Preprint
Article

This version is not peer-reviewed.

Studies on Component of Genetic Variance, Combining Ability and Heterotic Response for Yield and Yield Components in Wheat (Triticum aestivum L.)

A peer-reviewed article of this preprint also exists.

Submitted:

09 January 2025

Posted:

10 January 2025

You are already at the latest version

Abstract

Research was conducted at three locations during the Rabi seasons of 2022–2023 and 2023–2024 with objective to find out the effects of General Combining Ability (GCA), Specific Combining Ability (SCA), and heterotic response on various yield and yield component traits in wheat. In Phase I, forty-five (45) hybrids were generated by the cross of fifteen lines with three testers. Phase II, Randomized Complete Block Design was used with three replications, data were analyzed. Best lines for GCA were DH-3086, PBW-757 and tester PBW ZN1. Thus, GCA results can be used to improve yield; parent selection, and broad adaptability. High estimates of SCA found in genotypes PBW-677 X PBW-343, PBW-822 X PBW ZN1 and DH-3086 X PBW-343. This indicates SCA results can be used for identification of best crosses. Heterosis over better parent and standard varieties were identified (best genotypes were PBW-822 X PBW ZN1 and DH-3086 X PBW ZN1) can be used exploitation of heterosis for wheat improvement. Thus, research provide valuable insights into inheritance patterns for yield-related traits that underpin the development of advanced breeding techniques, including hybrid breeding and selection of superior parent that aimed at improvement of wheat production to ensure resilience against environmental stresses.

Keywords: 
;  ;  ;  

1.0. Introduction

Wheat (Triticum aestivum L.), a member of the Poaceae family, is an allohexaploid species with 21 chromosome pairs arranged into three sub-genomes; A, B, and D. It has a BBAADD genome composition and a chromosome number of 2n = 6x = 42 [1]. It was developed through natural hybridization between Emmer wheat (AABB) (Triticum dicoccon), also known as "farro," and Goat grass (DD) (Aegilops tauschii), and commonly referred to as hard grass [2]. Wheat is a self-pollinating plant with spike type of inflorescences that contains three anthers connected to the base by slender filaments, enclosed within bract-like structures called the lemma and palea that enclosed its fruit called caryopsis [3].
Productivity of Wheat in India and Nigeria
The data (2021-22) from the Farmers Welfare unit, Ministry of Agriculture and, of Indian Government and Federal Ministry of Agriculture and Rural Development (FMARD) of Nigeria, reveals a significant difference in wheat productivity per hectare between India's and Nigeria's top wheat-producing states. In India, states like Punjab and Haryana achieve much higher productivity, with yields ranging from 4.8–5.2 tons/ha and 4.5–4.9 tons/ha, respectively. Other Indian states, like Western Uttar Pradesh and Gujarat, also produce more than 3 tons/ha. In contrast, Nigeria’s leading wheat-producing states, such as Borno and Kano, have considerably lower productivity, with yields ranging from 1.5–2.0 tons/ha. The lowest yields in India, like in Jharkhand (1.5–1.8 tons/ha), are comparable to some of the highest yields in Nigeria [4]. Thus, India's wheat productivity per hectare is significantly higher than Nigeria's across most states, indicating more advanced agricultural practices for wheat cultivation in India (Table 1).

1.2. Concept of Genetic Variance

The line in to tester is a powerful mating design to find the best combiner to be used for further crop improvement. Thus, study of gene action that controls the expression of different characters could aid selection of good parents. When a genotype exhibits high mean yield and little variability over a range of environmental conditions, it is said to be stable genotype [5]. Choice of consistent genotypes that are suited for wider environmental conditions required sufficient knowledge of component of genetic variance [6, 9 and 7], reported that, knowledge on correlation between yields and yield influencers aids the selection of desirable/superior parents and best cross combinations for the commercial exploitation of high yielding parent in conventional breeding programme. Therefore, understanding that relationship between the two is essential for yield improvement in wheat. According to [8] stated that” degree of genetic determination (DGD) which considered as ratio of genetic variance over phenotypic variance, this can be used to estimate potentially high yielding population in relation with yield influencing traits is useful for any successful breeding programme. Thus, breeder must understand some behavior on how gene expressed in the inheritance of all traits under studies. Thus, crop yield is the sum of all individual yield components operating together with small and cumulative effects to the final yield. Yield is polygenically controlled and breeding for high yielding genotypes required knowledge of mode of gene expression [9]. The study of heterosis has become essential, not optional, due to the challenges involved in developing commercial hybrid seeds in wheat. Exploiting heterosis economically effective in wheat breeding programme [10, 9].
Sprague and Tatum [11] this concept described general and specific combining abilities. GCA reflects mean yield/performance of a line across different cross combinations, while SCA represents the deviation from GCA, showing whether the performance exceeds or falls short of expectations. It was noted that genes with additive effects play more significant role in GCA, whereas SCA is influenced by dominance genes and epistatic effects (inter-allelic interactions). Combining ability serves as effective tool for selecting desirable parents capable of producing crosses with high genetic value. The level of hybrid vigor depends on combining ability of the genotypes used in the hybridization. Genotype capable of transmitting favorable traits or hybrid vigor to their offspring are considered to have high combining ability (good combiners). Combining ability helps in identifying parental lines that contribute favorable traits to their offspring. This allow researcher to choose the best parental genotype of wheat, leading to development of high-yielding and stress-tolerant varieties. For developing countries, where resources for extensive breeding programs may be limited, this approach can be used to maximize the chances of success with fewer inputs [12].

1.3. Constraint and Study's Outcome

Despite the fast and steady increase in population of India and Nigeria (being ranked as 55th among wheat producing countries), wheat production currently encounters many constraints that affect its yield and quality like salinity, heat stress and insufficient breeding information such as genetic variances, GCA, SCA, adaptability, and exploitation of heterosis. Previous studies used very limited number of genotypes for their experiments that can lead to inconsistency of research findings due experimental errors. The present studies used 67 wheat genotypes that are enough to increase precision and reduces experimental errors. Most of existing studies were conducted either on India or Nigeria but not both, leaving a serious gap between these two diverse agro ecological zones. Thus by including Nigerian locations, the present study adds valuable data on how wheat genotypes perform in African climates, contributing to relatively under-researched region with sufficient breeding information such as genetic variances, GCA, SCA, adaptability, and exploitation of heterosis that will be used for yield optimization and provides breeders greater opportunity for further wheat improvement. The present investigation also provides valuable insights into inheritance patterns of yield-related traits that underpin the development of advanced breeding techniques, including hybrid breeding and selection of superior parent that aimed at improvement of wheat production to ensure resilience against different environmental stresses that ultimately contributes to sustainable agricultural practices that aimed at wheat improvement to mitigate food insecurity for the growing population.
To boost wheat yield, plant breeders have explored commercial hybrid seed production through genetic/cytoplasmic male sterility, and the use of some chemicals that induce sterility in wheat. However, due to the polyploidy of wheat and the technical difficulties involved in producing hybrid seeds on a commercial scale, these efforts have little to no practical significance. Therefore, an amicable remedies to this scenarios is the exploitation of heterosis and identification of superior parent, high yield potential crosses and effective selection is quite necessary for wheat improvement [13]. Heterosis breeding is one of key option for wheat improvement due to challenges associated with the introduction of large scale hybrid seeds in Wheat production, hybrid breeding is rewarded. [9]. Reif et al. [14], reported that, heterosis breeding is an eco-friendly and non-transgenic method of breeding programme.

1.4. Some Limitations of the Study

The limitations of the current study are as follows; it did not incorporate molecular markers or genomic tools to explore the genetic basis of the observed traits. To address this challenge, future research could integrate marker-assisted/accelerated selection (MAS) or genome/genomic selection (GS) to identify or track beneficial alleles associated with high yield and stress tolerance. This strategy would streamline the breeding process and increase the precision in selecting desirable traits.

