Submitted:
14 January 2025
Posted:
15 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pathophysiology
2.1. Genetics
2.2. Leukemia in Twins
2.3. Carcinogenesis Attributed to Microbiome Flora
2.4. Fungi in the Environment
2.5. Incidence of Cancer and Leukemia in Asthmatics
2.6. History of Allergy and Mortality from Cancer
2.7. Agricultural Workers and Foresters and Leukemia
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA a cancer journal for clinicians 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2018. CA Cancer J Clin 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chan, S.C.; Ngai, C.H.; Lok, V.; Zhang, L.; Lucero-Prisno, D.E.; Xu, W.; Zheng, Z.-J.; Elcarte, E.; Withers, M.; et al. Disease Burden, Risk Factors, and Trends of Leukaemia: A Global Analysis. Front Oncol 2022, 12, 904292. [Google Scholar] [CrossRef] [PubMed]
- Daltveit, D.S.; Morgan, E.; Colombet, M.; Steliarova-Foucher, E.; Bendahhou, K.; Marcos-Gragera, R.; Rongshou, Z.; Smith, A.; Wei, H.; Soerjomataram, I. Global Patterns of Leukemia by Subtype, Age, and Sex in 185 Countries in 2022. Leukemia 2024. [Google Scholar] [CrossRef]
- .Ruchlemer, R.; Polliack, A. Geography, Ethnicity and “Roots” in Chronic Lymphocytic Leukemia. Leuk Lymphoma 2013, 54, 1142–1150. [Google Scholar] [CrossRef]
- Mendizabal, A.M.; Younes, N.; Levine, P.H. Geographic and Income Variations in Age at Diagnosis and Incidence of Chronic Myeloid Leukemia. Int J Hematol 2016, 103, 70–78. [Google Scholar] [CrossRef] [PubMed]
- De Braekeleer, M.; De Braekeleer, E.; Douet-Guilbert, N. Geographic/Ethnic Variability of Chromosomal and Molecular Abnormalities in Leukemia. Expert Rev Anticancer Ther 2015, 15, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Schüz, J.; Erdmann, F. Environmental Exposure and Risk of Childhood Leukemia: An Overview. Arch Med Res 2016, 47, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Stiller, C.A.; Parkin, D.M. Geographic and ethnic variations in the incidence of childhood cancer. British medical bulletin 1996, 52, 682–703. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Bispo, J.A.B.; Pinheiro, P.S.; Kobetz, E.K. Epidemiology and Etiology of Leukemia and Lymphoma. Cold Spring Harb Perspect Med 2020, 10, a034819. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.A. Leukemia in children. Pediatrics in review 2019, 40, 319–331. [Google Scholar] [CrossRef]
- Namayandeh, S.M.; Khazaei, Z.; Lari Najafi, M.; Goodarzi, E.; Moslem, A. GLOBAL Leukemia in Children 0-14 Statistics 2018, Incidence and Mortality and Human Development Index (HDI): GLOBOCAN Sources and Methods. Asian Pac J Cancer Prev 2020, 21, 1487–1494. [Google Scholar] [CrossRef]
- Kojika, S.; Griffin, J.D. Notch Receptors and Hematopoiesis. Exp Hematol 2001, 29, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wei, S.; Yang, L. Dysfunction of Immune System in the Development of Large Granular Lymphocyte Leukemia. Hematology 2019, 24, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Kinlen, L. Epidemiological evidence for an infective basis in childhood leukaemia. Br. J. Canc 1995, 71, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Greaves, MF. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia 1988, 2, 120–125. [Google Scholar] [PubMed]
- Greaves, M. Aetiology of acute leukaemia. Lancet 1997, 349, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Buffle, P.A.; Kwan, M.L.; Reynolds, P.; Urayama, K.Y. Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Canc. Invest 2005, 23, 60–75. [Google Scholar] [CrossRef]
- Figueroa, S.C.; Kennedy, C.J.; Wesseling, C.; Wiemels, J.M.; Morimoto, L.; Mora, A.M. Early immune stimulation and childhood acute lymphoblastic leukemia in Costa Rica: A comparison of statistical approaches. Environmental research 2020, 182, 109023. [Google Scholar] [CrossRef]
- Greaves, M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nature Reviews Cancer 2018, 18, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Hauer, J.; Fischer, U.; Borkhardt, A. Toward prevention of childhood ALL by early-life immune training. Blood 2021, 138, 1412–1428. [Google Scholar] [CrossRef] [PubMed]
- Ajrouche, R.; Rudant, J.; Orsi, L.; Petit, A.; Baruchel, A.; Lambilliotte, A.; Gambart, M.; Michel, G.; Bertrand, Y.; Ducassou, S.; et al. Childhood Acute Lymphoblastic Leukaemia and Indicators of Early Immune Stimulation: The Estelle Study (SFCE). Br J Cancer 2015, 112, 1017–1026. [Google Scholar] [CrossRef]
- Rudant, J.; Orsi, L.; Menegaux, F.; Petit, A.; Baruchel, A.; Bertrand, Y.; Lambilliotte, A.; Robert, A.; Michel, G.; Margueritte, G.; et al. Childhood Acute Leukemia, Early Common Infections, and Allergy: The ESCALE Study. Am J Epidemiol 2010, 172, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Gale, R.P.; Opelz, G. Commentary: Does Immune Suppression Increase Risk of Developing Acute Myeloid Leukemia? Leukemia 2012, 26, 422–423. [Google Scholar] [CrossRef]
- Ramadan, S.M.; Fouad, T.M.; Summa, V.; Hasan, S.K.; Lo-Coco, F. Acute Myeloid Leukemia Developing in Patients with Autoimmune Diseases. Haematologica 2012, 97, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Derhovanessian, E.; Solana, R.; Larbi, A.; Pawelec, G. Immunity, Ageing and Cancer. Immun Ageing 2008, 5, 11. [Google Scholar] [CrossRef]
- Hakim, F.T.; Flomerfelt, F.A.; Boyiadzis, M.; Gress, R.E. Aging, Immunity and Cancer. Curr Opin Immunol 2004, 16, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Domer, P.H.; Fakharzadeh, S.S.; Chen, C.S.; Jockel, J.; Johansen, L.; Silverman, G.A.; Kersey, J.H.; Korsmeyer, S.J. Acute Mixed-Lineage Leukemia t(4;11)(Q21;Q23) Generates an MLL-AF4 Fusion Product. Proc Natl Acad Sci U S A 1993, 90, 7884–7888. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, C.K. Etiology of Acute Leukemia: A Review. Cancers 2021, 13, 2256. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.L.; Arts, P.; Carmichael, C.L.; Babic, M.; Dobbins, J.; Chong, C.-E.; Schreiber, A.W.; Feng, J.; Phillips, K.; Wang, P.P.S.; et al. RUNX1-Mutated Families Show Phenotype Heterogeneity and a Somatic Mutation Profile Unique to Germline Predisposed AML. Blood Adv 2020, 4, 1131–1144. [Google Scholar] [CrossRef] [PubMed]
- Greaves, M. Pre-Natal Origins of Childhood Leukemia. Rev Clin Exp Hematol 2003, 7, 233–245. [Google Scholar] [PubMed]
- Greaves, M.F.; Maia, A.T.; Wiemels, J.L.; Ford, A.M. Leukemia in Twins: Lessons in Natural History. Blood 2003, 102, 2321–2333. [Google Scholar] [CrossRef] [PubMed]
- Bardini, M.; Fazio, G.; Abascal, L.C.; Meyer, C.; Maglia, O.; Sala, S.; Palamini, S.; Rebellato, S.; Marschalek, R.; Rizzari, C.; et al. Prenatal Origin of NUTM1 Gene Rearrangement in Infant B-Cell Precursor Acute Lymphoblastic Leukaemia. Br J Haematol 2024, 205, 1883–1888. [Google Scholar] [CrossRef] [PubMed]
