroptosis—Oh My! The Many Ways a Cell Can Die. Journal of Molecular Biology, 2022. 434(4): p. 167378.
- Manji, G.A., et al., PYPAF1, a PYRIN-containing Apaf1-like protein that assembles with ASC and regulates activation of NF-kappa B. J Biol Chem, 2002. 277(13): p. 11570-5.
- Franchi, L., et al., Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev, 2009. 227(1): p. 106-28. [CrossRef]
- Sutterwala, F.S., S. Haasken, and S.L. Cassel, Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci, 2014. 1319(1): p. 82-95. [CrossRef]
- Dowling, J.K. and L.A. O’Neill, Biochemical regulation of the inflammasome. Crit Rev Biochem Mol Biol, 2012. 47(5): p. 424-43. [CrossRef]
- Ulland, T.K., P.J. Ferguson, and F.S. Sutterwala, Evasion of inflammasome activation by microbial pathogens. J Clin Invest, 2015. 125(2): p. 469-77. [CrossRef]
- Broz, P. and V.M. Dixit, Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews Immunology, 2016. 16(7): p. 407-420. [CrossRef]
- Lamkanfi, M. and V.M. Dixit, Mechanisms and functions of inflammasomes. Cell, 2014. 157(5): p. 1013-22. [CrossRef]
- Muñoz-Planillo, R., et al., K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 2013. 38(6): p. 1142-53. [CrossRef]
- Swanson, K.V., M. Deng, and J.P.Y. Ting, The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology, 2019. 19(8): p. 477-489. [CrossRef]
- Groß, C.J., et al., K(+) Efflux-Independent NLRP3 Inflammasome Activation by Small Molecules Targeting Mitochondria. Immunity, 2016. 45(4): p. 761-773. [CrossRef]
- Gaidt, M.M., et al., Human Monocytes Engage an Alternative Inflammasome Pathway. Immunity, 2016. 44(4): p. 833-46. [CrossRef]
- Aachoui, Y., et al., Caspase-11 protects against bacteria that escape the vacuole. Science, 2013. 339(6122): p. 975-8. [CrossRef]
- Kayagaki, N., et al., Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science, 2013. 341(6151): p. 1246-9. [CrossRef]
- Shi, J., et al., Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014. 514(7521): p. 187-92. [CrossRef]
- Lee, B.L., et al., Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J Exp Med, 2018. 215(9): p. 2279-2288. [CrossRef]
- Kayagaki, N., et al., Non-canonical inflammasome activation targets caspase-11. Nature, 2011. 479(7371): p. 117-21. [CrossRef]
- Shi, J., et al., Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015. 526(7575): p. 660-665. [CrossRef]
- Zanoni, I., et al., An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science, 2016. 352(6290): p. 1232-6. [CrossRef]
- Gaidt, M.M. and V. Hornung, Alternative inflammasome activation enables IL-1β release from living cells. Curr Opin Immunol, 2017. 44: p. 7-13. [CrossRef]
- Mezzaroma, E., A. Abbate, and S. Toldo, NLRP3 Inflammasome Inhibitors in Cardiovascular Diseases. Molecules, 2021. 26(4). [CrossRef]
- Toldo, S., et al., Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther, 2022. 236: p. 108053. [CrossRef]
- Crowther, M.A., Pathogenesis of Atherosclerosis. Hematology, 2005. 2005(1): p. 436-441.
- Jebari-Benslaiman, S., et al., Pathophysiology of Atherosclerosis. International Journal of Molecular Sciences, 2022. 23(6): p. 3346.
- Pazár, B., et al., Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J Immunol, 2011. 186(4): p. 2495-502. [CrossRef]
- Duewell, P., et al., NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010. 464(7293): p. 1357-1361. [CrossRef]
- Lima, H., Jr., et al., Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle, 2013. 12(12): p. 1868-78.
- Afrasyab, A., et al., Correlation of NLRP3 with severity and prognosis of coronary atherosclerosis in acute coronary syndrome patients. Heart Vessels, 2016. 31(8): p. 1218-29. [CrossRef]
- Zheng, F., et al., NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ, 2013. 22(9): p. 746-50. [CrossRef]
- Shi, X., et al., Expression of the NLRP3 Inflammasome in Carotid Atherosclerosis. J Stroke Cerebrovasc Dis, 2015. 24(11): p. 2455-66. [CrossRef]
- Paramel Varghese, G., et al., NLRP3 Inflammasome Expression and Activation in Human Atherosclerosis. J Am Heart Assoc, 2016. 5(5). [CrossRef]
- Usui, F., et al., Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem Biophys Res Commun, 2012. 425(2): p. 162-8. [CrossRef]
- Gage, J., et al., Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. Can J Cardiol, 2012. 28(2): p. 222-9. [CrossRef]
- Ma, J. and X. Chen, Advances in pathogenesis and treatment of essential hypertension. Front Cardiovasc Med, 2022. 9: p. 1003852. [CrossRef]
- Kaplan, N.M. and L.H. Opie, Controversies in hypertension. Lancet, 2006. 367(9505): p. 168-76. [CrossRef]
- Ye, J., et al., Interleukin 22 Promotes Blood Pressure Elevation and Endothelial Dysfunction in Angiotensin II-Treated Mice. J Am Heart Assoc, 2017. 6(10). [CrossRef]
- Shirasuna, K., T. Karasawa, and M. Takahashi, Role of the NLRP3 Inflammasome in Preeclampsia. Front Endocrinol (Lausanne), 2020. 11: p. 80. [CrossRef]
- Shirasuna, K., et al., NLRP3 Deficiency Improves Angiotensin II-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy. Endocrinology, 2015. 156(11): p. 4281-92. [CrossRef]
- Gan, W., et al., The SGK1 inhibitor EMD638683, prevents Angiotensin II-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis, 2018. 1864(1): p. 1-10.