2.0. Material and Methods

2.1 Material and Experimental Site

Experimental materials consisted of 67 wheat genotypes, including fifteen lines, three testers, four checks, and forty-five (45) F1s crosses/hybrids were generated through the hybridization of fifteen female lines with three male testers to conduct stability analyses for yield and yield components. The planting material comprised fifteen lines. BHU 25, WB-02, BHU 31, HD 3721, PBW 725, CRD GEHNU1, PBW 550, PBW 677, PBW 822, HD 3117, DBW 173, HD 3086, DBW 222, CSW 18, and PBW 757. The three testers were PBW ZN1, PBW 343, and HD 3326, with four checks HD 2967, DBW 187, Norman, and Borlaug-100. Other materials included Breeder's kit. SPAD (Soil Plant Analysis Development) handheld meter, meter rule, electric balance (Compax-Cx-600), seed counting machine, digestion apparatus, sodium hydroxide, hydrochloric acid, and more.
Table 1. List of parents and four checks (Sources and Status (released var/advanced line etc.).
Table 1. List of parents and four checks (Sources and Status (released var/advanced line etc.).
Sr. No. Genotype Source of genotypes Status (released variety/advanced line etc.)
1 BHU 25 Banaras Hindu University (BHU) Released Variety
2 WB-02 Private Sector (West Bengal) Released Variety
3 BHU 31 Banaras Hindu University (BHU) Released Variety
4 HD 3721 ICAR-IIWBR Released Variety
5 PBW 725 Punjab Agricultural University (PAU) Released Variety
6 CRD GEHNU1 ICAR-IIWBR/Collaborator Institute Released Variety
7 PBW 550 Punjab Agricultural University (PAU) Released Variety
8 PBW 677 Punjab Agricultural University (PAU) Released Variety
9 PBW 822 Punjab Agricultural University (PAU) Released Variety
10 HD 3117 ICAR-IIWBR Released Variety
11 DBW 173 ICAR-IIWBR Released Variety
12 HD 3086 ICAR-IIWBR Released Variety
13 DBW 222 ICAR-IIWBR Released Variety
14 CSW 18 ICAR-IIWBR Released Variety
15 PBW 757 Punjab Agricultural University (PAU) Released Variety
16 PBW ZN1 (tester1) Punjab Agricultural University (PAU) Released Variety
17 PBW 343 (tester2) Punjab Agricultural University (PAU) Released Variety
18 HD 3326(tester3) ICAR-IIWBR Released Variety
19 HD 2967 (check1) ICAR-IIWBR Released Variety
20 DBW 187 (check2) ICAR-IIWBR Released Variety
21 Norman (check3) CIMMYT/ICAR Collaborations Released Variety
22 Borlaug-100(check4) CIMMYT/ICAR Collaborations Released Variety
Table 2. Pedigree of parents and four checks.
Table 2. Pedigree of parents and four checks.
SN Genotype Pedigree of genotypes
1 BHU 25 -
2 WB-02 T.DICOCCONC19309/AE.SQUARROSA(409)/3/MILAN/S87230// BAV92/4/2* MILAN/S8732/ 0//BAV92
3 BHU 31 -
4 HD 3721 ND/VG 9144//KALYANSONA/BLUEBIRD/3/YACO/4/VEE#5
5 PBW 725 PBW621//GLUPR 0/3* PBW 568/3/ PBW 621
6 CRD GEHNU1 -
7 PBW 550 WH 594/RAJ 3856//W 485
8 PBW 677 PFAU/MILAN/5/CHEN/Ae, squarrosa// BCN/32/VEE#7 /BOW/4/PASTOR
9 PBW 822 -
10 HD 3117 HD 2733/ HD 2824 // DW 1278
11 DBW 173 KAUZ/AA//KAUZ/P BW602
12 HD 3086 DBW14/HD2733//HUW468
13 DBW 222 KACHU/SAUAL/8/ATTILA*2/PBW65/6/PVN//CAR422/ANA/5/BOW/C ROW// BUC/PVN/3/YR/4/TRAP#1/7/ATTILA/2*PASTOR
14 CSW 18 -
15 PBW 757 PBW550/YR15/6* AVOCET/3/2*PBW550/4/PBW568+YR36/3* PBW550
16 PBW ZN1 T. dicoccon C19309/Ae. sauarrosa (409)/3/ MILAN/S87230//BAV92/4/2*MILAN/S87230/BAV92
17 PBW 343 ND/VG 144//KAL/BB/3/YACO’S’/4/VEE#5’S
18 HD 3326 -
19 HD 2967 ALONDRA/CUCKOO//URES81/HD-2160-M/ HD-2278
20 DBW 187 NAC/THAC//3*PVN/3/MIRLO/BUC/4/2*PASTOR/5/KACHU/6/ KACHU
21 Norman -
22 Borlaug-100 BABAX/Lr//BABAX
Table 3. Salient feature of Selected Parents (parents and four checks).
Table 3. Salient feature of Selected Parents (parents and four checks).
SN Genotype Source Duration (Days) Eco-system Salient Features
1 BHU 25 Banaras Hindu University (BHU) ~140-150 Irrigated High yield, resistance to lodging.
2 WB-02 Private Breeder (West Bengal) ~130-140 Irrigated Early maturity, disease resistance.
3 BHU 31 Banaras Hindu University (BHU) ~140-150 Irrigated Adaptable variety with moderate rust resistance.
4 HD 3721 ICAR-IIWBR ~145 Irrigated High grain quality, rust resistance.
5 PBW 725 Punjab Agricultural University (PAU) ~140-145 Irrigated Rust resistance, higher protein content.
6 CRDGEHNU1 ICAR-IIWBR ~140-150 Conservation Agriculture Suitable for zero tillage, high yield.
7 PBW 550 Punjab Agricultural University (PAU) ~140-145 Irrigated Suitable for chapati, rust resistant.
8 PBW 677 Punjab Agricultural University (PAU) ~140 Irrigated Early sowing, rust resistance.
9 PBW 822 Punjab Agricultural University (PAU) ~140 Irrigated High yielding, suitable for timely sowing.
10 HD 3117 ICAR-IIWBR ~135-145 Irrigated High tillering ability, rust resistant.
11 DBW 173 ICAR-IIWBR ~140 Irrigated High yield potential, suitable for timely sowing.
12 HD 3086 ICAR-IIWBR ~135-140 Irrigated High yielding, rust and Karnal bunt resistance.
13 DBW 222 ICAR-IIWBR ~140-145 Irrigated Excellent chapati quality, rust resistant.
14 CSW 18 ICAR-IIWBR ~140 Conservation Agriculture Early sowing, suitable for zero tillage, rust resistant.
15 PBW 757 Punjab Agricultural University (PAU) ~135-140 Advanced Line Testing phase for high yield and adaptability.
16 PBW ZN1 Punjab Agricultural University (PAU) ~140-145 Advanced Line Testing phase with improved disease resistance.
17 PBW 343 Punjab Agricultural University (PAU) ~135-140 Irrigated High yield, widely adopted.
18 HD 3326 ICAR-IIWBR ~140-145 Irrigated Resistant to rust and foot rot, suitable for bread and chapati.
19 HD 2967 ICAR-IIWBR ~140 Irrigated High yield, resistant to stripe and leaf rust.
20 DBW 187 ICAR-IIWBR ~140-145 Irrigated High protein content, rust resistant.
21 Norman CIMMYT/ICAR Collaborations ~135-140 Irrigated High yield, rust resistant, good for bread quality.
22 Borlaug-100 CIMMYT/ICAR Collaborations ~140-145 Irrigated Rust resistant to improve centenary of Norman Borlaug’s birth.

2.2. Methods

In Phase I (2022-23 Rabi season), an Augmented Design was employed to generate forty-five F1 hybrids through the hybridization of fifteen lines/females with three testers/males, through line X tester mating design as described by [15]. In Phase II, during the Rabi season of 2023-24, Randomized Complete Block Design (RCBD) with three replications was used. Standard agronomic practices were followed as recommended. The research took place at three locations; Lovely Professional University, India; Kebbi State University of Science and Technology, Aliero, Nigeria; and the Lake Chad Wheat Research Institute, Nigeria. Emasculation and pollination procedures were performed, and quantitative data were collected based on guidelines from the International Board for Plant Genetic Resources (IBPGR) and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) [16] for wheat descriptors. Qualitative data, such as chlorophyll/green pigment content, were measured using a SPAD (Soil Plant Analysis Development) meter, and protein/crude content was assessed using the micro Kjeldahl method. Data were analyzed using ANOVA [17], line x tester analysis, combining ability [15], and heterosis estimation [18].

2.2.1. Experimental Sites

The environmental conditions at the three experimental sites were as follows; location one was the Teaching and Research Farm, Department of Genetics and Plant Breeding, Lovely Professional University, Phagwara, Punjab, India, located at a latitude of 31.2245° N and longitude of 75.7711° E, at an altitude of approximately 243 m above sea level, with an annual rainfall of 527.1 mm. Location two was the Teaching and Research Farm of Kebbi State University of Science and Technology Aliero, Kebbi State (KSUSTA), Nigeria, situated in the Sudan Savanna agro-ecological zone at latitude 13°08' N and longitude 50°15' E, with an altitude of around 250 m above sea level and annual rainfall ranging from 1500 to 1700 mm. The third location was the Lake Chad Wheat Research Institute in Borno State, Nigeria, located at latitude 11.8467° N and longitude 13.1571° E, at an altitude of approximately 325 m above sea level, with annual rainfall between 900 and 1500 mm. In Punjab, India, temperatures ranged from 19°C (January) to 36°C (April), with lows between 8°C (January) and 21°C (April). In Kebbi State, Nigeria, temperatures varied from 17.1°C (January) to 27°C (April), and in Borno State, Nigeria, temperatures ranged from 14°C (January) to 24°C (April). Regarding soil types, Location I (India) has fertile, alluvial soils with low organic matter content. Location II (Kebbi State) features generally sandy or loamy soils with lower organic matter content, while Location III (Borno State) has sandy or loamy soils (entisols or aridisols) that are nutrient-depleted. Punjab experiences cooler winters during the two Rabi seasons, while Kebbi and Borno States have drier climates, with Borno being the driest site out of the three locations. Weather report 2023-2024 Rabi seasons across three locations on climate variability during evaluation period as per below:
Table 4. Weather report 2023-2024 seasons across three locations.
Table 4. Weather report 2023-2024 seasons across three locations.
Borno state Nigeria 2023 Kebbi state Nigeria 2023 Phagwara Punjab state India
Month High
Temp (°C)
Low
Temp (°C)
Rainfall (mm) R. H. (%) High Temp (°C) Low Temp (°C) Rainfall (mm) R. H. (%) High Temp (°C) Low Temp (°C) R. H. (%) Rainfall (mm)
October 36 23 15 45 37.4 25.5 36.3 58 32 20 54 14
November 34 18 0 25 37.1 22.4 0 29 27 15 52 30
December 31 15 0 20 34.4 18.1 0 20 21 10 58 25
Rabi season 2024
January 31 14 0 15 34.7 17.1 0 20 19 8 60 75
February 34 17 0.2 14 37.8 19.8 0.53 18 23 10 57 61
March 38 20 1 17 40.8 23.3 4.9 24 29 15 52 51
April 41 24 3 21 42.3 27 24.2 36 36 21 45 39
May 40 27 13.5 35 41.3 29.8 75.5 49 40 26 38 27
June 37 26 63 50 38.8 28.8 94.9 58 41 29 50 50
July 33 24 115 65 35.4 26.3 170.2 70 36 28 73 211
August 31 23 198 75 32.8 24.4 179.1 79 34 26 67 150
September 33 24 80 68 34.7 24.9 151.1 76 34 24 60 101
Source: Nigerian Meteorological Agency (Nimet) report for the two State Source: Punjab Agricultural University of Agric.

2.2.2. Statistical Analysis

Analysis of Variance was one of the statistical methods employed to analyze the data [17], line × tester analysis [15], and Analysis of Variance for Combining Ability [15], and heterosis estimation [18].