- Papaemmanuil, E.; Rapado, I.; Li, Y.; Potter, N.E.; Wedge, D.C.; Tubio, J.; Alexandrov, L.B.; Van Loo, P.; Cooke, S.L.; Marshall, J.; et al. RAG-Mediated Recombination Is the Predominant Driver of Oncogenic Rearrangement in ETV6-RUNX1 Acute Lymphoblastic Leukemia. Nat Genet 2014, 46, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.M.; Colman, S.; Greaves, M. Covert Pre-Leukaemic Clones in Healthy Co-Twins of Patients with Childhood Acute Lymphoblastic Leukaemia. Leukemia 2023, 37, 47–52. [Google Scholar] [CrossRef]
- Kirkham, C.M.; Scott, J.N.F.; Wang, X.; Smith, A.L.; Kupinski, A.P.; Ford, A.M.; Westhead, D.R.; Stockley, P.G.; Tuma, R.; Boyes, J. Cut-and-Run: A Distinct Mechanism by Which V(D)J Recombination Causes Genome Instability. Mol Cell 2019, 74, 584–597.e9. [Google Scholar] [CrossRef] [PubMed]
- Paulsson, K.; Lilljebjörn, H.; Biloglav, A.; Olsson, L.; Rissler, M.; Castor, A.; Barbany, G.; Fogelstrand, L.; Nordgren, A.; Sjögren, H.; et al. The Genomic Landscape of High Hyperdiploid Childhood Acute Lymphoblastic Leukemia. Nat Genet 2015, 47, 672–676. [Google Scholar] [CrossRef]
- Kaczmarska, A.; Derebas, J.; Pinkosz, M.; Niedźwiecki, M.; Lejman, M. The Landscape of Secondary Genetic Rearrangements in Pediatric Patients with B-Cell Acute Lymphoblastic Leukemia with t(12;21). Cells 2023, 12, 357. [Google Scholar] [CrossRef]
- Aydin, C.; Cetin, Z.; Manguoglu, A.E.; Tayfun, F.; Clark, O.A.; Kupesiz, A.; Akkaya, B.; Karauzum, S.B. Evaluation of ETV6/RUNX1 Fusion and Additional Abnormalities Involving ETV6 and/or RUNX1 Genes Using FISH Technique in Patients with Childhood Acute Lymphoblastic Leukemia. Indian J Hematol Blood Transfus 2016, 32, 154–161. [Google Scholar] [CrossRef]
- Parker, H.; An, Q.; Barber, K.; Case, M.; Davies, T.; Konn, Z.; Stewart, A.; Wright, S.; Griffiths, M.; Ross, F.M.; et al. The Complex Genomic Profile of ETV6-RUNX1 Positive Acute Lymphoblastic Leukemia Highlights a Recurrent Deletion of TBL1XR1. Genes Chromosomes Cancer 2008, 47, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Sundaresh, A.; Williams, O. Mechanism of ETV6-RUNX1 leukemia. RUNX Proteins in Development and Cancer 2017, 201–216. [Google Scholar]
- Schäfer, D.; Olsen, M.; Lähnemann, D.; Stanulla, M.; Slany, R.; Schmiegelow, K.; et al. Five percent of healthy newborns have an ETV6-RUNX1 fusion as revealed by DNA-based GIPFEL screening. Blood, The Journal of the American Society of Hematology 2018, 131, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Dobbins, S.E.; Sherborne, A.L.; Ma, Y.P.; Bardini, M.; Biondi, A.; Cazzaniga, G.; Lloyd, A.; Chubb, D.; Greaves, M.F.; Houlston, R.S. The Silent Mutational Landscape of Infant MLL-AF4 pro-B Acute Lymphoblastic Leukemia. Genes Chromosomes Cancer 2013, 52, 954–960. [Google Scholar] [CrossRef]
- Andersson, A.K.; Ma, J.; Wang, J.; Chen, X.; Gedman, A.L.; Dang, J.; Nakitandwe, J.; Holmfeldt, L.; Parker, M.; Easton, J.; et al. The Landscape of Somatic Mutations in Infant MLL-Rearranged Acute Lymphoblastic Leukemias. Nat Genet 2015, 47, 330–337. [Google Scholar] [CrossRef]
- Mullighan, C.G.; Miller, C.B.; Radtke, I.; Phillips, L.A.; Dalton, J.; Ma, J.; White, D.; Hughes, T.P.; Le Beau, M.M.; Pui, C.-H.; et al. BCR-ABL1 Lymphoblastic Leukaemia Is Characterized by the Deletion of Ikaros. Nature 2008, 453, 110–114. [Google Scholar] [CrossRef]
- Mullighan, C.G.; Su, X.; Zhang, J.; Radtke, I.; Phillips, L.A.A.; Miller, C.B.; Ma, J.; Liu, W.; Cheng, C.; Schulman, B.A.; et al. Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia. N Engl J Med 2009, 360, 470–480. [Google Scholar] [CrossRef]
- de Rooij, J.D.E.; Beuling, E.; van den Heuvel-Eibrink, M.M.; Obulkasim, A.; Baruchel, A.; Trka, J.; Reinhardt, D.; Sonneveld, E.; Gibson, B.E.S.; Pieters, R.; et al. Recurrent Deletions of IKZF1 in Pediatric Acute Myeloid Leukemia. Haematologica 2015, 100, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, R.P.; Waanders, E.; van der Velden, V.H.J.; van Reijmersdal, S.V.; Venkatachalam, R.; Scheijen, B.; Sonneveld, E.; van Dongen, J.J.M.; Veerman, A.J.P.; van Leeuwen, F.N.; et al. IKZF1 Deletions Predict Relapse in Uniformly Treated Pediatric Precursor B-ALL. Leukemia 2010, 24, 1258–1264. [Google Scholar] [CrossRef]
- Dupuis, A.; Gaub, M.P.; Legrain, M.; Drenou, B.; Mauvieux, L.; Lutz, P.; Herbrecht, R.; Chan, S.; Kastner, P. Biclonal and Biallelic Deletions Occur in 20% of B-ALL Cases with IKZF1 Mutations. Leukemia 2013, 27, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Dörge, P.; Meissner, B.; Zimmermann, M.; Möricke, A.; Schrauder, A.; Bouquin, J.-P.; Schewe, D.; Harbott, J.; Teigler-Schlegel, A.; Ratei, R.; et al. IKZF1 Deletion Is an Independent Predictor of Outcome in Pediatric Acute Lymphoblastic Leukemia Treated According to the ALL-BFM 2000 Protocol. Haematologica 2013, 98, 428–432. [Google Scholar] [CrossRef]
- Gupta, S.K.; Bakhshi, S.; Kumar, L.; Seth, R.; Kumar, R. IKZF1 (IKAROS) deletions in B-ALL and its clinical correlation: a prospective study from a tertiary care centre in Northern India. Leukemia Research 2016, 41, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, H.S.; Boisson, B.; Cunningham-Rundles, C.; Reichenbach, J.; Stray-Pedersen, A.; Gelfand, E.W.; Maffucci, P.; Pierce, K.R.; Abbott, J.K.; Voelkerding, K.V.; et al. Loss of B Cells in Patients with Heterozygous Mutations in IKAROS. N Engl J Med 2016, 374, 1032–1043. [Google Scholar] [CrossRef] [PubMed]
- Churchman, M.L.; Qian, M.; Te Kronnie, G.; Zhang, R.; Yang, W.; Zhang, H.; Lana, T.; Tedrick, P.; Baskin, R.; Verbist, K.; et al. Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia. Cancer Cell 2018, 33, 937–948.e8. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, T.; Metzger, M.L.; Wu, G.; Nishii, R.; Qian, M.; Devidas, M.; Yang, W.; Cheng, C.; Cao, X.; Quinn, E.; et al. Germline Genetic Variation in ETV6 and Risk of Childhood Acute Lymphoblastic Leukaemia: A Systematic Genetic Study. Lancet Oncol 2015, 16, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Schrader, K.A.; Waanders, E.; Timms, A.E.; Vijai, J.; Miething, C.; Wechsler, J.; Yang, J.; Hayes, J.; Klein, R.J.; et al. A Recurrent Germline PAX5 Mutation Confers Susceptibility to Pre-B Cell Acute Lymphoblastic Leukemia. Nat Genet 2013, 45, 1226–1231. [Google Scholar] [CrossRef]
- Clarkson, B.D.; Boyse, E.A. Possible Explanation of the High Concoddance for Acute Leukaemia in Monozygotic Twins. Lancet 1971, 1, 699–701. [Google Scholar] [CrossRef]
- de Smith, A. J.; Wiemels, J. L.; Mead; A. J., Roberts, I.; Roy, A., Spector,L. G. Backtracking to the future: unraveling the origins of childhood leukemia. Leukemia 2024, 38, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Hemminki, K.; Jiang, Y. Risks among siblings and twins for childhood acute lymphoid leukaemia: results from the Swedish Family-Cancer Database. Leukemia 2002, 16, 297–298. [Google Scholar] [CrossRef] [PubMed]
- Falletta, J.M.; Starling, K.A.; Fernbach, D.J. Leukemia in Twins. Pediatrics 1973, 52, 846–849. [Google Scholar] [CrossRef]