- Wang, Y., et al., Pirfenidone attenuates cardiac fibrosis in a mouse model of TAC-induced left ventricular remodeling by suppressing NLRP3 inflammasome formation. Cardiology, 2013. 126(1): p. 1-11. [CrossRef]
- Willeford, A., et al., CaMKIIδ-mediated inflammatory gene expression and inflammasome activation in cardiomyocytes initiate inflammation and induce fibrosis. JCI Insight, 2018. 3(12).
- Suetomi, T., et al., Inflammation and NLRP3 Inflammasome Activation Initiated in Response to Pressure Overload by Ca(2+)/Calmodulin-Dependent Protein Kinase II δ Signaling in Cardiomyocytes Are Essential for Adverse Cardiac Remodeling. Circulation, 2018. 138(22): p. 2530-2544.
- Matsui, Y., et al., Distinct Roles of Autophagy in the Heart During Ischemia and Reperfusion. Circulation Research, 2007. 100(6): p. 914-922. [CrossRef]
- Marchant, D.J., et al., Inflammation in myocardial diseases. Circ Res, 2012. 110(1): p. 126-44. [CrossRef]
- Westman, P.C., et al., Inflammation as a Driver of Adverse Left Ventricular Remodeling After Acute Myocardial Infarction. J Am Coll Cardiol, 2016. 67(17): p. 2050-60. [CrossRef]
- Seropian, I.M., et al., Anti-inflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. J Am Coll Cardiol, 2014. 63(16): p. 1593-603. [CrossRef]
- Mezzaroma, E., et al., The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci U S A, 2011. 108(49): p. 19725-30. [CrossRef]
- Liu, Y., et al., TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Res Cardiol, 2014. 109(5): p. 415. [CrossRef]
- Sandanger, Ø., et al., The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res, 2013. 99(1): p. 164-74. [CrossRef]
- Zuurbier, C.J., et al., Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased Il-6/STAT3 signaling. PLoS One, 2012. 7(7): p. e40643.
- He, Q., et al., Parkin-Dependent Mitophagy is Required for the Inhibition of ATF4 on NLRP3 Inflammasome Activation in Cerebral Ischemia-Reperfusion Injury in Rats. Cells, 2019. 8(8). [CrossRef]
- Zhang, M., et al., Effects of metformin, acarbose, and sitagliptin monotherapy on gut microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Res Care, 2019. 7(1): p. e000717. [CrossRef]
- Zhang, L., et al., IL-17A contributes to myocardial ischemic injury by activating NLRP3 inflammasome in macrophages through AMPKα/p38MAPK/ERK1/2 signal pathway in mice. Mol Immunol, 2019. 105: p. 240-250.
- Kawaguchi, M., et al., Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation, 2011. 123(6): p. 594-604. [CrossRef]
- Souders, C.A., S.L. Bowers, and T.A. Baudino, Cardiac fibroblast: the renaissance cell. Circ Res, 2009. 105(12): p. 1164-76.
- Bai, Y.J., et al., Effects of IL-1β and IL-18 induced by NLRP3 inflammasome activation on myocardial reperfusion injury after PCI. Eur Rev Med Pharmacol Sci, 2019. 23(22): p. 10101-10106. [CrossRef]
- Mauro, A.G., et al., The Role of NLRP3 Inflammasome in Pericarditis: Potential for Therapeutic Approaches. JACC Basic Transl Sci, 2021. 6(2): p. 137-150.
- Adler, Y., et al., 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC)Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J, 2015. 36(42): p. 2921-2964.
- Brucato, A., et al., Effect of Anakinra on Recurrent Pericarditis Among Patients With Colchicine Resistance and Corticosteroid Dependence: The AIRTRIP Randomized Clinical Trial. Jama, 2016. 316(18): p. 1906-1912.
- Minotti, G., et al., Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev, 2004. 56(2): p. 185-229. [CrossRef]
- Raj, S., V.I. Franco, and S.E. Lipshultz, Anthracycline-induced cardiotoxicity: a review of pathophysiology, diagnosis, and treatment. Curr Treat Options Cardiovasc Med, 2014. 16(6): p. 315. [CrossRef]
- Zhao, L. and B. Zhang, Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep, 2017. 7: p. 44735. [CrossRef]
- Wei, S., et al., Involvement of ROS/NLRP3 Inflammasome Signaling Pathway in Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol, 2020. 20(5): p. 507-519. [CrossRef]
- Renu, K., et al., Molecular mechanism of doxorubicin-induced cardiomyopathy—An update. Eur J Pharmacol, 2018. 818: p. 241-253.
- Toldo, S., et al., Comparative cardiac toxicity of anthracyclines in vitro and in vivo in the mouse. PLoS One, 2013. 8(3): p. e58421. [CrossRef]
- Zeng, C., et al., NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol, 2020. 34: p. 101523. [CrossRef]
- Singla, D.K., T.A. Johnson, and Z. Tavakoli Dargani, Exosome Treatment Enhances Anti-Inflammatory M2 Macrophages and Reduces Inflammation-Induced Pyroptosis in Doxorubicin-Induced Cardiomyopathy. Cells, 2019. 8(10). [CrossRef]
- Marchetti, C., et al., Pharmacologic Inhibition of the NLRP3 Inflammasome Preserves Cardiac Function After Ischemic and Nonischemic Injury in the Mouse. J Cardiovasc Pharmacol, 2015. 66(1): p. 1-8. [CrossRef]
- Mezzaroma, E., et al., Role of Interleukin-1 in Radiation-Induced Cardiomyopathy. Mol Med, 2015. 21(1): p. 210-8. [CrossRef]
- Li, X., et al., IL-18 binding protein (IL-18BP) as a novel radiation countermeasure after radiation exposure in mice. Sci Rep, 2020. 10(1): p. 18674. [CrossRef]
- Sandri, M., et al., Age-related effects of exercise training on diastolic function in heart failure with reduced ejection fraction: the Leipzig Exercise Intervention in Chronic Heart Failure and Aging (LEICA) Diastolic Dysfunction Study. Eur Heart J, 2012. 33(14): p. 1758-68. [CrossRef]
- Zile, M.R. and D.L. Brutsaert, New Concepts in Diastolic Dysfunction and Diastolic Heart Failure: Part I. Circulation, 2002. 105(11): p. 1387-1393. [CrossRef]
- Bryant, C. and K.A. Fitzgerald, Molecular mechanisms involved in inflammasome activation. Trends Cell Biol, 2009. 19(9): p. 455-64. [CrossRef]
- Minutoli, L., et al., ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury. Oxid Med Cell Longev, 2016. 2016: p. 2183026.