2.2.2.1. Estimation of CGA and SCA variances and their effects

The estimate of GCA and SCA variances and their effects were carried out by line × tester method using data sourced from F1 generation and its parents.
The method for analysis were described below:
Xijk = is the submission of µ + gi + gj + sij + eijk
Where:
µ = Mean
gi = for estimation of GCA effects on ith T, i = 1,2,…T.
gj = GCA effect estimation, jth= T, j = 1,2,…L.
sij = submission the effect of SCA with ith= T and jth = L crosses
eijk = total error in relation with ijkth data, where k = stand for 1,2,…replications
Individual estimated effects as follows:
(i) For individual estimation: μ   = X ... mfr
Where:
X... = stand as submission of cross combinations
(ii) gi = Also stand as   X i .. fr -   X ... mfr
Where:
Xi = submission of ith T across all L with their replicates.
(iii) gj = stand as submission of X . j . mr -   X ... mfr
Where:
X.j. = submission of jth L divided by T and their replicates.
(iv) s ij =   submission   of   X ij . r X i .. fr X . j . mr + X ... mfr
Where:
Xij. = Submission of ijth in all crosses like (L and T) divided by replicates.
Standard of error on GCA was found through:
Standard error for GCA of F = √(Me ÷ rm)
Standard error GCA in T = √(Me ÷ rf)
Standard error for SCA = √(Me ÷ rf)
Standard Error (gm – gf) line = √(2Me ÷ rm)
Standard Error (gm –gf) tester = √(2Me ÷ rf)
Standard Error (Sij - Skl) = √(2Me ÷ r)
Where:
Me = Error MS
gm = genotype of male
gf = genotype of male
Critical Differences Calculation:
Critical Differences (C.D) = t at 5% × SED; 1% probability levels at error d.f.
Table 5. ANOVA for estimation of SCA and GCA variances and their effects is given below.
Table 5. ANOVA for estimation of SCA and GCA variances and their effects is given below.
SV df SS MS
Rep. (r-1) Σ x 2 . . K m t x 2 m t r
Trt (Hybrids) (lt-1) Σ X 2 i j r x 2 . . . m f r
T (t-1) Σ X 2 i f r x 2 . . . m f r Mm
L (l-1) Σ X 2 j m r x 2 . . . m f r Mf
L x T (t-1) (l-1) Σ X 2 i j r Σ x 2 i . . f r Σ x 2 j . . m r + x 2 . . M f r
E. var. (lt-1) (r-1) By d.
Total (mfr-1) Ʃ X 2 i j k x 2 . . . m f r
Where, L=female (f), T=male (m), r=replication, SV=source of variation and E=error
x..k = total of LXT in kth rep.
Xij = total of ijth combination of crosses for all replicates,
xi = submission of jth T across lines with replicates,
x2.j. = lines submission divided by L and replicates,
xij… = total number of all LXT crosses over replicates,
σ2e = sum of error variation,
R = sum replicates,
M = tester,
F = lines,
Mm = Mean square as a result of tester .S. due to males,
Mf = Mean square as a result of lines,
Mmf = Mean square as a result of LXT,
Me = Mean square as a result of error' submission

2.2.2.2. Genetic Components

Covariance   of   half - sib   ( F )   = M f   -   M fm r   x   m
Covariance   of   half - sib   ( T )   = M m   -   M fm r   x   f
Covariance   of   half - sib   ( mean )   = 1 r [ 2 ( f   x   m ) - f - m ] ( m 1 )   M m +   ( f - 1 )   M f m + f - 2 M f   x   m
Covariance   of   full - sib   ( mean )   = ( M m - M e )   +   ( M fm - M e )   +   ( M f - M e ) r   x   3 +
6   x   r   Covariance   of   half - sib   ( mean )   -   ( r   x   f ) + ( r   x   m )   Covariance   half - sib   ( mean ) r   x   3
Where:
Mf = Females mean squares
Mm = Males mean squares
Mfm = Females x Males mean squares
Me = Mean squares error
r = Replications number
f = Females number
m = Males number
σ2gca = Covariance of half-sib (mean) = 1 + F 4 σ 2 A Therefore:
σ2A = 2 Covariance of half-sib (mean); if F = 1 and
σ2A = 4 Covariance of half-sib (mean); If F = 0
σ2sca = ( M fm - M e ) r σ2sca = 1 + F 2 2 σ 2 D Therefore:
σ2D (sca) = σ2; if F = 1, and
σ2D (sca) = 4 x σ2; if F = 0
Where:
F = Inbreeding coefficient
Mean degree of dominance
Calculated using formula given by Kempthorne and Curnow (1961).
A v e r a g e d e g r e e o f d o m i n a n c e = ( σ 2 s c a ) / ( 2 σ 2 g c a ) o r ( σ 2 D ) / ( σ 2 A ) Where, σ2sca = Estimation of variance due to sca.
σ2gca = Estimation of variance due to gca

2.2.2.3. Heterosis over Better Parent and Standard Variety

Heterosis was calculated based on an increase or decrease in mean values of the crosses (F1’s) compared to better parent (Heterobeltiosis) and standard variety (Standard Heterosis) (%).
1. T h e h e t e r o s i s o v e r b e t t e r p a r e n t ( H e t e r o b e l t i o s i s ) = F ¯ 1 - B P ¯ B P ¯ x 100
2. The   heterosis   over   standard   variety   ( Standard   heterosis )   = F ¯ 1   -   SV ¯ SV ¯   x   100
Where:
F 1 = Mean   of   F 1
BP ¯ =   Better - parent   mean  
SV ¯ =   Standard   variety   mean   The test of significance was determined by using the following formulae:
' t '   ( The   heterobeltiosis )   = F ¯ 1   -   BP S . E
' t '   ( Standard   heterosis )   = F ¯ 1   -   SV ¯ S . E   Standard   error   of   the   hybrid   vigor   over   better - parent   and   the   standard   variety   = 2 Me / r
Where:
Me = Variance of mean error
r = Replications numbers
Critical Differences (C.D) = t × SE; 5 or 1% p-value at error d.f.

3.0. Results and Discussion

3.1. Analysis of variance for combining ability and estimates of components of genetic variance

Analysis of variance (ANOVA) recorded significant different (p < 0.001) among female, male and female x male reported that, no single genotype was significant for all traits across three locations, however, some genotypes that consistently exhibit high GCA values across different environments were PBW-757 and DBW-222. Some crosses that consistently exhibit high SCA like PBW-677XPBW-343, PBW-757X PBW ZN1, CRDGEHNU1XPBW ZN1 and HD-3721XHD-3326 (Table 6). Since no single genotype was significant for all traits, selection of individual traits might overlook the importance of combined traits. Thus, breeder can develop selection indices that combine multiple prioritized traits, adjusting their weights based on the breeding objective(s) and environmental conditions. This method enables the simultaneous improvement of multiple traits and genotypes by focusing on critical traits that directly affect yield. The result was commemorated research conducted by Barot et al. [19] and Gami et al. [13], who noted that none of the genotypes showed significant differences across all traits studied. Estimates of genetic variance components revealed that certain characters, such as "GYP" (374.5) and "BY" (219.8) (Table 6), had high genotypic variance, suggesting strong gene action over these traits. As mentioned by Barot et al. [19] and Kumar et al. [21], genetic variance was highly related to additive gene effect. The relative contributions of additive and non-additive gene effects for yield and its components showed that the additively of gene for most of yield related traits accounted for relatively low proportions of the total genetic variance. In contrast, non-additive gene action made the largest contribution to the overall genetic variation. As a result, heterosis breeding is highly effective for improving yield. For instance, the additive contribution to protein content was 0.0%, while non-additive 8.8% in spikelets number per main spike, additive contribution was 0.74%, and the non-additive contribution was 1.78%; while for productive' tillers number additive contribution recorded 1.78%, while non-additive was 2.17%. The additive contribution for biological yield was 1.76%, while non-additive was 1.34%; for harvest index, the additive contribution was 2.83%, and non-additive was 1.34%; and the relative contributions of grain yield per plant were 1.43% for additive and 5.51% for non-additive (Table ). Certain traits, such as "CLC" and "GYP," exhibited moderate additive variance (10.57 and 5.35, respectively), indicating that these traits can be selected for breeding programs since they are influenced by additive genetic effects (Table 7). These findings was in conformity with results of Hajer et al. [5] and Fellahi et al. [12], reported additivity gene effects can be leveraged for genotype improvement in wheat.
For general combining ability (GCA), WB-02 was identified as the best line for grain filling period (GFP 2.33, Rank 1). Gami et al. [13] also noted that some male parents showed significant differences in their GCA values for traits such as days to 50% heading and grain filling period. PBW ZN1 was the top tester for nearly all yield-related traits, including the number of productive tillers (0.02, Rank 1), grain yield per plant (0.53, Rank 1), and the number of spikelets per spike (0.06, Rank 1) (Table 8).
Four parents were identified as promising combiners for GCA in relation with yield related characters in wheat, suggesting the parent could serve as potential promising candidates for further breeding programs, such as the development of synthetic varieties or for enhancing grain yield. These parents are listed hierarchically as follows: PBW ZN1, PBW-757, PBW-822, and DBW-173.
The best identified parents with high-GCA (like DH-3086 and PBW-757) could be cross with other genotypes with high-GCA to combine favorable traits using pedigree breeding (to develop synthetic variety) and pure line selection. Can also can be used for recurrent parent selection using backcross breeding programs to improve the performance (consistent performance) of other lines. High GCA parents can serve as ideal foundation parents for large-scale breeding programs (table 8). It is suggested that additive gene actions predominated in the observed traits, implying that the environment had little to no impact on these characters. Gupta et al. [20], Kumar et al. [21], and Kumar et al. [9], also reported that environmental factors have minimal or no effect on additive gene action. No single genotype recorded high GCA and SCA values across different environments. However, some genotypes that consistently exhibit high GCA values across different environments were PBW-757 and DBW-222. Some crosses that consistently exhibit high SCA like PBW-677XPBW-343, PBW-757X PBW ZN1, CRDGEHNU1XPBW ZN1 and HD-3721XHD-3326. Due some mechanisms naturally possessed by wheat, some genotypes like BHU-25, PBW-550, BHU-31, HD-3721 and PWB-725 recorded high tolerance for multiple environmental stresses as evidenced showed by their relatively higher GCA estimates across the most of their traits and environments.
For specific combining ability (SCA), the positive values indicates better than expected, while negative values indicates lower than expected [11]. Highest SCA value (ranked 1st) recorded in DBW-222 X PBW ZN1 (0.49) for NPT (number of productive tiller); PBW-822 X PBW ZN1 for GYP (Grain Yield per Plant) (3.79); DH-3086 X PBW-343 for HI (Harvest Index) (0.67). However, poor SCA recorded in CRD GEHNU 1 X HD-3326 (ranked 45th for spike length) (Table 7). According to Askander et al. [22] and Fellahi et al. [12] stated that, high SCA is used for hybrid vigor and superior performance in specific crosses while low-SCA crosses can be stably inherited and improved over time. Six crosses revealed significant positive SCA effects for yield and yield related characters, listed hierarchically as follows: DBW-222 × PBWZN1, DH-3086 × PBWZN1, PBW-677 × PBW-343, HD-3721 × HD-3326, and CRD GEHNU1 × PBWZN1.
Conclusively for GCA and SCA, the information on GCA effect could be used in selection of superior parents; estimation of half-sib families; and for pure line selection method. While information for SCA could be used useful in selection of superior cross combinations for heterosis breeding; an estimation of full sib families and the information on both GCA and SCA can be applied for reciprocal recurrent selection.
The magnitude of GCA varies across different traits due to additively effects while SCA also varies due to non-additive effects. Thus, GCA is typically more stable across environments because the additive genetic effects are less influenced by environmental variability. However, SCA being non-additive, is more susceptible to environmental changes, making it more variable across the traits that are sensitive to environmental conditions [8].