- Ma, Y.; Dobbins, S.E.; Sherborne, A.L.; Chubb, D.; Galbiati, M.; Cazzaniga, G.; Micalizzi, C.; Tearle, R.; Lloyd, A.L.; Hain, R.; et al. Developmental Timing of Mutations Revealed by Whole-Genome Sequencing of Twins with Acute Lymphoblastic Leukemia. Proc Natl Acad Sci U S A 2013, 110, 7429–7433. [Google Scholar] [CrossRef]
- Bueno, C.; Tejedor, J.R.; Bashford-Rogers, R.; González-Silva, L.; Valdés-Mas, R.; Agraz-Doblás, A.; Díaz de la Guardia, R.; Ribera, J.; Zamora, L.; Bilhou-Nabera, C.; et al. Natural History and Cell of Origin of TC F3-ZN F384 and PTPN11 Mutations in Monozygotic Twins with Concordant BCP-ALL. Blood 2019, 134, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, G.; van Delft, F.W.; Lo Nigro, L.; Ford, A.M.; Score, J.; Iacobucci, I.; Mirabile, E.; Taj, M.; Colman, S.M.; Biondi, A.; et al. Developmental Origins and Impact of BCR-ABL1 Fusion and IKZF1 Deletions in Monozygotic Twins with Ph+ Acute Lymphoblastic Leukemia. Blood 2011, 118, 5559–5564. [Google Scholar] [CrossRef]
- Alpar, D.; Wren, D.; Ermini, L.; Mansur, M.B.; van Delft, F.W.; Bateman, C.M.; Titley, I.; Kearney, L.; Szczepanski, T.; Gonzalez, D.; et al. Clonal Origins of ETV6-RUNX1+ Acute Lymphoblastic Leukemia: Studies in Monozygotic Twins. Leukemia 2015, 29, 839–846. [Google Scholar] [CrossRef]
- Kadan-Lottick, N.S.; Kawashima, T.; Tomlinson, G.; Friedman, D.L.; Yasui, Y.; Mertens, A.C.; Robison, L.L.; Strong, L.C. The Risk of Cancer in Twins: A Report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer 2006, 46, 476–481. [Google Scholar] [CrossRef]
- Zella, D.; Gallo, R.C. Viruses and Bacteria Associated with Cancer: An Overview. Viruses 2021, 13, 1039. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, K.; Sampath, V.; Umar, S. Bacterial Infections and Cancer: Exploring This Association And Its Implications for Cancer Patients. Int J Mol Sci. 2023, 24, 3110. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, K.; Ahangari, H.; Chapeland-Leclerc, F.; Ruprich-Robert, G.; Tarhriz, V.; Dilmaghani, A. Role of Fungal Infections in Carcinogenesis and Cancer Development: A Literature Review. Adv Pharm Bull. 2022, 12, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Hough, B.; Steenkamp, E.; Wingfield, B.; Read, D. Fungal viruses unveiled: a comprehensive review of mycoviruses. Viruses 2023, 15, 1202. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.A.; Nerva, L.; Bhatti, M.F. The Good, the Bad and the Cryptic: The Multifaceted Roles of Mycoviruses and Their Potential Applications for a Sustainable Agriculture. Virology 2023, 585, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Kotta-Loizou, I.; Coutts, R.H.A. Mycoviruses in Aspergilli: A Comprehensive Review. Front Microbiol 2017, 8, 1699. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.R. The RNA Interference-Virus Interplay: Tools of Nature for Gene Modulation, Morphogenesis, Evolution and a Possible Mean for Aflatoxin Control. Appl Microbiol Biotechnol 2009, 83, 611–615. [Google Scholar] [CrossRef]
- Schmidt, F.R.; Lemke, P.A.; Esser, K. Viral Influences on Aflatoxin Formation by Aspergillus Flavus. Appl Microbiol Biotechnol 1986, 24, 248–252. [Google Scholar] [CrossRef]
- Tebbi, C.K.; Yan, J.; Sahakian, E.; Mediavilla-Varela, M.; Pinilla-Ibarz, J.; Patel, S.; Rottinghaus, G.E.; Liu, R.Y.; Dennison, C. Mycovirus-Containing Aspergillus Flavus Alters Transcription Factors in Normal and Acute Lymphoblastic Leukemia Cells. Int J Mol Sci 2024, 25, 10361. [Google Scholar] [CrossRef]
- Tebbi, C.K.; Sahakian, E.; Yan, J.; Patel, S.; Mediavilla-Varela, M. Exposure to Mycovirus-Containing Aspergillus Flavus Alters Transcription Factors in Normal and Leukemia Cell Lines. Proceedings of The 4th International Electronic Conference on Cancers 2024, 100, 19. [Google Scholar] [CrossRef]
- Tebbi, C.K.; Badiga, A.; Sahakian, E.; Arora, A.I.; Nair, S.; Powers, J.J.; Achille, A.N.; Jaglal, M.V.; Patel, S.; Migone, F. Plasma of Acute Lymphoblastic Leukemia Patients React to the Culture of a Mycovirus Containing Aspergillus Flavus. J Pediatr Hematol Oncol 2020, 42, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, C.K.; Badiga, A.; Sahakian, E.; Powers, J.J.; Achille, A.N.; Patel, S.; Migone, F. Exposure to a Mycovirus Containing Aspergillus Flavus Reproduces Acute Lymphoblastic Leukemia Cell Surface and Genetic Markers in Cells from Patients in Remission and Not Controls. Cancer Treat Res Commun 2021, 26, 100279. [Google Scholar] [CrossRef] [PubMed]
- Saftien, A.; Puschhof, J.; Elinav, E. Fungi and cancer. Gut 2023, 72, 1410–1425. [Google Scholar] [CrossRef] [PubMed]
- Huët, M.A.L.; Lee, C.Z.; Rahman, S. A Review on Association of Fungi with the Development and Progression of Carcinogenesis in the Human Body. Curr Res Microb Sci 2022, 3, 100090. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, C.K. Carcinogenesis and Leukemogenesis of Microorganisms: A Review. 21st Century Pathology 2022, 2, 1–11. [Google Scholar]
- Di Cosola, M.; Cazzolla, A.P.; Charitos, I.A.; Ballini, A.; Inchingolo, F.; Santacroce, L. Candida Albicans and Oral Carcinogenesis. A Brief Review. J Fungi 2021, 7, 476. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, C.K. Mycoviruses in Fungi: Carcinogenesis of Fungal Agents May Not Always Be Mycotoxin Related. J Fungi 2023, 9, 368. [Google Scholar] [CrossRef] [PubMed]
- Kiruthiga, C.; Devi, K.P. Mechanisms Involved in Carcinogenesis. In Nutraceuticals and Cancer Signaling: Clinical Aspects and Mode of Action; Jafari, S.M., Nabavi, S.M., Silva, A.S., Eds.; Springer International Publishing: Cham, 2021; pp. 11–36. ISBN 978-3-030-74035-1. [Google Scholar]
- Vallianou, N.; Kounatidis, D.; Christodoulatos, G.S.; Panagopoulos, F.; Karampela, I.; Dalamaga, M. Mycobiome and Cancer: What Is the Evidence? Cancers 2021, 13, 3149. [Google Scholar] [CrossRef] [PubMed]
- Klimesova, K.; Jiraskova Zakostelska, Z.; Tlaskalova-Hogenova, H. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis. Front Microbiol 2018, 9, 774. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Nagata, N.; Shimbo, T.; Nishijima, T.; Watanabe, K.; Aoki, T.; Sekine, K.; Okubo, H.; Watanabe, K.; Sakurai, T.; et al. Long-Term Trends in Esophageal Candidiasis Prevalence and Associated Risk Factors with or without HIV Infection: Lessons from an Endoscopic Study of 80, 219 Patients. PLoS One 2015, 10, e0133589. [Google Scholar] [CrossRef] [PubMed]
- Li, M.X.; Cheng, S.J. Carcinogenesis of Esophageal Cancer in Linxian, China. Chin Med J (Engl) 1984, 97, 311–316. [Google Scholar] [PubMed]
- Ribeiro, U.; Posner, M.C.; Safatle-Ribeiro, A.V.; Reynolds, J.C. Risk Factors for Squamous Cell Carcinoma of the Oesophagus. Br J Surg 1996, 83, 1174–1185. [Google Scholar]
- Yang, C.S. Research on Esophageal Cancer in China: A Review. Cancer Res 1980, 40, 2633–2644. [Google Scholar]