- Zhou, R., et al., Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol, 2010. 11(2): p. 136-40. [CrossRef]
- Song, S., et al., Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacol Sin, 2021. 42(2): p. 230-241. [CrossRef]
- Sokolova, M., et al., NLRP3 Inflammasome Promotes Myocardial Remodeling During Diet-Induced Obesity. Front Immunol, 2019. 10: p. 1621. [CrossRef]
- Yan, M., et al., Mitochondrial damage and activation of the cytosolic DNA sensor cGAS-STING pathway lead to cardiac pyroptosis and hypertrophy in diabetic cardiomyopathy mice. Cell Death Discov, 2022. 8(1): p. 258.
- Clapham, D.E., Calcium signaling. Cell, 2007. 131(6): p. 1047-58.
- Penpargkul, S., et al., Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol, 1981. 13(3): p. 303-9. [CrossRef]
- Eslick, G.D., et al., Circulating interleukin-18 concentrations and a loss-of-function P2X7 polymorphism in heart failure. Int J Cardiol, 2009. 137(1): p. 81-3. [CrossRef]
- Butts, B., et al., The Importance of NLRP3 Inflammasome in Heart Failure. J Card Fail, 2015. 21(7): p. 586-93. [CrossRef]
- von Haehling, S., et al., Inflammatory biomarkers in heart failure revisited: much more than innocent bystanders. Heart Fail Clin, 2009. 5(4): p. 549-60.
- Finkel, M.S., et al., Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science, 1992. 257(5068): p. 387-9. [CrossRef]
- Van Tassell, B.W., et al., Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure. PLoS One, 2012. 7(3): p. e33438.
- Pomerantz, B.J., et al., Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc Natl Acad Sci U S A, 2001. 98(5): p. 2871-6.
- Tuzcu, E.M., et al., Immediate and long-term outcome of percutaneous mitral valvotomy in patients 65 years and older. Circulation, 1992. 85(3): p. 963-71. [CrossRef]
- Dinarello, C.A., A. Simon, and J.W.M. van der Meer, Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nature Reviews Drug Discovery, 2012. 11(8): p. 633-652. [CrossRef]
- Zheng, Y., et al., NLRP3 inflammasome: The rising star in cardiovascular diseases. Front Cardiovasc Med, 2022. 9: p. 927061. [CrossRef]
- Chung, E.S., et al., Randomized, Double-Blind, Placebo-Controlled, Pilot Trial of Infliximab, a Chimeric Monoclonal Antibody to Tumor Necrosis Factor-α, in Patients With Moderate-to-Severe Heart Failure. Circulation, 2003. 107(25): p. 3133-3140.
- Burkard, T., et al., Prognostic impact of systemic inflammatory diseases in elderly patients with congestive heart failure. Qjm, 2014. 107(2): p. 131-8. [CrossRef]
- Chen, W. and N.G. Frangogiannis, Fibroblasts in post-infarction inflammation and cardiac repair. Biochim Biophys Acta, 2013. 1833(4): p. 945-53. [CrossRef]
- Bracey, N.A., et al., Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. J Biol Chem, 2014. 289(28): p. 19571-84. [CrossRef]
- Seta, Y., et al., Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail, 1996. 2(3): p. 243-9. [CrossRef]
- Butts, B., et al., Effects of Exercise on ASC Methylation and IL-1 Cytokines in Heart Failure. Med Sci Sports Exerc, 2018. 50(9): p. 1757-1766. [CrossRef]
- Ma, Q., Pharmacological Inhibition of the NLRP3 Inflammasome: Structure, Molecular Activation, and Inhibitor-NLRP3 Interaction. Pharmacol Rev, 2023. 75(3): p. 487-520. [CrossRef]
- Zhang, X., et al., Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases (Review). Int J Mol Med, 2023. 51(4). [CrossRef]
- Hooftman, A., A. Zotta, and L.A.J. O’Neill, Chapter 35—Therapeutic opportunities targeting the NLRP3 inflammasome, in Inflammasome Biology, P. Pelegrin, Editor. 2023, Academic Press. p. 555-563.
- Swanson, K.V., M. Deng, and J.P. Ting, The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol, 2019. 19(8): p. 477-489. [CrossRef]
- Paik, S., et al., An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol, 2021. 18(5): p. 1141-1160. [CrossRef]
- Das, B., et al., Promise of the NLRP3 Inflammasome Inhibitors in In Vivo Disease Models. Molecules, 2021. 26(16). [CrossRef]
- Man, S.M. and T.D. Kanneganti, Regulation of inflammasome activation. Immunol Rev, 2015. 265(1): p. 6-21.
- Mangan, M.S.J., et al., Targeting the NLRP3 inflammasome in inflammatory diseases. Nature Reviews Drug Discovery, 2018. 17(8): p. 588-606.
- Ashcroft, F.M., ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest, 2005. 115(8): p. 2047-58. [CrossRef]
- Hamon, Y., et al., Interleukin-1beta secretion is impaired by inhibitors of the Atp binding cassette transporter, ABC1. Blood, 1997. 90(8): p. 2911-5.