3.3. Estimation of heterosis over better parent and four standard varieties in wheat across three locations

Heterosis is highly preponderance in cross-pollinated crops whereas, very limited in self-pollinated species like wheat Thus, progeny showing additive effects indicated that, the plants cannot take advantage of heterosis, however, dominance and over dominance gene action is essential for heterosis [22]. Therefore, standard heterosis (SV1-SV4) (standard variety) for grain yield per plant recorded across four varieties and three locations revealed the highest and positive BP (better parent) heterosis in PBW-822X PBW ZN1 with 51.51 while lowest and negative BP heterosis WB-02XHD-3326 with -8.09. Highest standard heterosis recorded in DH-3086X PBW ZN1 with 62.86 in SV2 while the lowest standard heterosis recorded in BHU-25XPBW-343 with -7.65 in SV3 (Table 8) this indicate the present of both additive and dominance genetic variances. Askander's et al. [22] study showed that, the tested attributes had both positive and negative heterosis for all the traits, therefore, dominant genetic variance is more preponderance than additive genetic variance. PBW-677XPBW-343 shows the highest BP heterosis (26.12%) indicating that this cross exceeds its better parent in terms of harvest index. While PBW-822X PBW ZN1 Shows very high values across standard heterosis (61.99%) in SV1 and (30.56%) in SV3. This cross is likely very adaptable across multiple environments or standards (Table 10). Summarily, the results can be used to improve yield; parent selection, broad adaptability and identification of best crosses. Heterosis for inferior and superior better parent and standard varieties were identified. For number of productive tillers PBW-822 X PBW ZN1 and PBW-757 X PBW ZN1 outweighed the performers of SV1 (118.53), SV2 (78.08 ), SV3 (57.75 ), and SV4 (73.58) while WB-02 X HD-3326 and BHU-25 X HD-3326 show the least heterosis for both in better parent and standard heterosis (SV2 -8.34, SV3 -18.8) (Table 10). It is therefore proved that, heterosis in cross-pollinated crops is highly preponderance, whereas, very limited in self-pollinated species like wheat [18]. Days to 50% Heading for various wheat crosses across three locations (Table 12). "Days to 50% heading" measures the time from the emergence of heads to 50% of the plants produces heads, it is also an indicator of length of days to reach maturity level. Different wheat crosses, represented by combinations of plant varieties, were tested under various environments in three distinct locations. The dataset includes different types of crosses ( BHU-25XPBW ZN1, PBW-757X PBW ZN1) tested against standard checks, labeled BP, SV1, SV2, SV3, and SV4, with maturity times varied significantly across locations. For example, the cross PBW-757X PBW ZN1 took an additional 35.85 to 52.38 days to reach 50% heading at location 2 compared to other crosses. At location 1, very few crosses showed delayed heading than in location 3, suggesting that location 3 may have had conditions that either delayed or varied maturation times more than the other locations, as reported by Gami et al. [13] that maturity period had been influenced by environmental factors. While some crosses showed large variation for grain' number per spike across location (Table 14). For example, the cross "BHU-25XPBW ZN1" shows a relatively low grains' number per spike in location 1 (ranging from 9.4 to 27.05 across the lines) compared to location 2, where the number of grains per spike ranges much higher (from 31.78 to 68.96). This suggests that certain crosses may be better adapted to specific locations like SV4 in cross "BHU-31XPBW ZN1" at location 1 has a high grain count per spike of 38.05, indicating that SV4 contributes positively to grain number in this cross. This is also seen across other crosses where SV4 consistently produces higher counts compared to BP and other lines. The results was supported by Askander et al. [22] reported that some wheat genotypes reproduced their yield faithfully across different environmental conditions. The hybrids that recorded significant positive hybrid vigor yield components recorded the top six (6) hybrids namely; PBW-822X PBW ZN1, DH-3086X PBW-343, PBW-757X PBW ZN1, DBW-173X PBW-343, WB-02XPBW ZN1 and DH-3086X HD-3326.
The observed level of heterosis in certain crosses served as potential parents to generate high-yielding/performance and resilient wheat couple with incorporating complementary traits, such as stress tolerance, into these high-yielding crosses through methods like heterosis breeding, backcross breeding, or marker-assisted selection. Followed by conducting multi-location trials to assess the stability of heterosis across environments and can be used as genome editing tools to identify and select favorable alleles for hybrid development [6].
Some physiological and biochemical mechanisms underlying heterosis in wheat includes; physiological factors like photosynthetic efficiency, resource use efficiency (efficiency in nutrient and water utilization), resistance to environmental stresses (high resistant increase high heterosis), and rate of growth and biomass accumulation rate (high rate increase high heterosis). While biochemical mechanisms of heterosis involves enzymes activities like nitrogen assimilation, carbohydrate metabolism, and antioxidant defense (often more active in hybrids compared to the parents). Also heterosis expressed in genes of hybrids compared to the parents [5].
The magnitude of heterosis varies across different traits and environments due to several factors. According to Shull [23] there are several factors that affect the variation in heterosis such as presence of additive effect (low heterosis) and non-additive effect (high heterosis), mode of pollination of parents (wheat is self-pollinated, thus, heterosis will be low).
The potential advantages of hybrid breeding in wheat offers several advantages over traditional breeding methods, in that, hybrid breeding allowed systematic improvement of population by application of pure line selection and exploitation of heterosis simultaneously. Hybrid breeding can lead to faster genetic improvements by effectively utilization of mode of gene action with greater precision and efficiency. Additionally, it allows for the simultaneous combination of complementary traits from various parental lines.
The genetic diversity of the parental lines can be maintained through the prevention of inbreeding depression (breeding within closely related parental line), secondly to perform wide crosses and the use of backcrossing judiciously, and creation of populations with broad genetic variability. Other methods are polyploid or double haploid breeding and asexual or apomictic seed production [5].
Some natural mechanisms in wheat includes; Wheat naturally genetic, biochemical and physiological mechanisms that makes it thrive and produce reasonable yield under different environmental stresses such mechanisms includes; heat shock proteins, superoxide dismutase and homeostasis for example, osmotic adjustment [2].

4. Conclusion

Analysis of variance (ANOVA) recorded significant differences (p < 0.001), for the best lines and testers with high general combining ability (GCA) were DH-3086, PBW-757, and PBW ZN1. The top line × tester crosses with high SCA for yield components characters like total grain yield per plant, harvest index, and spike length were PBW-677 × PBW-343, PBW-822 × PBW ZN1, and DH-3086 × PBW-343. These lines and testers show potential for improving traits controlled by additive genes and can be used for selecting superior parents, developing inbred lines, and ensuring broad adaptability in wheat for GCA. For SCA, the findings can help for identify superior crosses and leverage the mode of gene actions for wheat improvement. With regards to the total grain yield per plant across the genotypes and locations, the highest positive better parent heterosis recorded in PBW-822 × PBW ZN1, while the lowest and negative better parent heterosis was observed in WB-02 × HD-3326, with a value of -8.09. The highest standard heterosis was recorded in DH-3086 × PBW ZN1, while the lowest standard heterosis was seen in BHU-25 × PBW-343.

Funding

The research was funded by the Deanship of Graduate Studies and Scientific Research at Qassim University, Buraidah, Saudi Arabia (QU-APC-9/1), the Tertiary Education Trust Fund (TETFUND), Nigeria, and ICAR-Indian Institute of Vegetable Research, varanasi India, for financial support.

Authors' Contributions

The authors contributed to the conception and design of the experiment. T. S. B. was responsible for the methodology and writing the original draft of the manuscript. S. P. S., R. M. K., and K. S., provided formal analysis, supervision, critical review, and approval of final version of the manuscript.

Conflict of Interest

The authors declare that there is no conflict of interest regarding this manuscript.

Authors' Declaration

All authors affirm that this article is original and has not been submitted or published elsewhere.