- Sánchez-Alonzo, K.; Parra-Sepúlveda, C.; Vega, S.; Bernasconi, H.; Campos, V.L.; Smith, C.T.; et al. In vitro incorporation of Helicobacter pylori into Candida albicans caused by acidic pH stress. Pathogens 2020, 9, 489. [Google Scholar] [CrossRef]
- Coker, O.O. Non-bacteria microbiome (virus, fungi, and archaea) in gastrointestinal cancer. Journal of Gastroenterology and Hepatology 2022, 37, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Gamal, A.; Elshaer, M.; Alabdely, M.; Kadry, A.; McCormick, T.S.; Ghannoum, M. The Mycobiome: Cancer Pathogenesis, Diagnosis, and Therapy. Cancers 2022, 14, 2875. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.M.; Chaudhary, A.; Talwar, P. Candidial Obstruction of the Common Bile Duct. Br J Surg 1985, 72, 13. [Google Scholar] [CrossRef]
- Ramirez-Garcia, A.; Rementeria, A.; Aguirre-Urizar, J.M.; Moragues, M.D.; Antoran, A.; Pellon, A.; Abad-Diaz-de-Cerio, A.; Hernando, F.L. Candida Albicans and Cancer: Can This Yeast Induce Cancer Development or Progression? Crit Rev Microbiol 2016, 42, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Vitorino, F.; Romaguera, J.; Zhao, C.; Vargas-Robles, D.; Ortiz-Morales, G.; Vázquez-Sánchez, F.; Sanchez-Vázquez, M.; de la Garza-Casillas, M.; Martinez-Ferrer, M.; White, J.R.; et al. Cervicovaginal Fungi and Bacteria Associated With Cervical Intraepithelial Neoplasia and High-Risk Human Papillomavirus Infections in a Hispanic Population. Front Microbiol 2018, 9, 2533. [Google Scholar] [CrossRef]
- Banerjee, S.; Tian, T.; Wei, Z.; Shih, N.; Feldman, M.D.; Alwine, J.C.; Coukos, G.; Robertson, E.S. The Ovarian Cancer Oncobiome. Oncotarget 2017, 8, 36225–36245. [Google Scholar] [CrossRef]
- Zhong, M.; Xiong, Y.; Zhao, J.; Gao, Z.; Ma, J.; Wu, Z.; Song, Y.; Hong, X. Candida Albicans Disorder Is Associated with Gastric Carcinogenesis. Theranostics 2021, 11, 4945–4956. [Google Scholar] [CrossRef] [PubMed]
- Engku Nasrullah Satiman, E.A.F.; Ahmad, H.; Ramzi, A.B.; Abdul Wahab, R.; Kaderi, M.A.; Wan Harun, W.H.A.; Dashper, S.; McCullough, M.; Arzmi, M.H. The Role of Candida Albicans Candidalysin ECE1 Gene in Oral Carcinogenesis. J Oral Pathol Med 2020, 49, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Willette-Brown, J.; Song, N.-Y.; Lomada, D.; Song, Y.; Xue, L.; Gray, Z.; Zhao, Z.; Davis, S.R.; Sun, Z.; et al. Autoreactive T Cells and Chronic Fungal Infection Drive Esophageal Carcinogenesis. Cell Host Microbe 2017, 21, 478–493.e7. [Google Scholar] [CrossRef]
- Arzmi, M.H.; Dashper, S.; McCullough, M. Polymicrobial Interactions of Candida Albicans and Its Role in Oral Carcinogenesis. J Oral Pathol Med 2019, 48, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.; Davey, R.A.; Turner, J.C.R. Vapour as the Source of Water in Buller’s Drop. Mycological Research 1989, 93, 297–302. [Google Scholar] [CrossRef]
- Langenberg, W.J. Relation of Weather Variables and Periodicities of tryAirborne Spores of Alternaria Dauci. Phytopathology 1977, 77, 879. [Google Scholar] [CrossRef]
- Talley, S.M.; Coley, P.D.; Kursar, T.A. The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC ecology 2002, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Troutt, C.; Levetin, E. Correlation of Spring Spore Concentrations and Meteorological Conditions in Tulsa, Oklahoma. Int J Biometeorol 2001, 45, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Vélez-Pereira, A.M.; De Linares, C.; Delgado, R.; Belmonte, J. Temporal Trends of the Airborne Fungal Spores in Catalonia (NE Spain), 1995–2013. Aerobiologia 2016, 32, 23–37. [Google Scholar] [CrossRef]
- Baxi, S.N.; Portnoy, J.M.; Larenas-Linnemann, D.; Phipatanakul, W. Environmental Allergens Workgroup Exposure and Health Effects of Fungi on Humans. J Allergy Clin Immunol Pract 2016, 4, 396–404. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, D.; Singh, B.L.; Kumar, U. Composting of Sugar-Cane Waste by-Products through Treatment with Microorganisms and Subsequent Vermicomposting. Bioresour Technol 2010, 101, 6707–6711. [Google Scholar] [CrossRef]
- Jara, D.; Portnoy, J.; Dhar, M.; Barnes, C. Relation of Indoor and Outdoor Airborne Fungal Spore Levels in the Kansas City Metropolitan Area. Allergy Asthma Proc 2017, 38, 130–135. [Google Scholar] [CrossRef]
- Rosas, I.; Escamilla, B.; Calderon, C.; Mosiño, P. The Daily Variations of Airborne Fungal Spores in Mexico City. Aerobiologia 1990, 6, 153–158. [Google Scholar] [CrossRef]
- Oliveira, M.; Ribeiro, H.; Abreu, I. Annual Variation of Fungal Spores in Atmosphere of Porto: 2003. Ann Agric Environ Med 2005, 12, 309–315. [Google Scholar] [PubMed]
- Elbert, W.; Taylor, P.E.; Andreae, M.O.; Pöschl, U. Contribution of Fungi to Primary Biogenic Aerosols in the Atmosphere: Wet and Dry Discharged Spores, Carbohydrates, and Inorganic Ions. Atmospheric Chemistry Physics 2007, 7, 4569–4588. [Google Scholar] [CrossRef]
- Bauer, H.; Schüller, E.; Weinke, G.; Berger, A.; Hitzenberger, R.; Marr, I.; Puxbaum, H. Significant Conributions of Fungal Spores to the Organic Carbon and to the Aerosol Mass Balance of the Urban Atmospheric Aerosol. Atmospheric Environment 2008, 42, 5542–5549. [Google Scholar] [CrossRef]
- Womiloju, T.O.; Miller, J.D.; Mayer, P.M.; Brook, J.R. Methods to Determine the Biological Composition of Particulate Matter Collected from Outdoor Air. Atmospheric Environment 2003, 37, 4335–4344. [Google Scholar] [CrossRef]
- Held, A.; Zerrath, A.; McKeon, U.; Fehrenbach, T.; Niessner, R.; Plass-Dülmer, C.; Kaminski, U.; Berresheim, H.; Pöschl, U. Aerosol Size Distributions Measured in Urban, Rural and High-Alpine Air with an Electrical Low Pressure Impactor (ELPI). Atmospheric Environment 2008, 42, 8502–8512. [Google Scholar] [CrossRef]
- Hock, N.; Schneider, J.; Borrmann, S.; Römpp, A.; Moortgat, G.; Franze, T.; Schauer, C.; Pöschl, U.; Plass-Dülmer, C.; Berresheim, H. Rural Continental Aerosol Properties and Processes Observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002). Atmospheric Chemistry and Physics 2008, 8, 603–623. [Google Scholar] [CrossRef]
- Crandall, S.G.; Gilbert, G.S. Meteorological Factors Associated with Abundance of Airborne Fungal Spores over Natural Vegetation. Atmospheric Environment 2017, 162, 87–99. [Google Scholar] [CrossRef]
- Picone, C. Diversity and abundance of arbuscular–mycorrhizal fungus spores in tropical forest and pasture 1. Biotropica 2000, 32, 734–750. [Google Scholar]
- Caillaud, D.; Keirsbulck, M.; Leger, C.; Leynaert, B. of the Outdoor Mould ANSES Working Group Outdoor Mold and Respiratory Health: State of Science of Epidemiological Studies. J Allergy Clin Immunol Pract 2022, 10, 768–784.e3. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, A. Characterizing Moisture Damaged Buildings: Environmental and Biological Monitoring. Available online: https://www.julkari.fi/handle/10024/78452 (accessed on 9 December 2024).