- Lamkanfi, M., et al., Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol, 2009. 187(1): p. 61-70. [CrossRef]
- Hill, J.R., et al., Sulfonylureas as Concomitant Insulin Secretagogues and NLRP3 Inflammasome Inhibitors. ChemMedChem, 2017. 12(17): p. 1449-1457. [CrossRef]
- Ozaki, E., M. Campbell, and S.L. Doyle, Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res, 2015. 8: p. 15-27. [CrossRef]
- Fulp, J., et al., Structural Insights of Benzenesulfonamide Analogues as NLRP3 Inflammasome Inhibitors: Design, Synthesis, and Biological Characterization. J Med Chem, 2018. 61(12): p. 5412-5423. [CrossRef]
- Zhang, X., et al., Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases. Eur J Med Chem, 2020. 185: p. 111822. [CrossRef]
- Marchetti, C., et al., A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol, 2014. 63(4): p. 316-322. [CrossRef]
- Shaik, M.G., et al., Small molecule inhibitors of NLRP3 inflammasome and GSK-3β in the management of traumatic brain injury: A review. Eur J Med Chem, 2023. 259: p. 115718. [CrossRef]
- Zahid, A., et al., Pharmacological Inhibitors of the NLRP3 Inflammasome. Front Immunol, 2019. 10: p. 2538. [CrossRef]
- Toldo, S., et al., Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia-reperfusion in the mouse. Int J Cardiol, 2016. 209: p. 215-20. [CrossRef]
- Quader, M., et al., Targeting the NLRP3 inflammasome to reduce warm ischemic injury in donation after circulatory death heart. Clin Transplant, 2020. 34(10): p. e14044. [CrossRef]
- Carbone, S., et al., An Orally Available NLRP3 Inflammasome Inhibitor Prevents Western Diet-Induced Cardiac Dysfunction in Mice. J Cardiovasc Pharmacol, 2018. 72(6): p. 303-307. [CrossRef]
- Kuwar, R., et al., A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. Journal of Neuroinflammation, 2019. 16(1): p. 81. [CrossRef]
- Yin, J., et al., NLRP3 Inflammasome Inhibitor Ameliorates Amyloid Pathology in a Mouse Model of Alzheimer’s Disease. Mol Neurobiol, 2018. 55(3): p. 1977-1987. [CrossRef]
- Jiang, Y., et al., Discovery of Second-Generation NLRP3 Inflammasome Inhibitors: Design, Synthesis, and Biological Characterization. J Med Chem, 2019. 62(21): p. 9718-9731. [CrossRef]
- Xu, Y., et al., Discovery of carbon-11 labeled sulfonamide derivative: A PET tracer for imaging brain NLRP3 inflammasome. Bioorg Med Chem Lett, 2021. 34: p. 127777.
- Sun, S., et al., Discovery of Novel 2,3-Dihydro-1H-indene-5-sulfonamide NLRP3 Inflammasome Inhibitors Targeting Colon as a Potential Therapy for Colitis. Journal of Medicinal Chemistry, 2023. 66(23): p. 16141-16167.
- Huang, C., et al., Discovery of novel biphenyl-sulfonamide analogues as NLRP3 inflammasome inhibitors. Bioorganic Chemistry, 2024. 146: p. 107263. [CrossRef]
- Laliberte, R.E., et al., Glutathione s-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1beta posttranslational processing. J Biol Chem, 2003. 278(19): p. 16567-78.
- Perregaux, D.G., et al., Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J Pharmacol Exp Ther, 2001. 299(1): p. 187-97. [CrossRef]
- Coll, R.C., et al., A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nature Medicine, 2015. 21(3): p. 248-255. [CrossRef]
- Deora, V., et al., The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia, 2020. 68(2): p. 407-421. [CrossRef]
- Gordon, R., et al., Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med, 2018. 10(465). [CrossRef]
- Dekker, C., et al., Crystal Structure of NLRP3 NACHT Domain With an Inhibitor Defines Mechanism of Inflammasome Inhibition. J Mol Biol, 2021. 433(24): p. 167309. [CrossRef]
- Hochheiser, I.V., et al., Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature, 2022. 604(7904): p. 184-189. [CrossRef]
- Xiao, L., V.G. Magupalli, and H. Wu, Cryo-EM structures of the active NLRP3 inflammasome disc. Nature, 2023. 613(7944): p. 595-600. [CrossRef]
- Brinkschulte, R., et al., ATP-binding and hydrolysis of human NLRP3. Communications Biology, 2022. 5(1): p. 1176. [CrossRef]
- Vande Walle, L., et al., MCC950/CRID3 potently targets the NACHT domain of wild-type NLRP3 but not disease-associated mutants for inflammasome inhibition. PLoS Biol, 2019. 17(9): p. e3000354.
- Weber, A.N.R., et al., Effective ex vivo inhibition of cryopyrin-associated periodic syndrome (CAPS)-associated mutant NLRP3 inflammasome by MCC950/CRID3. Rheumatology (Oxford), 2022. 61(10): p. e299-e313.
- Shah, F., et al., Setting Clinical Exposure Levels of Concern for Drug-Induced Liver Injury (DILI) Using Mechanistic in vitro Assays. Toxicol Sci, 2015. 147(2): p. 500-14.
- Agarwal, S., et al., Identification of a novel orally bioavailable NLRP3 inflammasome inhibitor. Bioorg Med Chem Lett, 2020. 30(21): p. 127571. [CrossRef]
- Agarwal, S., et al., Discovery of N-Cyano-sulfoximineurea Derivatives as Potent and Orally Bioavailable NLRP3 Inflammasome Inhibitors. ACS Med Chem Lett, 2020. 11(4): p. 414-418. [CrossRef]
- Parmar, D.V., et al., Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of the Oral NLRP3 Inflammasome Inhibitor ZYIL1: First-in-Human Phase 1 Studies (Single Ascending Dose and Multiple Ascending Dose). Clin Pharmacol Drug Dev, 2023. 12(2): p. 202-211.