References

  1. .Bajaniya N., A.; Pansuriya A., G.; Vekari D., M.; Singh, C.; and Savaliya J., J. Combining Ability Analysis for Grain Yield and Its Components in Durum Wheat (Triticum durum Desf. ) Gujarat, India Ind. J. Pure App. Biosci. 2019, 7, 217–224. [Google Scholar] [CrossRef]
  2. Kumar, A.; Mishra V., K.; Vyas R., P. and Singh V. Heterosis and combining ability analysis in bread wheat (Triticum aestivum L.) University of Agriculture and Technology, Kanpur, 208002 (Uttar Pradesh), International Scholars J. India Vol. 2019, 6, 75–79. [Google Scholar]
  3. Dhiwar, K.; Sharma Dj, Agrawal P. A. and Pandey D. Stability analysis in wheat (Triticum aestivum L.). Department of Genetics and Plant Breeding, B.T.C. College of Agriculture and Research Station, Bilaspur, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India. Journal of Pharmacognosy and Phytochemistry; 2020, 9, 295–298. [Google Scholar]
  4. FAOSTAT. Food and Agriculture Organization of the United Nation. Year book, 2021, I. 585pp.
  5. Hajer S., A. ; H. S.; Salih M. M. and Altaweel M. S. Heterosis and Combining Ability for Yield and its Related Traits in Bread Wheat (Triticum aestivum L.) University of Dohuk, Iraq. Plant Cell Biotechnology and Molecular Biology, 2021; 22, 46–53. [Google Scholar]
  6. Kumar, P. S, Verma D. K.; Tiwari A.K, Raji V.; Singh G.; and Raghvendra S. Yield Gap Analysis and Strategy of Improving Wheat (Triticum aestivum L.) Productivity Under Late Sown Through Front Line Demonstrations in Eastern Uttar Pradesh. Int.J.Curr. Microbiol.App.Sci, 2020; 10, 180–184. [Google Scholar]
  7. AbdEl-Hady A., H.; Zaied K., A.; Ramadan R., A. and Lasheen A. S. Genetic Analysis for Yield and its Components in Bread Wheat. Genetic Department, Egypt. J.Agric.Chem.and Biotechn.; 2018; 9, 111–121. [Google Scholar]
  8. Samier, K. and Ismail A. Heterosis and Combining Ability Analysis for yield and its Components in Bread Wheat (Triticum aestivum L.) Int.J.Curr. Microbiol. App.Sci 2015, 4, 1–9. [Google Scholar]
  9. Kumar, D.; Kumar, A.; Kaur, S. and Yadav A. K. Combining ability for yield attributing traits in wheat (Triticum aestivum L.) Kumarganj, Faizabad, Uttar Pradesh, India. Journal of Pharmacognosy and Phytochemistry, 2018; 1, 2730–2735. [Google Scholar]
  10. Gulzar, S. ; Kamaluddin, Bhatt M. A.; Yusuf N. and Khan M. A. Stability analysis for yield, yield component and quality traits in wheat (Triticum aestivum l.) under temperate conditions in Kashmir valley. Centre for Plant Biotechnology, Shalimar Campus, SKUAST-Kashmir (J. & K.), India. Plant Archives, 2015; 15, 433–440. [Google Scholar]
  11. Sprague, G.F. and Tatum, L.A. General vs specific combining ability in single crosses in corn. J. Amer. Soc.; Agron. 1942; 34, 923–932. [Google Scholar]
  12. Fellahi Z., A.; Hannachi, A.; Bouzerzour, H. and Boutekrabt A. Line × Tester Mating Design Analysis for Grain Yield and Yield Related Traits in Bread Wheat (Triticum aestivum L.) Agricultural Research Unit, Setif 19000, Algeria International Journal of Agronomy. 2018, 10.
  13. Gami, R.A.; Tank, C.J.; Patel, S.S.; Chauhan, R.M. and Patel, C. G. Genetic analysis for grain yield and quality in durum wheat (Triticum durum) under late sown condition. Green Fmg. 2010, 1, 600–601. [Google Scholar]
  14. Reif J., C. ; Hahn V, Melchinger A. E. Genetic basis of heterosis and prediction of hybrid performance. Helia. 2012, 35, 35,1–8. [Google Scholar]
  15. Kempthorne, O. An introduction to genetic statistics. John Wiley, New York. 1957. [Google Scholar]
  16. Descriptors for sorghum [Sorghum bicolor (L.) Moench]. Int. Board Plant Genet. Resour. Rome,Italy. – ICRISAT, Patancheru, India. 1993; 235 Pp.
  17. Panse, V.G. and Sukhatme P.V. Statistical Methods for Agric. Workers.IInd Edn 1967, pp. 152-157.
  18. Fonseca S and Patterson, F. L. Hybrid Vigor in a Seven-Parent Diallel Cross in Common Winter Wheat (Triticum aestivum L. ). Crop Sci.; 1968, 8, 85–88. [Google Scholar] [CrossRef]
  19. Barot H., G. ; Patel1M. S.; Sheikh, W.A. L. Patel1 P. and Allam C.R. Heterosis and combining ability analysis for yield and its component traits in wheat [Triticum aestivum (L.) Electronic Journal of Plant Breeding, 2014, 5, 350–359. [Google Scholar]
  20. Gupta V., K. Agarwal A. P. and Minz M. G. Combining Ability Analysis for Yield and Its Component Traits in Wheat (Titicum aestivum L.) under Timely Sown Irrigated Condition. Dept. of Genetics and Plant Breeding, BTC CARS (IGKV), Bilaslpur, Chhatisgharh (495 001), India. International Journal of Bio-resource and Stress Management, 2017; 8, 784–789. [Google Scholar]
  21. Kumar, P.; Nagar, S. S, Singh Y. P.; Abhishek D.; and Kumar R. Study of gene action for yield components and gluten content in bread wheat (Triticum aestivum L.). Eco. Env. & Cons, 2015; 22–25. [Google Scholar]
  22. Askander H., S.; Salih M., M. and Altaweel M. S. Heterosis and Combining Ability for Yield and its Related Traits in Bread Wheat (Triticum aestivum L.) University of Dohuk, Iraq [HSA]. Plant Cell Biotechnology and Molecular Biology 2021, 22, 46–53. [Google Scholar]
  23. Shull. What is heterosis? Genetics 1914, 33, 439–446. [Google Scholar]
Table 6. Analysis of variance for combining ability for 16 characters in L x T mating design in wheat.
Table 6. Analysis of variance for combining ability for 16 characters in L x T mating design in wheat.
Characters d.f. Source of variation
LINE TESTER LINE X TESTER Error
14 2 28 218
Number of productive tiller (NPT) 3.83* 1.76 1.54 1.61
Biomass yield (BY) 2.31* 1.08 0.94 32.39
Harvest index (%) 6.22** 0.75 1.43 15.23
Grain yield/plant (GY/P) 11.53** 4.31* 5.43** 10.47
Grain weight/spike (GW/S) 1.16 1.21 0.93 0.17
1000-grain weight (g) (1000-GW) 1.25 5.33* 1.31 3.52
Spike length (cm) (SL), 2.41* 5.64* 2.89** 0.63
Number of grains/spike (NG/S) 4.03** 0.52 1.59 14.55
Flag leaf area (FLA) 180.45** 210.07** 79.13** 3.82
Plant height (cm) (PH) 2.85** 1.38 3.66** 63.97
Days to 50% heading (DH) 5.87** 0.58 5.92** 61.82
Days to maturity (DM) 7.85** 32.03** 7.95** 42.52
Chlorophyll content 4.04** 1.18 0.81 37.32
Protein content 1.46* 0.978* 3.94 0.37
Grain-filling period (GFP) 4.01 8.23** 1.67** 51.8
Number of spikelets/spike (NS/S) 3.55** 1.16 2.23* 0.84
“*” and “**” for 5% and 1% Level of Significance.
Table 7. Estimates of components of genetic variance for various yield contributing traits in wheat.
Table 7. Estimates of components of genetic variance for various yield contributing traits in wheat.