- Saad-Hussein, A.; Ibrahim, K.S. Health Impact of Airborne Fungi. In Handbook of Healthcare in the Arab World; Laher, I., Ed.; Springer International Publishing: Cham, 2019; pp. 1–16. ISBN 978-3-319-74365-3. [Google Scholar]
- Tsai, F.C.; Macher, J.M. Concentrations of Airborne Culturable Bacteria in 100 Large US Office Buildings from the BASE studyAbstract. Indoor Air 2005, 15, 71–81. [Google Scholar] [CrossRef]
- Barbosa, C.G.; Taylor, P.E.; Sá, M.O.; Teixeira, P.R.; Souza, R.A.; Albrecht, R.I.; Godoi, R.H. Identification and quantification of giant bioaerosol particles over the Amazon rainforest. npj Climate and Atmospheric Science 2022, 5, 73. [Google Scholar] [CrossRef]
- Salvaggio, J.E. Inhaled Particles and Respiratory Disease. J Allergy Clin Immunol 1994, 94, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Schuyler, M.; Salvaggio, J.E. Hypersensitivity Pneumonitis. Seminars in Respiratory Medicine 2008, 5, 246–254. [Google Scholar] [CrossRef]
- Reboux, G.; Piarroux, R.; Mauny, F.; Madroszyk, A.; Millon, L.; Bardonnet, K.; Dalphin, J.C. Role of molds in farmer’s lung disease in Eastern France. American journal of respiratory and critical care medicine 2001, 163, 1534–1539. [Google Scholar] [CrossRef] [PubMed]
- Mahieu, L.M.; De Dooy, J.J.; Van Laer, F.A.; Jansens, H.; Ieven, M.M. A Prospective Study on Factors Influencing Aspergillus Spore Load in the Air during Renovation Works in a Neonatal Intensive Care Unit. J Hosp Infect 2000, 45, 191–197. [Google Scholar] [CrossRef]
- Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event. Environ Sci Technol 2014, 48, 1499–1507. [Google Scholar] [CrossRef]
- Hwang, S.H.; Jang, S.; Park, W.M.; Park, J.B. Concentrations and Identification of Culturable Airborne Fungi in Underground Stations of the Seoul Metro. Environ Sci Pollut Res Int 2016, 23, 20680–20686. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Fong, J.J.; Park, M.S.; Chang, L.; Lim, Y.W. Identifying Airborne Fungi in Seoul, Korea Using Metagenomics. J Microbiol 2014, 52, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Grishkan, I.; Schlesinger, P.; Mamane, Y. Influence of Dust Storms on Concentration and Content of Fungi in the Atmosphere of Haifa, Israel. Aerobiologia 2012, 28, 557–564. [Google Scholar] [CrossRef]
- Oberle, M.; Reichmuth, M.; Laffer, R.; Ottiger, C.; Fankhauser, H.; Bregenzer, T. Non-Seasonal Variation of Airborne Aspergillus Spore Concentration in a Hospital Building. Int J Environ Res Public Health 2015, 12, 13730–13738. [Google Scholar] [CrossRef] [PubMed]
- Hallen-Adams, H.E.; Suhr, M.J. Fungi in the Healthy Human Gastrointestinal Tract. Virulence 2017, 8, 352–358. [Google Scholar] [CrossRef]
- Drell, T.; Lillsaar, T.; Tummeleht, L.; Simm, J.; Aaspõllu, A.; Väin, E.; Saarma, I.; Salumets, A.; Donders, G.G.G.; Metsis, M. Characterization of the Vaginal Micro- and Mycobiome in Asymptomatic Reproductive-Age Estonian Women. PLoS One 2013, 8, e54379. [Google Scholar] [CrossRef]
- Findley, K.; Oh, J.; Yang, J.; Conlan, S.; Deming, C.; Meyer, J.A.; Schoenfeld, D.; Nomicos, E.; Park, M.; NIH Intramural Sequencing Center Comparative Sequencing Program; et al. Topographic Diversity of Fungal and Bacterial Communities in Human Skin. Nature 2013, 498, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the Oral Fungal Microbiome (Mycobiome) in Healthy Individuals. PLoS Pathog 2010, 6, e1000713. [Google Scholar] [CrossRef] [PubMed]
- Varade, R.S.; Burkemper, N.M. Cutaneous Fungal Infections in the Elderly. Clin Geriatr Med 2013, 29, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Li, C.; Wang, C.; Li, J.; Ding, M.; Chen, D.; Lao, M. Epidemiology and Mortality-Associated Factors of Invasive Fungal Disease in Elderly Patients: A 20-Year Retrospective Study from Southern China. Infect Drug Resist 2020, 13, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Saxena, K.; Shukla, P.; Shaafie, H.I.; Palliwal, G.; Jain, C. SPECTRUM OF FUNGAL INFECTIONS IN THE ELDERLY AGE GROUP. International Journal of Medical and Biomedical Studies 2020, 4. [Google Scholar] [CrossRef]
- Mullins, J.; Seaton, A. Fungal Spores in Lung and Sputum. Clin Allergy 1978, 8, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Rotstein, C.; Tebbi, C.K.; Brass, C. Viral, Bacterial, and Fungal Infections in Adolescent Oncology. In Adolescnet Oncology; Mt. Kisco, NY, 1987; pp. 429–506.
- Sullivan, D.J.; Moran, G.P.; Coleman, D.C. Fungal Infections of Humans. In Fungi; John Wiley & Sons, Ltd., 2017; pp. 251–273, ISBN 978-1-119-37431-2.
- Barrios, N.; Tebbi, C.K.; Rotstein, C.; Siddiqui, S.; Humbert, J.R. Brainstem Invasion by Aspergillus Fumigatus in a Child with Leukemia. N Y State J Med 1988, 88, 656–658. [Google Scholar] [PubMed]
- Garber, G. An Overview of Fungal Infections. Drugs 2001, 61 (Suppl. 1), 1–12. [Google Scholar] [CrossRef]
- Kainz, K.; Bauer, M.A.; Madeo, F.; Carmona-Gutierrez, D. Fungal infections in humans: the silent crisis. Microbial Cell 2020, 7, 143. [Google Scholar] [CrossRef]
- Aykut, B.; Pushalkar, S.; Chen, R.; Li, Q.; Abengozar, R.; Kim, J.I.; Shadaloey, S.A.; Wu, D.; Preiss, P.; Verma, N.; Guo, Y. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 2019, 574, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Pathakumari, B.; Liang, G.; Liu, W. Immune Defence to Invasive Fungal Infections: A Comprehensive Review. Biomed Pharmacother 2020, 130, 110550. [Google Scholar] [CrossRef] [PubMed]
- Elaskandrany, M.; Patel, R.; Patel, M.; Miller, G.; Saxena, D.; Saxena, A. Fungi, host immune response, and tumorigenesis. American Journal of Physiology-Gastrointestinal and Liver Physiology 2021, 321, G213–G222. [Google Scholar] [CrossRef] [PubMed]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as Human Carcinogens-the IARC Monographs Classification. Mycotoxin Res 2017, 33, 65–73. [Google Scholar] [CrossRef] [PubMed]
- De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary Mycotoxins, Co-Exposure, and Carcinogenesis in Humans: Short Review. Mutat Res Rev Mutat Res 2015, 766, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Claeys, L.; Romano, C.; De Ruyck, K.; Wilson, H.; Fervers, B.; Korenjak, M.; Zavadil, J.; Gunter, M.J.; De Saeger, S.; De Boevre, M.; et al. Mycotoxin Exposure and Human Cancer Risk: A Systematic Review of Epidemiological Studies. Compr Rev Food Sci Food Saf 2020, 19, 1449–1464. [Google Scholar] [CrossRef]
- Arsenijevic, T.; Nicolle, R.; Bouchart, C.; D’Haene, N.; Demetter, P.; Puleo, F.; Van Laethem, J.-L. Pancreatic Cancer Meets Human Microbiota: Close Encounters of the Third Kind. Cancers 2021, 13, 1231. [Google Scholar] [CrossRef] [PubMed]
- Bellotti, R.; Speth, C.; Adolph, T.E.; Lass-Flörl, C.; Effenberger, M.; Öfner, D.; Maglione, M. Micro- and Mycobiota Dysbiosis in Pancreatic Ductal Adenocarcinoma Development. Cancers 2021, 13, 3431. [Google Scholar] [CrossRef] [PubMed]
- Stasiewicz, M.; Kwaśniewski, M.; Karpiński, T.M. Microbial Associations with Pancreatic Cancer: A New Frontier in Biomarkers. Cancers 2021, 13, 3784. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Capula, M.; Krom, B.P.; Yee, D.; Giovannetti, E.; Deng, D. Of Fungi and Men: Role of Fungi in Pancreatic Cancer Carcinogenesis. Ann Transl Med 2020, 8, 1257. [Google Scholar] [CrossRef]
- Dohlman, A.B.; Klug, J.; Mesko, M.; Gao, I.H.; Lipkin, S.M.; Shen, X.; Iliev, I.D. A Pan-Cancer Mycobiome Analysis Reveals Fungal Involvement in Gastrointestinal and Lung Tumors. Cell 2022, 185, 3807–3822.e12. [Google Scholar] [CrossRef]