- Hissaria, P., et al., Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of ZY-IL1 in Three Patients with Cryopyrin-Associated Periodic Syndromes. Clin Pharmacol Drug Dev, 2024. 13(2): p. 152-159.
- Schwaid, A.G. and K.B. Spencer, Strategies for Targeting the NLRP3 Inflammasome in the Clinical and Preclinical Space. Journal of Medicinal Chemistry, 2021. 64(1): p. 101-122. [CrossRef]
- Ltd, F.H.-L.R. Roche Group product development portfolio. 2023; Available from: https://www.roche.com/solutions/pipeline/.
- Ltd., F.H.-L.R. Roche Group development pipeline. 2022; Available from: https://assets.cwp.roche.com/f/126832/x/8eaa872b21/irp220721-annex.pdf.
- Mullard, A., Roche snaps up another NLRP3 contender. Nat Rev Drug Discov, 2020. 19(11): p. 744. [CrossRef]
- Madurka, I., et al., DFV890: a new oral NLRP3 inhibitor-tested in an early phase 2a randomised clinical trial in patients with COVID-19 pneumonia and impaired respiratory function. Infection, 2023. 51(3): p. 641-654. [CrossRef]
- Harrison, D., et al., Discovery and Optimization of Triazolopyrimidinone Derivatives as Selective NLRP3 Inflammasome Inhibitors. ACS Med Chem Lett, 2022. 13(8): p. 1321-1328. [CrossRef]
- Harrison, D., et al., Discovery of a series of ester-substituted NLRP3 inflammasome inhibitors. Bioorg Med Chem Lett, 2020. 30(23): p. 127560. [CrossRef]
- Ambrus-Aikelin, G., et al., JT002, a small molecule inhibitor of the NLRP3 inflammasome for the treatment of autoinflammatory disorders. Scientific Reports, 2023. 13(1): p. 13524. [CrossRef]
- Vande Walle, L., et al., Novel chemotype NLRP3 inhibitors that target the CRID3-binding pocket with high potency. Life Sci Alliance, 2024. 7(6). [CrossRef]
- Fernandes, G.F.S., W.A. Denny, and J.L. Dos Santos, Boron in drug design: Recent advances in the development of new therapeutic agents. European Journal of Medicinal Chemistry, 2019. 179: p. 791-804. [CrossRef]
- Duan, M., et al., Medicinal chemistry strategies targeting NLRP3 inflammasome pathway: A recent update from 2019 to mid-2023. European Journal of Medicinal Chemistry, 2023. 260: p. 115750. [CrossRef]
- Wu, X., et al., Discovery of a Novel Oral Proteasome Inhibitor to Block NLRP3 Inflammasome Activation with Anti-inflammation Activity. J Med Chem, 2022. 65(18): p. 11985-12001. [CrossRef]
- Morihara, H., et al., 2-aminoethoxydiphenyl borate provides an anti-oxidative effect and mediates cardioprotection during ischemia reperfusion in mice. PLoS One, 2017. 12(12): p. e0189948. [CrossRef]
- Baldwin, A.G., et al., Boron-Based Inhibitors of the NLRP3 Inflammasome. Cell Chem Biol, 2017. 24(11): p. 1321-1335.e5. [CrossRef]
- Baldwin, A.G., et al., Design, Synthesis and Evaluation of Oxazaborine Inhibitors of the NLRP3 Inflammasome. ChemMedChem, 2018. 13(4): p. 312-320. [CrossRef]
- D. Brough, S.M.A., S. Freeman, A.G. Baldwin, Cyclic Diarylboron derivatives as NLRP3 inflammasome inhibitors. , I.P. Pub., Editor. 2017.
- Redondo-Castro, E., et al., Development of a characterised tool kit for the interrogation of NLRP3 inflammasome-dependent responses. Sci Rep, 2018. 8(1): p. 5667. [CrossRef]
- Teske, K.A., et al., Interrogating direct NLRP3 engagement and functional inflammasome inhibition using cellular assays. Cell Chemical Biology, 2024. 31(2): p. 349-360.e6. [CrossRef]
- Cocco, M., et al., Electrophilic warhead-based design of compounds preventing NLRP3 inflammasome-dependent pyroptosis. J Med Chem, 2014. 57(24): p. 10366-82. [CrossRef]
- Cocco, M., et al., Development of an Acrylate Derivative Targeting the NLRP3 Inflammasome for the Treatment of Inflammatory Bowel Disease. J Med Chem, 2017. 60(9): p. 3656-3671. [CrossRef]
- Mastrocola, R., et al., Pharmacological Inhibition of NLRP3 Inflammasome Attenuates Myocardial Ischemia/Reperfusion Injury by Activation of RISK and Mitochondrial Pathways. Oxid Med Cell Longev, 2016. 2016: p. 5271251. [CrossRef]
- Bertinaria, M., et al., Development of covalent NLRP3 inflammasome inhibitors: Chemistry and biological activity. Arch Biochem Biophys, 2019. 670: p. 116-139. [CrossRef]
- Shi, Y., et al., NLRP3 inflammasome inhibitor INF39 attenuated NLRP3 assembly in macrophages. Int Immunopharmacol, 2021. 92: p. 107358. [CrossRef]
- Pellegrini, C., et al., A Comparative Study on the Efficacy of NLRP3 Inflammasome Signaling Inhibitors in a Pre-clinical Model of Bowel Inflammation. Front Pharmacol, 2018. 9: p. 1405. [CrossRef]
- Pu, Z., et al., Systematic understanding of the mechanism and effects of Arctigenin attenuates inflammation in dextran sulfate sodium-induced acute colitis through suppression of NLRP3 inflammasome by SIRT1. Am J Transl Res, 2019. 11(7): p. 3992-4009.