Traits
Variance components CLC PC NSS NPT NGS GWS TGW BY HI GYP
Female Variance (²fm) 4.45 0.0 0.04 0.13 1.31 0.00 0.0 1.63 2.70 2.35
Male Variance (²m) 0.10 0.0 0.0 0.00 0.0 0.00 0.1 0.03 0.0 0.0
Female x male Variance (²fmxm) 0.0 0.12 0.11 0.09 0.95 0.0 0.12 0.0 0.73 5.15
Genotype Variance (²g) 339.4 5.57 10.82 17.96 165.1 0.89 25.42 219.8 218.04 374.5
Additive Variance (²A) 10.57 0.0 0.08 0.32 2.88 0.00 0.15 3.87 6.18 5.35
Dominance Variance (²D) 0.0 0.49 0.46 0.39 3.82 0.0 0.49 0.0 2.93 20.63
Degree of dominance (²D/²A) 0.0 0.0 5.48 1.22 1.32 0.0 3.2 0.0 0.47 3.85
Narrow Heritability (h2) 0.45 0.0 0.10 0.25 0.24 0.06 0.08 0.26 0.43 0.18
Chlorophyll content (CLC), Protein content (PC), Number of spikelet/spike (NS/S), Number of productive tiller (NPT), Number of grain per spike (NGS), Grain weight/spike (GW/S), 1000-grain weight (g) (TGW), Biomass yield (BY), Harvest index (HI %) and Grain yield/plant (GY/P).3.2. Estimates of general and specific combining ability (GCA and SCA) effects.
Table 8. Estimates of general combining ability (GCA) effects of 15 lines of different characters for combined locations.
Table 8. Estimates of general combining ability (GCA) effects of 15 lines of different characters for combined locations.
GENOTYPES NPT RANK FLA RANK GFP RANK GYP RANK HI RANK NSS RANK SL RANK
BHU-25 (LINE1) -0.71 15 -0.02 8 2.27 2 -2.15 15 -3.02 15 -0.07 10 -0.19 12
WB-02 (LINE2) -0.42 14 -0.91 13 2.33 1 -1.09 14 -1.30 13 -0.07 11 -0.30 14
BHU-31 (LINE4) -0.10 12 -7.26 15 0.97 5 -1.06 13 -0.50 10 -0.14 14 0.08 7
HD-3721 (LINE5) -0.10 11 -0.35 10 2.12 4 -0.59 11 -1.69 14 -0.06 9 -0.27 13
PWB-725 (LINE1) -0.00 10 0.88 5 2.25 3 -0.59 10 -0.56 11 -0.18 15 -0.17 11
CRD GEHNU1 (LINE6) 0.18 4 -3.15 14 -0.85 11 -0.44 8 -0.19 8 -0.10 13 0.13 5
PBW-550 (LINE7) 0.12 7 0.14 7 -0.85 10 0.44 6 -0.18 7 -0.02 8 0.10 6
PBW-677 (LINE8) 0.16 5 1.03 4 -1.84 14 -0.65 12 0.57 5 0.08 4 -0.01 8
PBW-822 (LINE9) 0.32 1 0.30 6 -0.40 8 1.14 3 1.16 4 0.10 3 -0.03 9
HD-3117 (LINE10) 0.15 6 1.66 3 -1.60 13 -0.51 9 -0.58 12 -0.09 12 0.14 4
DBW-173 (LINE11) 0.27 2 -0.48 12 0.31 6 0.60 5 2.32 1 -0.01 7 -0.36 15
DH-3086 (LINE12) -0.24 13 -0.22 9 -0.27 7 1.96 1 -0.38 9 0.08 5 0.45 1
DBW-222 (LINE13) 0.26 3 -0.41 11 -2.23 15 1.09 4 0.49 6 0.19 2 0.27 2
CSW-18 (LINE14) 0.07 8 5.98 1 -0.81 9 0.39 7 2.05 2 0.06 6 -0.06 10
PBW-757 (LINE15) 0.01 9 2.83 2 -1.39 12 1.47 2 1.81 3 0.27 1 0.22 3
SE(gca for line) 0.25 0.31 0.35 0.56 1.02 0.25 0.21
SE(gi-gj) for line) 0.35 0.43 0.50 0.80 1.45 0.36 0.29
Estimates of general combining ability (GCA) effects of 3 testers of different characters for combined locations
PBW ZN1 (TESTER 1) 0.02 1 -0.10 2 0.27 2 0.53 1 0.00 2 0.06 1 -0.11 3
PBW-343 (TESTER 2) -0.00 2 1.56 1 -1.53 3 0.08 2 0.28 1 0.03 2 0.18 1
HD-3326 (TESTER 3) -0.01 3 -1.46 3 1.25 1 -0.61 3 -0.29 3 -0.09 3 -0.06 2
SE(gca for tester) 0.11 0.13 0.15 0.25 0.45 0.11 0.09
SE(gi-gj) for tester 0.15 0.19 0.22 0.35 0.64 0.16 0.13
SE(sij-skl) for tester 0.61 0.76 0.86 1.39 2.51 0.62 0.51
Estimates of specific combining ability (SCA) effects of 45 crosses of different characters for combined locations
BHU-25XPBW ZN1 -0.08 34 -5.45 38 1.60 3 -0.75 27 -1.04 45 -0.01 22 0.19 12
BHU-25XPBW-343 -0.26 42 1.90 17 -0.48 32 -2.50 42 0.21 12 -0.00 19 0.14 15
BHU-25XHD-3326 -0.16 39 3.49 11 0.85 14 -1.31 33 0.09 21 -0.17 35 -0.33 38
WB-02XPBW ZN1 -0.04 27 -5.60 40 -0.12 24 0.55 18 0.16 19 -0.01 21 -0.23 35
WB-02XPBW-343 -0.09 36 3.48 12 1.01 12 -1.06 30 0.03 24 0.06 17 -0.14 29
WB-02XHD-3326 -0.16 40 -0.00 24 1.14 7 -1.81 36 -0.51 40 -0.24 39 0.37 7
BHU-31XPBW ZN1 -0.1 37 -5.36 37 1.27 5 -1.26 32 -0.00 28 0.22 8 0.09 17
BHU-31XPBW-343 -0.02 24 -1.55 28 1.11 10 -2.54 43 -0.18 33 -0.21 37 -0.70 44
BHU-31XHD-3326 0.05 15 -9.88 45 -1.53 40 1.53 11 0.06 23 -0.37 45 0.61 2
HD-3721XPBW ZN1 0.08 12 4.22 8 1.71 1 -0.05 23 0.01 25 0.18 12 -0.38 41
HD-3721XPBW-343 -0.32 44 -5.19 36 0.06 21 -2.35 41 0.14 20 -0.28 41 0.07 18
HD-3721XHD-3326 0.17 5 0.14 23 0.06 22 1.133 12 -0.56 41 -0.07 26 0.30 10
PWB-725X PBW ZN1 -0.08 32 2.91 15 0.18 19 0.00 22 0.06 22 -0.33 44 -0.47 43
PWB-725X PBW-343 -0.01 23 1.92 16 1.09 11 -2.10 40 -0.66 43 0.18 11 0.15 14
PWB-725X HD-3326 0.09 11 -2.80 32 0.68 17 0.82 13 0.46 3 -0.32 43 0.32 9
CRDGEHNU1XPBWZN1 0.26 3 9.31 3 -0.22 25 0.68 16 -0.02 30 -0.04 23 0.77 1
CRDGEHNU1XPBW343 0.05 18 -8.39 44 -0.65 33 0.34 19 0.28 10 -0.15 32 0.18 13
CRDGEHNU1XHD-3326 -0.19 41 -8.22 43 0.14 20 -1.97 39 -0.30 37 -0.08 28 -0.95 45
PBW-550X PBW ZN1 -0.08 33 -4.24 33 0.76 15 0.73 14 0.33 9 0.07 16 -0.12 28
PBW-550X PBW-343 0.14 9 3.40 13 -1.46 39 -0.37 25 -0.31 38 -0.13 30 -0.21 34
PBW-550X HD-3326 0.03 20 1.16 21 -0.03 23 0.58 17 -0.05 31 -0.00 20 0.34 8
PBW-677XPBW ZN1 -0.06 30 -5.12 35 -0.40 30 -2.87 45 0.00 27 -0.28 42 -0.38 42
PBW-677XPBW-343 0.11 10 3.33 14 -2.32 45 2.81 5 0.43 5 0.58 1 0.39 6
PBW-677XPBW-343 0.07 13 4.19 9 1.12 9 -1.33 34 -0.29 35 -0.07 27 -0.00 25
PBW-822X PBW ZN1 0.16 6 -1.20 27 1.70 2 3.79 1 0.47 2 0.01 18 -0.15 31
PBW-822X PBW-343 0.06 14 7.39 4 -1.64 42 -1.05 29 -0.40 39 -0.06 25 0.50 5
PBW-822X HD-3326 0.00 22 -5.49 39 -0.39 29 -0.30 24 0.21 13 0.30 5 -0.35 39
HD-3117X PBW ZN1 0.15 7 10.74 1 -2.25 44 -0.75 28 -0.59 42 0.24 7 -0.07 26
HD-3117X PBW-343 0.00 21 0.15 22 -0.31 28 0.17 21 -0.00 29 -0.23 38 0.00 24
HD-3117X HD-3326 -0.04 28 -7.05 42 1.16 6 -0.50 26 0.46 4 -0.25 40 0.07 19
DBW-173X PBW ZN1 -0.07 31 -4.85 34 -0.87 36 -2.82 44 0.18 17 0.21 10 -0.33 37
DBW-173X PBW-343 0.31 2 -0.02 25 -0.45 31 1.68 10 0.19 14 -0.09 29 0.27 11
DBW-173X HD-3326 -0.03 26 3.75 10 1.60 4 2.42 8 0.17 18 -0.16 34 0.05 20
DH-3086X PBW ZN1 -0.03 25 -6.43 41 -0.28 27 3.15 3 0.01 26 -0.15 33 0.11 16
DH-3086X PBW-343 -0.29 43 1.45 20 0.94 13 2.95 4 0.67 1 0.11 15 -0.14 30
DH-3086X HD-3326 0.14 8 4.45 7 -0.89 37 -1.93 38 -0.77 44 0.25 6 0.02 23
DBW-222X PBW ZN1 0.49 1 -1.72 30 -0.83 35 3.40 2 0.18 16 0.21 9 0.53 4
DBW-222X PBW-343 0.05 17 1.74 18 0.704 16 0.69 15 0.23 11 0.40 2 -0.20 33
DBW-222X HD-3326 -0.36 45 -0.96 26 -1.81 43 -1.77 35 -0.30 36 -0.13 31 -0.32 36
CSW-18XPBW ZN1 -0.04 29 1.61 19 -0.24 26 0.24 20 0.39 6 -0.19 36 -0.09 27
CSW-18XPBW-343 0.05 16 6.07 6 -1.08 38 1.75 9 0.37 8 -0.05 24 0.05 21
CSW-18XHD-3326 0.05 19 6.15 5 0.61 18 -1.16 31 -0.27 34 0.40 4 0.03 22
PBW-757X PBW ZN1 0.23 4 10.25 2 -1.57 41 2.43 7 -0.14 32 0.40 3 0.54 3
PBW-757X PBW-343 -0.13 38 -1.67 29 1.12 8 2.58 6 0.19 15 0.13 14 -0.36 40
PBW-757X HD-3326 -0.09 35 -2.02 31 -0.76 34 -1.88 37 0.39 7 0.16 13 -0.17 32