- Narunsky-Haziza, L.; Sepich-Poore, G.D.; Livyatan, I.; Asraf, O.; Martino, C.; Nejman, D.; Gavert, N.; Stajich, J.E.; Amit, G.; González, A.; et al. Pan-Cancer Analyses Reveal Cancer-Type-Specific Fungal Ecologies and Bacteriome Interactions. Cell 2022, 185, 3789–3806.e17. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K. Can Candida Albicans Induce Oral Cancer Development and Progression? Scholars Journal of Dental Sciences 2023, 10. [Google Scholar] [CrossRef]
- David, H.; Solomon, A.P. Molecular Association of Candida Albicans and Vulvovaginal Candidiasis: Focusing on a Solution. Front Cell Infect Microbiol 2023, 13, 1245808. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Chen, H. Unveiling the Hidden Players: Exploring the Role of Gut Mycobiome in Cancer Development and Treatment Dynamics. Gut Microbes 2024, 16, 2328868. [Google Scholar] [CrossRef]
- Sutcliffe, S.; De Marzo, A.M.; Sfanos, K.S.; Laurence, M. MSMB variation and prostate cancer risk: clues towards a possible fungal etiology. The Prostate 2014, 74, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Domingues-Ferreira, M.; Grumach, A.S.; Duarte, A.J.D.S.; De Moraes-Vasconcelos, D. Esophageal Cancer Associated with Chronic Mucocutaneous Candidiasis. Could Chronic Candidiasis Lead to Esophageal Cancer? Med Mycol 2009, 47, 201–205. [Google Scholar] [CrossRef]
- Scott, B.B.; Jenkins, D. Gastro-Oesophageal Candidiasis. Gut 1982, 23, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Delam, H.; Izanloo, S.; Bazrafshan, M.-R.; Eidi, A. Risk Factors for Cervical Cancer: An Epidemiological Review. Journal of Health Sciences Surveillance System 2020, 8, 105–109. [Google Scholar] [CrossRef]
- Zwolinska-Wcisło, M.; Budak, A.; Bogdał, J.; Trojanowska, D.; Stachura, J. Fungal Colonization of Gastric Mucosa and Its Clinical Relevance. Med Sci Monit 2001, 7, 982–988. [Google Scholar] [PubMed]
- Velez-Haro, J.M.; Pérez-Rodríguez, F.; Velázquez-Márquez, S.; Ramírez Medina, H.; Velázquez-Márquez, N. Mycology in Oncology: Exploring the Role of the Mycobiome in Human Cancer, Etiology, Progression, Epidemiology, Mycoses, and Mycotoxins. Pathogens Associated with the Development of Cancer in Humans OMICs, Immunological, and Pathophysiological Studies 2024, 303–348. [Google Scholar]
- Vallianou, N.; Kounatidis, D.; Christodoulatos, G.S.; Panagopoulos, F.; Karampela, I.; Dalamaga, M. Mycobiome and cancer: what is the evidence? Cancers 2021, 13, 3149. [Google Scholar] [CrossRef]
- Heng, W.; Wang, W.; Dai, T.; Jiang, P.; Lu, Y.; Li, R.; et al. Oral bacteriome and mycobiome across stages of oral carcinogenesis. Microbiology spectrum 2022, 10, e02737-22. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, M. Do fungi play a role in the aetiology of cancer? Reviews and Research in Medical Microbiology 2022, 13, 37–42. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhou, Y.; Feng, Y.; Sun, T.; Xu, J. Tumor-related fungi and crosstalk with gut fungi in the tumor microenvironment. Cancer Biology Medicine 2024, 21, 977. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, C.K. Mycoviruses in fungi: carcinogenesis of fungal agents may not always be mycotoxin related. Journal of Fungi 2023, 9, 368. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, C.K.; Kotta-Loizou, I.; Coutts, R.H. Mycovirus containing aspergillus flavus and acute lymphoblastic leukemia: Carcinogenesis beyond mycotoxin production. In The Genus Aspergillus-Pathogenicity, Mycotoxin Production and Industrial Applications 2021, IntechOpen.
- Denning, D.W.; O’Driscoll, B.R.; Hogaboam, C.M.; Bowyer, P.; Niven, R.M. The Link between Fungi and Severe Asthma: A Summary of the Evidence. Eur Respir J 2006, 27, 615–626. [Google Scholar] [CrossRef]
- Packe, G.E.; Ayres, J.G. Asthma Outbreak during a Thunderstorm. Lancet 1985, 2, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Gupta, D. Severe Asthma and Fungi: Current Evidence. Med Mycol 2011, 49 (Suppl. 1), S150–S157. [Google Scholar] [CrossRef] [PubMed]
- Mendell, M.J.; Mirer, A.G.; Cheung, K.; Tong, M.; Douwes, J. Respiratory and Allergic Health Effects of Dampness, Mold, and Dampness-Related Agents: A Review of the Epidemiologic Evidence. Environ Health Perspect 2011, 119, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, R.A.; Bearman, N.; Thornton, C.R.; Husk, K.; Osborne, N.J. Indoor fungal diversity and asthma: a meta-analysis and systematic review of risk factors. Journal of Allergy and Clinical Immunology 2015, 135, 110–122. [Google Scholar] [CrossRef]
- Pasqualotto, A.C.; Powell, G.; Niven, R.; Denning, D.W. The effects of antifungal therapy on severe asthma with fungal sensitization and allergic bronchopulmonary aspergillosis. Respirology 2009, 14, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hemminki, K.; Försti, A.; Sundquist, J.; Sundquist, K.; Ji, J. Cancer Risk and Mortality in Asthma Patients: A Swedish National Cohort Study. Acta Oncol 2015, 54, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Bian, J.; Chen, Z.; Fishe, J.N.; Zhang, D.; Braithwaite, D.; George, T.J.; Shenkman, E.A.; Licht, J.D. Cancer incidence after asthma diagnosis: Evidence from a large clinical research network in the United States. Cancer Medicine. 2023, 12, 11871–11877. [Google Scholar] [CrossRef] [PubMed]
- Beckstead, J.; Mehrotra, K.; Wilson, K.; Fingleton, B. Asthma is associated with a lower incidence of metastatic colorectal cancer in a US patient cohort. Frontiers in Oncology 2023, 13, 1253660. [Google Scholar] [CrossRef]
- Kantor, E.D.; Hsu, M.; Du, M.; Signorello, L.B. Allergies and Asthma in Relation to Cancer Risk. Cancer Epidemiol Biomarkers Prev 2019, 28, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Vesterinen, E.; Pukkala, E.; Timonen, T.; Aromaa, A. Cancer Incidence among 78, 000 Asthmatic Patients. Int J Epidemiol 1993, 22, 976–982. [Google Scholar] [CrossRef]
- Atmaj, E.; Schuiling-Veninga, C.C.; van Tuinen, E.L.; Bos, J.H.; de Vries, T.W. The relationship between childhood leukaemia and childhood asthma: A pharmacoepidemiological study from the Netherlands. Pediatric blood cancer 2023, 70, e30231. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.-H.; Yang, Q.-M. Association of Asthma with the Risk of Acute Leukemia and Non-Hodgkin Lymphoma. Mol Clin Oncol 2015, 3, 859–864. [Google Scholar] [CrossRef]
- Linabery, A.M.; Jurek, A.M.; Duval, S.; Ross, J.A. The Association between Atopy and Childhood/Adolescent Leukemia: A Meta-Analysis. Am J Epidemiol 2010, 171, 749–764. [Google Scholar] [CrossRef] [PubMed]
- Schüz, J.; Morgan, G.; Böhler, E.; Kaatsch, P.; Michaelis, J. Atopic Disease and Childhood Acute Lymphoblastic Leukemia. Int J Cancer 2003, 105, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Shu, X.O.; Linet, M.S.; Neglia, J.P.; Potter, J.D.; Trigg, M.E.; Robison, L.L. Allergic Disorders and the Risk of Childhood Acute Lymphoblastic Leukemia (United States). Cancer Causes Control 2000, 11, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, P.; Kaplan, G.A. Asthma and cancer. American journal of epidemiology 1987, 125, 539–540. [Google Scholar] [CrossRef]
- Vesterinen, E.; Pukkala, E.; Timonen, T.; Aromaa, A. Cancer incidence among 78, 000 asthmatic patients. Int J Epidemiol. 1993, 22, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Söderberg, K.C.; Hagmar, L.; Schwartzbaum, J.; Feychting, M. Allergic Conditions and Risk of Hematological Malignancies in Adults: A Cohort Study. BMC Public Health 2004, 4, 51. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Maza, O.; Moreno, A.D.; Cozen, W. Epidemiological Evidence: IgE, Allergies, and Hematopoietic Malignancies. In Cancer and IgE: Introducing the Concept of AllergoOncology; Penichet, M.L., Jensen-Jarolim, E., Eds.; Humana Press: Totowa, NJ, 2010; pp. 79–136. ISBN 978-1-60761-451-7. [Google Scholar]