- Fu, Q., et al., NLRP3 Deficiency Alleviates Severe Acute Pancreatitis and Pancreatitis-Associated Lung Injury in a Mouse Model. Biomed Res Int, 2018. 2018: p. 1294951. [CrossRef]
- Su, Q., et al., Antituberculosis Drugs (Rifampicin and Isoniazid) Induce Liver Injury by Regulating NLRP3 Inflammasomes. Mediators Inflamm, 2021. 2021: p. 8086253. [CrossRef]
- Zhang, Y., et al., Quercetin attenuates NLRP3 inflammasome activation and apoptosis to protect INH-induced liver injury via regulating SIRT1 pathway. Int Immunopharmacol, 2020. 85: p. 106634. [CrossRef]
- Cocco, M., et al., Design, Synthesis, and Evaluation of Acrylamide Derivatives as Direct NLRP3 Inflammasome Inhibitors. ChemMedChem, 2016. 11(16): p. 1790-803. [CrossRef]
- He, Y., et al., 3,4-methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J Biol Chem, 2014. 289(2): p. 1142-50. [CrossRef]
- Wang, W.Y., Y.C. Wu, and C.C. Wu, Prevention of platelet glycoprotein IIb/IIIa activation by 3,4-methylenedioxy-beta-nitrostyrene, a novel tyrosine kinase inhibitor. Mol Pharmacol, 2006. 70(4): p. 1380-9. [CrossRef]
- Messerschmitt, P.J., et al., Osteosarcoma Phenotype Is Inhibited by 3,4-Methylenedioxy-β-nitrostyrene. Sarcoma, 2012. 2012: p. 479712. [CrossRef]
- Xiao, M., et al., 3,4-Methylenedioxy-β-Nitrostyrene Ameliorates Experimental Burn Wound Progression by Inhibiting the NLRP3 Inflammasome Activation. Plast Reconstr Surg, 2016. 137(3): p. 566e-575e. [CrossRef]
- Zheng, J., et al., 3,4-Methylenedioxy-β-Nitrostyrene Alleviates Dextran Sulfate Sodium–Induced Mouse Colitis by Inhibiting the NLRP3 Inflammasome. Frontiers in Pharmacology, 2022. 13. [CrossRef]
- Tanase, D.M., et al., Portrayal of NLRP3 Inflammasome in Atherosclerosis: Current Knowledge and Therapeutic Targets. Int J Mol Sci, 2023. 24(9). [CrossRef]
- Blevins, H.M., et al., The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Frontiers in Aging Neuroscience, 2022. 14. [CrossRef]
- Pierce, J.W., et al., Novel Inhibitors of Cytokine-induced IκBα Phosphorylation and Endothelial Cell Adhesion Molecule Expression Show Anti-inflammatory Effects in Vivo*. Journal of Biological Chemistry, 1997. 272(34): p. 21096-21103. [CrossRef]
- Strickson, S., et al., The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem J, 2013. 451(3): p. 427-37. [CrossRef]
- Lee, J., et al., BAY 11-7082 is a broad-spectrum inhibitor with anti-inflammatory activity against multiple targets. Mediators Inflamm, 2012. 2012: p. 416036. [CrossRef]
- Juliana, C., et al., Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem, 2010. 285(13): p. 9792-9802. [CrossRef]
- Kim, Y.S., et al., BAY 11-7082, a nuclear factor-κB inhibitor, reduces inflammation and apoptosis in a rat cardiac ischemia-reperfusion injury model. Int Heart J, 2010. 51(5): p. 348-53. [CrossRef]
- Qiu, Z., et al., NLRP3 Inflammasome Activation-Mediated Pyroptosis Aggravates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats. Oxid Med Cell Longev, 2017. 2017: p. 9743280. [CrossRef]
- Pavillard, L.E., et al., NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction. Oncotarget, 2017. 8(59): p. 99740-99756. [CrossRef]
- Chuang, T.-D., et al., In Vivo Effects of Bay 11-7082 on Fibroid Growth and Gene Expression: A Preclinical Study. Cells, 2024. 13(13): p. 1091. [CrossRef]
- Irrera, N., et al., BAY 11-7082 inhibits the NF-κB and NLRP3 inflammasome pathways and protects against IMQ-induced psoriasis. Clin Sci (Lond), 2017. 131(6): p. 487-498.
- Han, S., et al., ROS-Mediated NLRP3 Inflammasome Activity Is Essential for Burn-Induced Acute Lung Injury. Mediators Inflamm, 2015. 2015: p. 720457. [CrossRef]
- Wildfeuer, A., [6-hydroxy-1,3-benzoxathiol-2-one, an antipsoriatic with antibacterial and antimycotic properties]. Arzneimittelforschung, 1970. 20(6): p. 824-31.
- Venkateswararao, E., et al., Study on anti-proliferative effect of benzoxathiole derivatives through inactivation of NF-κB in human cancer cells. Bioorg Med Chem Lett, 2012. 22(14): p. 4523-7.
- Kim, B.H., et al., Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling. Exp Mol Med, 2011. 43(5): p. 313-21.