SE (sca effect) 0.43 0.53 0.61 0.98 1.77 0.44 0.36
Note: Ranking is in ascending order (i.e. 1 is the best followed by 2 on and on). Number of productive tiller (NPT), Flag leaf area (FLA), Grain-filling period (GFP), Grain yield/plant (GY/P), Harvest index (HI %), Number of spikelet/spike (NS/S) and Spike length (cm) (SL).
Table 9. Estimates of general combining ability effects of 15 lines of different characters for combined locations.
Table 9. Estimates of general combining ability effects of 15 lines of different characters for combined locations.
GENOTYPES 1000GW RANK DM RANK GWS RANK PH RANK PC RANK CLC RANK BY RANK
BHU-25 (LINE1) 0.12 6 7.07 1 8.07 10 -2.23 14 -0.16 12 -4.46 15 -2.06 13
WB-02 (LINE2) 0.38 7 2.66 5 -0.13 14 3.49 3 0.13 6 0.68 6 0.06 8
BHU-31 (LINE4) 0.04 9 -1.77 9 -0.07 13 3.82 2 0.10 8 -2.34 14 2.77 2
HD-3721 (LINE5) -0.64 15 -4.37 15 0.08 2 4.60 1 0.10 7 0.48 7 1.97 4
PWB-725 (LINE1) 0.26 11 -2.03 11 0.18 1 -0.35 7 -0.14 1 2.06 4 3.77 1
CRD GEHNU1 (LINE6) 0.26 2 -2.70 12 0.02 6 1.75 4 -0.24 9 2.60 2 0.09 7
PBW-550 (LINE7) 0.58 12 -1.25 8 0.02 5 1.70 5 -0.18 13 -0.78 9 -0.41 10
PBW-677 (LINE8) 0.08 10 -0.40 7 0.02 7 0.02 6 0.07 10 -1.61 12 -1.40 12
PBW-822 (LINE9) -0.00 14 4.40 2 0.05 4 -1.48 11 0.05 4 -2.22 13 -4.40 15
HD-3117 (LINE10) -0.68 3 4.29 3 0.02 9 -0.58 8 0.07 2 -1.05 10 1.43 5
DBW-173 (LINE11) -0.12 8 3.37 4 -0.05 11 -1.35 10 0.22 5 -0.77 8 -1.39 11
DH-3086 (LINE12) 0.54 13 -0.03 6 -0.06 12 -1.08 9 0.02 3 4.76 1 -0.22 9
DBW-222 (LINE13) -0.14 5 -1.81 10 0.02 8 -4.89 15 -0.16 11 1.51 5 1.33 6
CSW-18 (LINE14) -0.06 4 -3.22 13 -0.14 15 -1.73 13 0.02 15 -1.08 11 -3.95 14
PBW-757 (LINE15) -0.64 1 -4.18 14 0.07 3 -1.69 12 0.10 14 2.23 3 2.38 3
SE(gca for line) 0.33 0.20 0.09 0.88 0.17 0.57 1.23
SE(gi-gj)for line) 0.46 0.28 0.13 1.24 0.25 0.81 1.74
Estimates of general combining ability effects of 3 testers of different characters for combined locations
PBW ZN1 (TESTER 1) -0.21 3 -0.03 2 0.04 1 0.55 1 -4.62 3 -0.58 3 0.40 1
PBW-343 (TESTER 2) 0.32 1 -3.15 3 -0.00 2 -0.92 3 4.13 1 0.55 1 -0.33 3
HD-3326 (TESTER 3) -0.10 2 3.19 1 -0.03 3 0.37 2 4.89 2 0.02 2 -0.06 2
SE(gca for tester) 0.14 0.09 0.04 0.39 0.07 0.25 0.55
SE(gi-gj)tester 0.20 0.12 0.06 0.55 0.11 0.36 0.77
SE(sij-skl)tester 0.80 0.49 0.23 2.16 0.43 1.41 3.01
Estimates of general combining ability effects of 45 crosses of different characters for combined locations
BHU-25XPBW ZN1 0.00 25 2.51 16 -0.16 43 1.06 19 0.04 14 1.30 7 -1.07 32
BHU-25XPBW-343 0.02 23 0.85 24 0.09 11 -0.92 29 -0.17 33 -1.03 33 -2.60 39
BHU-25XHD-3326 0.05 16 -3.37 33 0.07 13 -0.13 23 -0.21 36 -0.26 26 3.67 3
WB-02XPBW ZN1 -0.02 30 -3.66 34 -0.07 34 1.22 18 -0.03 22 0.52 14 3.98 2
WB-02XPBW-343 0.02 21 3.11 13 -0.08 35 -5.03 42 0.40 3 1.08 10 -3.00 42
WB-02XHD-3326 0.05 15 0.54 26 0.16 4 3.81 6 -0.21 38 -1.61 40 -0.98 31
BHU-31XPBW ZN1 0.07 12 1.62 21 0.00 25 6.65 3 -0.24 41 -1.69 41 2.42 6
BHU-31XPBW-343 -0.00 27 3.63 10 0.13 6 3.56 7 0.39 4 -1.45 35 -0.70 29
BHU-31XHD-3326 -0.06 33 -5.26 39 -0.13 39 -10.22 45 -0.05 23 3.14 3 -1.71 35
HD-3721XPBW ZN1 -0.16 41 -5.03 36 0.14 5 -2.26 33 0.30 7 0.31 19 -0.28 26
HD-3721XPBW-343 -0.16 42 3.52 11 -0.01 27 2.34 14 0.07 12 -0.13 24 -0.31 27
HD-3721XHD-3326 -0.13 39 1.51 22 -0.13 38 -0.07 22 -0.22 39 -0.17 25 0.59 19
PWB-725X PBW ZN1 0.03 19 -9.88 43 0.16 3 2.95 11 -0.06 24 -0.98 32 0.59 20
PWB-725X PBW-343 -0.10 37 8.00 2 -0.22 45 -6.13 44 0.74 1 0.22 21 -0.47 28
PWB-725X HD-3326 -0.01 28 1.88 20 0.05 15 3.17 10 -0.24 40 0.76 12 -0.11 25
CRDGEHNU1XPBWZN1 0.33 2 8.51 1 -0.06 32 0.70 20 -0.15 32 1.12 9 1.02 15
CRDGEHNU1XPBW343 0.13 7 -10.69 44 0.04 16 -0.33 24 0.00 18 0.45 18 1.96 7
CRDGEHNU1XHD-3326 -0.08 36 2.17 19 0.02 21 -0.36 25 0.19 10 -1.57 38 -2.98 41
PBW-550X PBW ZN1 -0.16 40 6.96 4 -0.07 33 1.66 15 -0.11 28 -1.75 42 -3.18 43
PBW-550X PBW-343 0.08 11 -10.80 45 0.03 17 -1.15 31 -0.02 20 -1.51 36 2.65 5
PBW-550X HD-3326 -0.01 29 3.84 9 0.03 18 -0.51 27 -0.19 35 3.26 1 0.52 21
PBW-677XPBW ZN1 0.02 22 -2.85 32 -0.04 31 1.52 16 -0.18 34 -1.97 44 -2.22 37
PBW-677XPBW-343 0.05 17 0.15 27 0.07 12 3.22 9 -0.24 42 1.14 8 -2.48 38
PBW-677XPBW-343 -0.11 38 2.69 15 -0.03 29 -4.75 39 0.47 2 0.83 11 4.71 1
PBW-822X PBW ZN1 -0.63 45 -1.44 30 0.00 23 -4.72 38 0.05 13 -0.50 28 1.49 9
PBW-822X PBW-343 0.04 18 -5.54 40 0.12 8 1.47 17 0.02 17 2.04 5 -1.94 36
PBW-822X HD-3326 0.14 5 6.99 3 -0.13 36 3.25 8 0.12 11 -1.53 37 0.45 22
HD-3117X PBW ZN1 0.33 1 -5.07 37.5 0.05 14 -0.46 26 0.21 9 -1.59 39 0.72 18
HD-3117X PBW-343 -0.02 31 5.48 5 -0.16 42 -4.62 37 -0.21 37 1.45 6 0.81 16
HD-3117X HD-3326 -0.04 32 -0.41 29 0.10 10 5.08 5 0.26 8 0.13 22 -1.53 34
DBW-173X PBW ZN1 0.10 8 -5.07 37.5 0.18 1 -5.00 41 -0.14 31 -0.83 30 -2.77 40
DBW-173X PBW-343 -0.00 26 2.82 14 -0.00 26 8.42 2 -0.01 19 0.57 13 1.43 11
DBW-173X HD-3326 -0.07 34 2.25 18 -0.17 44 -3.41 35 0.36 6 0.26 20 1.34 12
DH-3086X PBW ZN1 -0.30 44 0.74 25 -0.13 40 -4.03 36 0.36 5 0.50 16 0.28 23
DH-3086X PBW-343 0.06 13 -2.02 31 -0.02 28 -5.62 43 -0.12 29 0.45 17 1.15 14
DH-3086X HD-3326 -0.20 43 1.28 23 0.16 2 9.66 1 -0.02 21 -0.95 31 -1.43 33
DBW-222X PBW ZN1 -0.08 35 4.40 6 0.03 19 2.89 12 -0.24 43 3.19 2 -0.77 30
DBW-222X PBW-343 0.03 20 -4.36 35 0.11 9 -3.28 34 0.03 15 -2.70 45 0.73 17
DBW-222X HD-3326 0.22 3 -0.04 28 -0.15 41 0.39 21 -0.08 26 -0.48 27 0.03 24
CSW-18XPBW ZN1 0.06 14 3.96 8 0.00 24 -0.74 28 -0.26 44 -0.55 29 -3.21 44
CSW-18XPBW-343 0.09 10 3.52 12 -0.13 37 5.62 4 -0.07 25 0.51 15 1.48 10
CSW-18XHD-3326 0.02 24 -7.48 42 0.12 7 -4.87 40 -0.14 30 0.04 23 1.72 8
PBW-757X PBW ZN1 0.15 4 4.29 7 -0.03 30 -1.45 32 -0.08 27 2.93 4 2.99 4
PBW-757X PBW-343 0.10 9 2.30 17 0.02 20 2.46 13 -0.32 45 -1.09 34 1.29 13
PBW-757X HD-3326 0.14 6 -6.6 41 0.00 22 -1.01 30 0.03 16 -1.83 43 -4.29 45
SE (sca effect) 0.57 0.35 0.16 1.53 0.30 1.00 2.13
Note: Ranking is in ascending order (i.e. 1 is the best followed by 2 on and on). 1000-grain weight (g) (1000-GW), Days to maturity (DM), Grain weight/spike (GW/S), Plant height (cm) (PH), Protein content (PC), chlorophyll content (CLC) and Biomass yield (BY). .
Table 10. Estimation of heterosis over better parent and four standard varieties in wheat across three locations.
Table 10. Estimation of heterosis over better parent and four standard varieties in wheat across three locations.
Grain yield per plant
Location 1 Location 2 Location 3
SN Cross BP SV1 SV2 SV3 SV4 BP SV1 SV2 VS3 SV4 BP SV1 SV2 SV3 SV4