- Chang, J.S.; Tsai, Y.W.; Tsai, C.R.; Wiemels, J.L. Allergy and risk of childhood acute lymphoblastic leukemia: a population-based and record-based study. American journal of epidemiology 2012, 176, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.C.; Chen, Y.; Krewski, D.; Ghadirian, P.; Thun, M.J.; Calle, E.E. Cancer mortality among US men and women with asthma and hay fever. American journal of epidemiology 2005, 162, 212–221. [Google Scholar] [CrossRef]
- Bellia, V.; Pedone, C.; Catalano, F.; Zito, A.; Davià, E.; Palange, S.; et al. Asthma in the elderly: mortality rate and associated risk factors for mortality. Chest 2007, 132, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Merrill, R.M.; Isakson, R.T.; Beck, R.E. The Association between Allergies and Cancer: What Is Currently Known? Ann Allergy Asthma Immunol 2007, 99, 102–116, quiz 117 119, 150. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, D.; Lorentz, A. Relationship between Allergy and Cancer: An Overview. International Archives of Allergy Immunology 2012, 159. [Google Scholar] [CrossRef]
- Karim, A.F.; Westenberg, L.E.H.; Eurelings, L.E.M.; Otten, R.; Gerth van Wijk, R. The association between allergic diseases and cancer: a systematic review of the literature. Neth J Med 2019, 77, 42–66. [Google Scholar]
- Söderberg, K.C.; Jonsson, F.; Winqvist, O.; Hagmar, L.; Feychting, M. Autoimmune Diseases, Asthma and Risk of Haematological Malignancies: A Nationwide Case-Control Study in Sweden. Eur J Cancer 2006, 42, 3028–3033. [Google Scholar] [CrossRef] [PubMed]
- Miedema, K.G.; Tissing, W.J.; Te Poele, E.M.; Kamps, W.A.; Alizadeh, B.Z.; Kerkhof, M.; de Jongste, J.C.; Smit, H.A.; de Pagter, A.P.; Bierings, M.; Boezen, H.M. Polymorphisms in the TLR6 gene associated with the inverse association between childhood acute lymphoblastic leukemia and atopic disease. Leukemia 2011, 26, 1203–1210. [Google Scholar] [CrossRef]
- Ajrouche, R.; Chandab, G.; Petit, A.; Strullu, M.; Nelken, B.; Plat, G.; et al. Allergies, genetic polymorphisms of Th2 interleukins, and childhood acute lymphoblastic leukemia: the ESTELLE study. Pediatric blood cancer 2022, 69, e29402. [Google Scholar] [CrossRef]
- Musolino, C.; Allegra, A.; Minciullo, P.L.; Gangemi, S. Allergy and risk of hematologic malignancies: associations and mechanisms. Leukemia research 2014, 38, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Dikaliotia, S.K.; Changb, E.T.; Dessyprisa, N.; Papadopouloua, C.; Skenderisd, N.; Pourtsidise, A.; et al. Petridoua, E.T. Allergy-associated symptoms in relation to childhood non-Hodgkin’s as contrasted to Hodgkin’s lymphomas: A case–control study in Greece and meta-analysis. European Journal of Cancer 2012, 48, 1860–1866. [Google Scholar] [CrossRef]
- Dahl, S.; Schmidt, L.S.; Vestergaard, T.; Schüz, J.; Schmiegelow, K. Allergy and the risk of childhood leukemia: a meta-analysis. Leukemia 2009, 23, 2300–2304. [Google Scholar] [CrossRef] [PubMed]
- Lariou, M.S.; Dikalioti, S.K.; Dessypris, N.; Baka, M.; Polychronopoulou, S.; Athanasiadou-Piperopoulou, F.; et al. Allergy and risk of acute lymphoblastic leukemia among children: a nationwide case control study in Greece. Cancer epidemiology 2013, 37, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Melbye, M.; Smedby, K.E.; Lehtinen, T.; Rostgaard, K.; Glimelius, B.; Munksgaard, L.; et al. Atopy and risk of non-Hodgkin lymphoma. Journal of the National Cancer Institute 2007, 99, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Vajdic, C.M.; Falster, M.O.; De Sanjose, S.; Martínez-Maza, O.; Becker, N.; Bracci, P.M.; et al. Atopic disease and risk of non–Hodgkin lymphoma: An interlymph pooled analysis. Cancer research 2009, 69, 6482–6489. [Google Scholar] [CrossRef] [PubMed]
- Sudan, M.; Arah, O.A.; Olsen, J.; Kheifets, L. Reported associations between asthma and acute lymphoblastic leukemia: insights from a hybrid simulation study. European journal of epidemiology 2016, 31, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Buffler, P.A.; Kwan, M.L.; Reynolds, P.; Urayama, K.Y. Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Cancer investigation 2005, 23, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Morton, W.; Marjanovic, D. Leukemia Incidence by Occupation in the Portland-Vancouver Metropolitan Area. Am J Ind Med 1984, 6, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Pearce, N.E.; Sheppard, R.A.; Howard, J.K.; Fraser, J.; Lilley, B.M. Leukemia among New Zealand Agricultural Workers. A Cancer Registry-Based Study. Am J Epidemiol 1986, 124, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Loomis, D.P.; Savitz, D.A. Occupation and Leukemia Mortality among Men in 16 States: 1985-1987. Am J Ind Med 1991, 19, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Semenciw, R.M.; Morrison, H.I.; Morison, D.; Mao, Y. Leukemia Mortality and Farming in the Prairie Provinces of Canada. Can J Public Health 1994, 85, 208–211. [Google Scholar] [PubMed]
- Keller-Byrne, J.E.; Khuder, S.A.; Schaub, E.A. Meta-Analysis of Leukemia and Farming. Environ Res 1995, 71, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Blair, A.; Zheng, T.; Linos, A.; Stewart, P.A.; Zhang, Y.W.; Cantor, K.P. Occupation and Leukemia: A Population-Based Case-Control Study in Iowa and Minnesota. Am J Ind Med 2001, 40, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, C.; Newell, J.; MacDonagh-White, C.; MacHale, E.; Egan, E.; Connolly, E.; Gough, H.; Delaney, B.; Shryane, E. Incidence and Occupational Pattern of Leukaemias, Lymphomas, and Testicular Tumours in Western Ireland over an 11 Year Period. J Epidemiol Community Health 1998, 52, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Blair, A.; Malker, H.; Cantor, K.P.; Burmeister, L.; Wiklund, K. Cancer among Farmers. A Review. Scand J Work Environ Health 1985, 11, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Pearce, N.; Reif, J.S. Epidemiologic Studies of Cancer in Agricultural Workers. Am J Ind Med 1990, 18, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Tsai, R.J.; Luckhaupt, S.E.; Schumacher, P.; Cress, R.D.; Deapen, D.M.; Calvert, G.M. Acute Myeloid Leukemia Risk by Industry and Occupation. Leuk Lymphoma 2014, 55, 2584–2591. [Google Scholar] [CrossRef]
- Hansen, E.S.; Hasle, H.; Lander, F. A Cohort Study on Cancer Incidence among Danish Gardeners. Am J Ind Med 1992, 21, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Viel, J.F.; Richardson, S.T. Lymphoma, Multiple Myeloma and Leukaemia among French Farmers in Relation to Pesticide Exposure. Soc Sci Med 1993, 37, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.E.; Howe, H.L. Case-Control Studies of Cancer in Illinois Farmers Using Data from the Illinois State Cancer Registry and the U.S. Census of Agriculture. Eur J Cancer 1994, 30A, 469–473. [Google Scholar] [CrossRef]
- Järvisalo, J.; Tola, S.; Korkala, M.L.; Järvinen, E. A Cancer Register-Based Case Study of Occupations of Patients with Acute Myeloid Leukemia. Cancer 1984, 54, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.Y.; Buttner, M.; Rivas, D.; Cross, C.; Bazylinski, D.A.; Seggev, J. Variation in Airborne Fungal Spore Concentrations among Five Monitoring Locations in a Desert Urban Environment. Environ Monit Assess 2018, 190, 634. [Google Scholar] [CrossRef] [PubMed]
- Halstensen, A.S.; Nordby, K.C.; Wouters, I.M.; Eduard, W. Determinants of Microbial Exposure in Grain Farming. Ann Occup Hyg 2007, 51, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.L.; Bhatnagar, J.M. Chapter 4 - Fungi in Soil: A Rich Community with Diverse Functions. In Soil Microbiology, Ecology and Biochemistry (Fifth Edition); Paul, E.A., Frey, S.D., Eds.; Elsevier, 2024; pp. 75–129, ISBN 978-0-12-822941-5.