- Lee, H.G., et al., Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice. J Invest Dermatol, 2016. 136(1): p. 107-16. [CrossRef]
- Shim, D.-W., et al., BOT-4-one attenuates NLRP3 inflammasome activation: NLRP3 alkylation leading to the regulation of its ATPase activity and ubiquitination. Scientific Reports, 2017. 7(1): p. 15020. [CrossRef]
- Qu, Y., et al., NLRP3 recruitment by NLRC4 during Salmonella infection. J Exp Med, 2016. 213(6): p. 877-85. [CrossRef]
- Kim, B.H., et al., Alleviation of collagen-induced arthritis by the benzoxathiole derivative BOT-4-one in mice: Implication of the Th1- and Th17-cell-mediated immune responses. Biochem Pharmacol, 2016. 110-111: p. 47-57. [CrossRef]
- Liu, W., et al., A novel benzo[d]imidazole derivate prevents the development of dextran sulfate sodium-induced murine experimental colitis via inhibition of NLRP3 inflammasome. Biochem Pharmacol, 2013. 85(10): p. 1504-12. [CrossRef]
- Pan, L., et al., Synthesis and Biological Evaluation of Novel Benzimidazole Derivatives and Analogs Targeting the NLRP3 Inflammasome. Molecules, 2017. 22(2). [CrossRef]
- Coll, R.C., K. Schroder, and P. Pelegrín, NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends in Pharmacological Sciences, 2022. 43(8): p. 653-668. [CrossRef]
- Liao, K.C., et al., Application of immobilized ATP to the study of NLRP inflammasomes. Arch Biochem Biophys, 2019. 670: p. 104-115. [CrossRef]
- Gastaldi, S., et al., Chemical Modulation of the 1-(Piperidin-4-yl)-1,3-dihydro-2H-benzo[d]imidazole-2-one Scaffold as a Novel NLRP3 Inhibitor. Molecules, 2021. 26(13).
- Gastaldi, S., et al., Novel NLRP3 inhibitor INF195: Low doses provide effective protection against myocardial ischemia/reperfusion injury. Vascular Pharmacology, 2024. 156: p. 107397. [CrossRef]
- Jiang, H., et al., Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med, 2017. 214(11): p. 3219-3238. [CrossRef]
- Sonawane, N.D. and A.S. Verkman, Thiazolidinone CFTR inhibitors with improved water solubility identified by structure-activity analysis. Bioorg Med Chem, 2008. 16(17): p. 8187-95. [CrossRef]
- Lin, H.B., et al., Macrophage-NLRP3 Inflammasome Activation Exacerbates Cardiac Dysfunction after Ischemic Stroke in a Mouse Model of Diabetes. Neurosci Bull, 2020. 36(9): p. 1035-1045. [CrossRef]
- Hotamisligil, G.S., Inflammation, metaflammation and immunometabolic disorders. Nature, 2017. 542(7640): p. 177-185. [CrossRef]
- Marchetti, C., et al., OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci U S A, 2018. 115(7): p. E1530-e1539. [CrossRef]
- Dinarello, A.C., Method for treating schnitzler’s syndrome. 2019.
- Lonnemann, N., et al., The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A, 2020. 117(50): p. 32145-32154. [CrossRef]
- Aliaga, J., et al., Preservation of Contractile Reserve and Diastolic Function by Inhibiting the NLRP3 Inflammasome with OLT1177(®) (Dapansutrile) in a Mouse Model of Severe Ischemic Cardiomyopathy Due to Non-Reperfused Anterior Wall Myocardial Infarction. Molecules, 2021. 26(12). [CrossRef]
- Elsayed, M.S., N.M. Abu-Elsaad, and M.A. Nader, The NLRP3 inhibitor dapansutrile attenuates folic acid induced nephrotoxicity via inhibiting inflammasome/caspase-1/IL axis and regulating autophagy/proliferation. Life Sci, 2021. 285: p. 119974.
- Oizumi, T., et al., NLRP3 Inflammasome Inhibitor OLT1177 Suppresses Onset of Inflammation in Mice with Dextran Sulfate Sodium-Induced Colitis. Dig Dis Sci, 2022. 67(7): p. 2912-2921. [CrossRef]
- Klück, V., et al., Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol, 2020. 2(5): p. e270-e280. [CrossRef]
- Vande Walle, L. and M. Lamkanfi, Drugging the NLRP3 inflammasome: from signalling mechanisms to therapeutic targets. Nature Reviews Drug Discovery, 2024. 23(1): p. 43-66. [CrossRef]
- Huang, Y., et al., Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med, 2018. 10(4). [CrossRef]
- Chen, S., et al., Novel Role for Tranilast in Regulating NLRP3 Ubiquitination, Vascular Inflammation, and Atherosclerosis. Journal of the American Heart Association, 2020. 9(12): p. e015513. [CrossRef]
- Uno, M., et al., Tranilast, an antifibrogenic agent, ameliorates a dietary rat model of nonalcoholic steatohepatitis. Hepatology, 2008. 48(1): p. 109-18. [CrossRef]
- Seto, Y., et al., Protective effects of tranilast on experimental colitis in rats. Biomed Pharmacother, 2017. 90: p. 842-849. [CrossRef]
- Soma, J., et al., Tranilast slows the progression of advanced diabetic nephropathy. Nephron, 2002. 92(3): p. 693-8. [CrossRef]
- Tranilast for early-stage diabetic nephropathy. Nature Clinical Practice Nephrology, 2007. 3(2): p. 62-62.
- Abdullaha, M., et al., Discovery of Quinazolin-4(3H)-ones as NLRP3 Inflammasome Inhibitors: Computational Design, Metal-Free Synthesis, and in Vitro Biological Evaluation. The Journal of Organic Chemistry, 2019. 84(9): p. 5129-5140.
- Ohba, Y., et al., Discovery of Novel NLRP3 Inflammasome Inhibitors Composed of an Oxazole Scaffold Bearing an Acylsulfamide. ACS Medicinal Chemistry Letters, 2023. 14(12): p. 1833-1838. [CrossRef]
- Dai, Z., et al., Development of Novel Tetrahydroquinoline Inhibitors of NLRP3 Inflammasome for Potential Treatment of DSS-Induced Mouse Colitis. Journal of Medicinal Chemistry, 2021. 64(1): p. 871-889. [CrossRef]
- Li, N., et al., Discovery of Triazinone Derivatives as Novel, Specific, and Direct NLRP3 Inflammasome Inhibitors for the Treatment of DSS-Induced Ulcerative Colitis. Journal of Medicinal Chemistry, 2023. 66(19): p. 13428-13451. [CrossRef]
- Kang, J.-H., et al., Novel Activity of ODZ10117, a STAT3 Inhibitor, for Regulation of NLRP3 Inflammasome Activation. International Journal of Molecular Sciences, 2023. 24(7): p. 6079.
- Pellegrini, C., et al., Phytochemicals as Novel Therapeutic Strategies for NLRP3 Inflammasome-Related Neurological, Metabolic, and Inflammatory Diseases. Int J Mol Sci, 2019. 20(12). [CrossRef]
- Hua, F., L. Shi, and P. Zhou, Phenols and terpenoids: natural products as inhibitors of NLRP3 inflammasome in cardiovascular diseases. Inflammopharmacology, 2022. 30(1): p. 137-147. [CrossRef]
- Shao, J.-j., et al., Britannin as a novel NLRP3 inhibitor, suppresses inflammasome activation in macrophages and alleviates NLRP3-related diseases in mice. Acta Pharmacologica Sinica, 2024. 45(4): p. 803-814. [CrossRef]
- Zhao, M., et al., Novel Isoalantolactone-Based Derivatives as Potent NLRP3 Inflammasome Inhibitors: Design, Synthesis, and Biological Characterization. Journal of Medicinal Chemistry, 2024. 67(9): p. 7516-7538. [CrossRef]
- He, G., et al., Isoalantolactone inhibits LPS-induced inflammation via NF-κB inactivation in peritoneal macrophages and improves survival in sepsis. Biomed Pharmacother, 2017. 90: p. 598-607.
- Mangathayaru, K., et al., Modulatory effect of Inula racemosa Hook. f. (Asteraceae) on experimental atherosclerosis in guinea-pigs. J Pharm Pharmacol, 2009. 61(8): p. 1111-8.
- Kalachaveedu, M., et al., Phytoestrogenic effect of Inula racemosa Hook f—A cardioprotective root drug in traditional medicine. J Ethnopharmacol, 2018. 210: p. 408-416.
- Dong, W., et al., Estrogen plays an important role by influencing the NLRP3 inflammasome. Biomedicine & Pharmacotherapy, 2023. 167: p. 115554. [CrossRef]
- Li, G., et al., Erianin: A phytoestrogen with therapeutic potential. Front Pharmacol, 2023. 14: p. 1197056. [CrossRef]
- Dou, B., et al., Anti-inflammation of Erianin in dextran sulphate sodium-induced ulcerative colitis mice model via collaborative regulation of TLR4 and STAT3. Chemico-Biological Interactions, 2020. 324: p. 109089. [CrossRef]
- Tsai, S.W., et al., Erianin alleviates collagen-induced arthritis in mice by inhibiting Th17 cell differentiation. Open Life Sci, 2023. 18(1): p. 20220703. [CrossRef]
- Zhang, T., et al., Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibiting hyperglycemia-mediated ERK1/2-NF-κB signaling pathway. Faseb j, 2019. 33(11): p. 11776-11790.
- Zhang, X., et al., Erianin: A Direct NLRP3 Inhibitor With Remarkable Anti-Inflammatory Activity. Front Immunol, 2021. 12: p. 739953. [CrossRef]
- Nie, T., et al., The natural compound, formononetin, extracted from Astragalus membranaceus increases adipocyte thermogenesis by modulating PPARγ activity. Br J Pharmacol, 2018. 175(9): p. 1439-1450.
- Clifton-Bligh, P.B., et al., Red clover isoflavones enriched with formononetin lower serum LDL cholesterol-a randomized, double-blind, placebo-controlled study. Eur J Clin Nutr, 2015. 69(1): p. 134-42.
- Wang, D.S., et al., Formononetin ameliorates myocardial ischemia/reperfusion injury in rats by suppressing the ROS-TXNIP-NLRP3 pathway. Biochem Biophys Res Commun, 2020. 525(3): p. 759-766. [CrossRef]
- Liu, G., et al., Formononetin protects against concanavalin-A-induced autoimmune hepatitis in mice through its anti-apoptotic and anti-inflammatory properties. Biochem Cell Biol, 2021. 99(2): p. 231-240. [CrossRef]
- Bai, Y., et al., Biochanin A attenuates myocardial ischemia/reperfusion injury through the TLR4/NF-κB/NLRP3 signaling pathway. Acta Cir Bras, 2019. 34(11): p. e201901104.
- Xue, H.X., et al., Biochanin A protects against angiotensin II-induced damage of dopaminergic neurons in rats associated with the increased endophilin A2 expression. Behav Pharmacol, 2019. 30(8): p. 700-711. [CrossRef]
- Liu, X., et al., Biochanin A protects lipopolysaccharide/D-galactosamine-induced acute liver injury in mice by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Int Immunopharmacol, 2016. 38: p. 324-31.
- Ram, C., et al., Biochanin A Ameliorates Nephropathy in High-Fat Diet/Streptozotocin-Induced Diabetic Rats: Effects on NF-kB/NLRP3 Axis, Pyroptosis, and Fibrosis. Antioxidants (Basel), 2023. 12(5).
- Heinonen, S., et al., In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem, 2001. 49(7): p. 3178-86. [CrossRef]
- Zhuo, Y., et al., Syringaresinol Resisted Sepsis-Induced Acute Lung Injury by Suppressing Pyroptosis Via the Oestrogen Receptor-β Signalling Pathway. Inflammation, 2022. 45(2): p. 824-837. [CrossRef]
- Wei, A., et al., Syringaresinol attenuates sepsis-induced cardiac dysfunction by inhibiting inflammation and pyroptosis in mice. Eur J Pharmacol, 2021. 913: p. 174644. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