- Rodriguez-Romero, J.; Hedtke, M.; Kastner, C.; Müller, S.; Fischer, R. Fungi, Hidden in Soil or up in the Air: Light Makes a Difference. Annu Rev Microbiol 2010, 64, 585–610. [Google Scholar] [CrossRef]
- Abrego, N.; Crosier, B.; Somervuo, P.; Ivanova, N.; Abrahamyan, A.; Abdi, A.; Hämäläinen, K.; Junninen, K.; Maunula, M.; Purhonen, J.; et al. Fungal Communities Decline with Urbanization-More in Air than in Soil. ISME J 2020, 14, 2806–2815. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.P.; Kniese, J.P.; Verhoef, H.A. Dynamics and Stratification of Bacteria and Fungi in the Organic Layers of a Scots Pine Forest Soil. Biol Fertil Soils 1998, 26, 313–322. [Google Scholar] [CrossRef]
- Fischer, G.; Dott, W. Relevance of Airborne Fungi and Their Secondary Metabolites for Environmental, Occupational and Indoor Hygiene. Arch Microbiol 2003, 179, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Booth, B.J.; Ward, M.H.; Turyk, M.E.; Stayner, L.T. Agricultural Crop Density and Risk of Childhood Cancer in the Midwestern United States: An Ecologic Study. Environ Health 2015, 14, 82. Viel, J.F.; Richardson, S.T. Lymphoma, Multiple Myeloma and Leukaemia among French Farmers in Relation to Pesticide Exposure. Soc Sci Med 1993, 37, 771–777.
- Shu, X.O.; Gao, Y.T.; Brinton, L.A.; Linet, M.S.; Tu, J.T.; Zheng, W.; Fraumeni, J.F. A Population-Based Case-Control Study of Childhood Leukemia in Shanghai. Cancer 1988, 62, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.M.; Gyldenkærne, S.; Jones, R.R.; Olsen, S.F.; Tikellis, G.; Granström, C.; Dwyer, T.; Stayner, L.T.; Ward, M.H. Residential Proximity to Agriculture and Risk of Childhood Leukemia and Central Nervous System Tumors in the Danish National Birth Cohort. Environ Int 2020, 143, 105955. [Google Scholar] [CrossRef] [PubMed]
- Rull, R.P.; Gunier, R.; Von Behren, J.; Hertz, A.; Crouse, V.; Buffler, P.A.; Reynolds, P. Residential Proximity to Agricultural Pesticide Applications and Childhood Acute Lymphoblastic Leukemia. Environ Res 2009, 109, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Zorlu, P.; Ergor, G.; Tezic, T.; Duru, F.; Ertem, U. Evaluation of Risk Factors in Children with Acute Lymphoblastic Leukemia. Turkish Journal of Cancer 2002, 32, 5. [Google Scholar]
- Meinert, R.; Schüz, J.; Kaletsch, U.; Kaatsch, P.; Michaelis, J. Leukemia and Non-Hodgkin’s Lymphoma in Childhood and Exposure to Pesticides: Results of a Register-Based Case-Control Study in Germany. Am J Epidemiol 2000, 151, 639–646, discussion 647-650. [Google Scholar] [CrossRef]
- Cha, E.S.; Hwang, S.; Lee, W.J. Childhood Leukemia Mortality and Farming Exposure in South Korea: A National Population-Based Birth Cohort Study. Cancer Epidemiol 2014, 38, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, C.K.; Sahakian, E. Comment on “Association between Residential Proximity to Viticultural Areas and Childhood Acute Leukemia Risk in Mainland France: GEOCAP Case–Control Study, 2006–2013”. Environmental Health Perspectives 2024, 132, 048003. [Google Scholar] [CrossRef]
|
Skin cancer Candida sp.: C. albicans, C. cladosporioides, C. glabrata, C. parapsilosis, C. tropicalis, Alternaria sp.: A. alternata, A. infectoria, M. arundinis, E. oligosperma Lung cancer A.fumigatus, Cryptococcus sp., Fusarium, H. immitis, Histoplasma capsulatum, P. jiroveci, Pneumocystis sp., Rhizopus, Talaromyces marneffei, Trichosporon Oral Cancer C. albicans Esophageal carcinoma Aspergillus sp.: A. flavus, A. parasiticus Candida sp.: C. albicans, C. glabrata, C. tropicalis, C. krusei, C.parapsilosis, Fusarium species.: F. verticillioides, F. proliferation,Torulosis sp.: T. glabrata, T. tomata, Gastric cancer Aspergillus spp., Blastomyces spp., Candida sp.: C. albicans, Coccidioides spp., Cryptococcus spp., Fusarium spp.Histoplasma spp., Malassezia spp., Mucor spp., Paracoccidioides spp. Penicillium spp., Phialemonium spp., Rhodotorula spp., Saccharomyces cerevisiae, Trichosporon spp. Colorectal Cancer Aspergillus sp.: A.flavus, A. sydowii, A. ochraceoroseus, Candida sp.: C. albicans, C.tropicalis, Cladosporium, Cryptococcus, Debaryomyces fabryi, Histoplasma, Kwoniella mangrovensis, Malassezia globosa, Moniliophthora perniciosa, Paracoccidioides, Phoma Pneumocystis, Plectosphaerella, Pseudogymnoascus sp., Rhodotorula, Scedosporiosi, Talaromyces islandicus, Trichosporon, Thanatephorus, Zygomycetes Cholangiocarcinoma Aspergillus sp.: A. flavus, A. parasiticus, Penicillium, Candida sp.: C. albicans, C. glabrata, C. tropicalis, Penicillium Pancreatic ductal adenocarcinoma Malassezia Breast Cancer Aspergillus, Candida, Coccidioides, Cunninghamella, Geotrichum, Pleistophora, Rhodotorula, Filobasidiella, Mucor, Trichophyton, Epidermophyton, Fonsecaea, Pseudallescheria, Penicillium, Ajellomyces, Alternaria, Rhizomucor, Piedraia, Malassezia Cervical Cancer Candida, Cryptococcus laurentii, Gjaerumia, Pleosporales, Malassezia, Nakaseomyces, Sporidiobolaeae, Saccharomyces, Ovarian Cancer Pneumocystis, Acremonium, Cladophialophora, Malassezia, Microsporidia Pleistophora, Ajellomyces, Aspergillus sp., Candida sp., Cladosporium, Coccidioides, Cryptococcus, Cunninghamella, Issatchenkia, Nosema, Paracoccidioides, Penicillium, Pleistophora, Rhizomucor, Rhizopus, Rhodotorula, Trichophyton Prostate Cancer Aspergillus sp., Candida sp.: C. neoformans, C. immitis, H. capsulatum, B. dermatitidis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