1 BHU-25XPBW ZN1 10.19 * 14.88 ** 13.41 ** -2.55 7.91 40.78 ** -6.72** 45.30 ** 42.94 ** 37.60 ** 10.94 ** 13.58 ** 14.35 ** -17.58 ** 8.53 **
2 BHU-25XPBW-343 8.36 8.86 7.47 -7.65 * 2.26 30.64 ** 16.15 ** 38.79 ** 36.53 ** 31.43 ** 1.77 7.13 ** 7.86 ** -22.26 ** 2.37
3 BHU-25XHD-3326 3.57 17.83 ** 16.33 ** -0.04 10.68 * 11.78 ** 8.39 ** 26.89 ** 24.83 ** 20.16 ** 8.75 ** 22.02 ** 22.85 ** -11.45 ** 16.59 **
4 WB-02XPBW ZN1 25.33 ** 30.67 ** 29.00 ** 10.85 ** 22.74 ** 31.66 ** 11.88 ** 35.89 ** 33.68 ** 28.69 ** 26.61 ** 29.62 ** 30.51 ** -5.93 ** 23.86 **
5 WB-02XPBW-343 11.64 * 12.16 ** 10.73 * -4.86 5.35 34.96 ** 11.47 ** 43.38 ** 41.05 ** 35.78 ** 17.92 ** 24.12 ** 24.97 ** -9.92 ** 18.61 **
6 WB-02XHD-3326 -8.09 * 4.57 3.23 -11.29 ** -1.78 18.75 ** 24.17 ** 34.80 ** 32.61 ** 27.66 ** 17.78 ** 32.15 ** 33.05 ** -4.10 * 26.27 **
7 BHU-31XPBW ZN1 20.48 ** 25.61 ** 24.01 ** 6.56 17.99 ** 22.41 ** 15.78 ** 26.34 ** 24.29 ** 19.64 ** 21.73 ** 24.63 ** 25.48 ** -9.56 ** 19.09 **
8 BHU-31XPBW-343 13.02 ** 16.84 ** 15.36 ** -0.88 9.76 * 19.58 ** 7.37 ** 27.04 ** 24.98 ** 20.31 ** 13.29 ** 19.25 ** 20.06 ** -13.46 ** 13.95 **
9 BHU-31XHD-3326 3 17.19 ** 15.70 ** -0.58 10.08 * 30.21 ** 28.56 ** 47.81 ** 45.41 ** 39.98 ** 27.38 ** 42.92 ** 43.89 ** 3.71 * 36.56 **
10 HD-3721XPBW ZN1 21.30 ** 26.46 ** 24.85 ** 7.28 18.78 ** 23.30 ** 5.26 ** 27.26 ** 25.19 ** 20.51 ** 36.75 ** 40.00 ** 40.96 ** 1.6 33.78 **
11 HD-3721XPBW-343 19.21 ** 19.76 ** 18.24 ** 1.6 12.50 ** 21.60 ** 26.65 ** 29.18 ** 27.08 ** 22.33 ** 14.30 ** 20.32 ** 21.14 ** -12.69 ** 14.97 **
12 HD-3721XHD-3326 18.94 ** 35.33 ** 33.60 ** 14.80 ** 27.12 ** 20.56 ** 13.28 ** 36.86 ** 34.64 ** 29.61 ** 19.81 ** 34.43 ** 35.35 ** -2.45 28.45 **
13 PWB-725X PBW ZN1 8.3 12.91 ** 11.47 * -4.22 6.06 37.73 ** 24.27 ** 42.15 ** 39.84 ** 34.62 ** 37.18 ** 40.44 ** 41.40 ** 1.92 34.20 **
14 PWB-725X PBW-343 16.96 ** 17.50 ** 16.01 ** -0.32 10.37 * 30.81 ** 17.84 ** 38.97 ** 36.71 ** 31.60 ** 10.24 ** 16.04 ** 16.84 ** -15.79 ** 10.89 **
15 PWB-725X HD-3326 15.52 ** 31.43 ** 29.75 ** 11.49 ** 23.45 ** 24.93 ** 20.86 ** 41.82 ** 39.51 ** 34.30 ** 16.23 ** 30.41 ** 31.30 ** -5.36 ** 24.61 **
16 CRDGEHNU1XPBWZN1 6.1 25.07 ** 23.48 ** 6.1 17.48 ** 50.49 ** 20.53 ** 55.33 ** 52.80 ** 47.09 ** -10.12 ** 23.85 ** 24.70 ** -10.12 ** 18.35 **
17 CRDGEHNU1XPBW343 7.16 26.32 ** 24.71 ** 7.16 18.65 ** 35.95 ** 21.81 ** 44.44 ** 42.09 ** 36.78 ** -6.14 ** 29.34 ** 30.22 ** -6.14 ** 23.59 **
18 CRDGEHNU1XHD-3326 -2 15.53 ** 14.05 ** -2 8.52 * 28.62 ** 14.64 ** 46.01 ** 43.64 ** 38.27 ** -17.27 ** 14.00 ** 14.78 ** -17.27 ** 8.94 **
19 PBW-550X PBW ZN1 19.74 ** 27.47 ** 25.85 ** 8.14 * 19.74 ** 21.55 ** 20.26 ** 28.36 ** 26.27 ** 21.55 ** 48.55 ** 55.46 ** 56.53 ** 12.82 ** 48.55 **
20 PBW-550X PBW-343 24.97 ** 33.04 ** 31.34 ** 12.86 ** 24.97 ** 26.49 ** 20.46 ** 34.38 ** 32.20 ** 27.26 ** 25.46 ** 32.07 ** 32.97 ** -4.16 * 26.20 **
21 PBW-550X HD-3326 19.84 ** 36.34 ** 34.61 ** 15.66 ** 28.07 ** 21.53 ** 21.52 ** 37.96 ** 35.72 ** 30.65 ** 20.82 ** 35.55 ** 36.48 ** -1.63 29.53 **
22 PBW-677XPBW ZN1 6.37 10.89 * 9.48 * -5.93 4.17 36.60 ** 23.24 ** 40.99 ** 38.70 ** 33.52 ** 9.53 ** 12.14 ** 12.91 ** -18.62 ** 7.15 **
23 PBW-677XPBW-343 33.49 ** 35.21 ** 33.49 ** 14.70 ** 27.01 ** 31.90 ** 21.17 ** 40.13 ** 37.86 ** 32.71 ** 41.50 ** 48.95 ** 49.97 ** 8.09 ** 42.33 **
24 PBW-677XPBW-343 6.01 20.61 ** 19.07 ** 2.32 13.29 ** 23.59 ** 18.86 ** 40.30 ** 38.02 ** 32.86 ** 6.28 ** 19.25 ** 20.06 ** -13.46 ** 13.95 **
25 PBW-822X PBW ZN1 51.51 ** 57.96 ** 55.95 ** 34.00 ** 48.38 ** 13.28 ** 25.93 ** 32.82 ** 30.67 ** 25.78 ** 37.14 ** 58.75 ** 59.83 ** 15.20 ** 51.69 **
26 PBW-822X PBW-343 24.53 ** 25.10 ** 23.51 ** 6.13 17.51 ** 23.80 ** 32.76 ** 45.16 ** 42.80 ** 37.47 ** 11.22 ** 28.74 ** 29.62 ** -6.58 ** 23.01 **
27 PBW-822X HD-3326 18.87 ** 35.24 ** 33.52 ** 14.73 ** 27.04 ** 16.64 ** 35.93 ** 36.77 ** 34.55 ** 29.52 ** 16.06 ** 34.34 ** 35.26 ** -2.51 28.37 **
28 HD-3117X PBW ZN1 14.71 ** 19.59 ** 18.07 ** 1.45 12.34 ** 28.35 ** 26.14 ** 48.37 ** 45.96 ** 40.51 ** 5.22 * 20.14 ** 20.96 ** -12.81 ** 14.80 **
29 HD-3117X PBW-343 22.28 ** 22.84 ** 21.28 ** 4.21 15.39 ** 33.16 ** 33.28 ** 53.93 ** 51.43 ** 45.77 ** 6.46 ** 21.55 ** 22.38 ** -11.79 ** 16.15 **
30 HD-3117X HD-3326 5.93 20.53 ** 18.99 ** 2.24 13.21 ** 30.99 ** 24.22 ** 51.42 ** 48.96 ** 43.40 ** 4.15 18.92 ** 19.73 ** -13.70 ** 13.63 **
31 DBW-173X PBW ZN1 18.97 ** 24.03 ** 22.45 ** 5.22 16.50 ** 23.71 ** 35.62 ** 27.68 ** 25.61 ** 20.92 ** 19.92 ** 22.77 ** 23.61 ** -10.90 ** 17.32 **
32 DBW-173X PBW-343 43.13 ** 43.79 ** 41.96 ** 21.98 ** 35.07 ** 18.26 ** 31.99 ** 25.63 ** 23.59 ** 18.97 ** 45.23 ** 52.87 ** 53.92 ** 10.94 ** 46.07 **
33 DBW-173X HD-3326 20.64 ** 37.26 ** 35.51 ** 16.44 ** 28.93 ** 18.81 ** 32.89 ** 34.87 ** 32.68 ** 27.72 ** 41.50 ** 58.75 ** 59.84 ** 15.21 ** 51.70 **
34 DH-3086X PBW ZN1 25.74 ** 31.09 ** 29.42 ** 11.21 ** 23.14 ** 57.79 ** 11.32 ** 62.86 ** 60.22 ** 54.23 ** 29.52 ** 58.22 ** 59.30 ** 14.82 ** 51.19 **
35 DH-3086X PBW-343 47.24 ** 47.92 ** 46.04 ** 25.49 ** 38.95 ** 41.72 ** 22.08 ** 50.57 ** 48.12 ** 42.58 ** 23.09 ** 50.36 ** 51.39 ** 9.12 ** 43.68 **
36 DH-3086X HD-3326 8.52 * 23.46 ** 21.89 ** 4.74 15.97 ** 33.50 ** 14.21 ** 51.54 ** 49.08 ** 43.51 ** 0.02 22.19 ** 23.03 ** -11.33 ** 16.76 **
37 DBW-222X PBW ZN1 17.21 ** 44.68 ** 42.83 ** 22.73 ** 35.90 ** 50.47 ** 33.65 ** 55.31 ** 52.78 ** 47.07 ** 11.52 ** 46.33 ** 47.34 ** 6.19 ** 39.83 **
38 DBW-222X PBW-343 12.27 ** 38.57 ** 36.81 ** 17.56 ** 30.17 ** 32.13 ** 24.51 ** 40.38 ** 38.10 ** 32.94 ** 5.00 * 37.78 ** 38.72 ** -0.01 31.65 **
39 DBW-222X HD-3326 -0.72 22.55 ** 20.99 ** 3.96 15.11 ** 31.73 ** 31.68 ** 49.54 ** 47.11 ** 41.61 ** -9.31 ** 19.01 ** 19.82 ** -13.64 ** 13.72 **
40 CSW-18XPBW ZN1 29.53 ** 35.04 ** 33.32 ** 14.56 ** 26.85 ** 32.31 ** 31.34 ** 36.56 ** 34.34 ** 29.32 ** 7.87 ** 34.14 ** 35.05 ** -2.66 28.17 **
41 CSW-18XPBW-343 37.75 ** 38.39 ** 36.62 ** 17.40 ** 29.99 ** 21.38 ** 33.69 ** 28.96 ** 26.86 ** 22.12 ** 23.92 ** 54.09 ** 55.15 ** 11.83 ** 47.24 **
42 CSW-18XHD-3326 10.53 ** 25.76 ** 24.16 ** 6.69 18.13 ** 26.70 ** 25.57 ** 43.84 ** 41.50 ** 36.21 ** -2.17 21.65 ** 22.48 ** -11.72 ** 16.24 **
43 PBW-757X PBW ZN1 38.73 ** 46.00 ** 44.14 ** 23.86 ** 37.15 ** 39.40 ** 22.21 ** 45.37 ** 43.00 ** 37.66 ** 42.54 ** 47.38 ** 48.39 ** 6.96 ** 40.83 **
44 PBW-757X PBW-343 27.01 ** 33.67 ** 31.97 ** 13.39 ** 25.56 ** 46.33 ** 29.90 ** 55.46 ** 52.93 ** 47.22 ** 44.53 ** 52.14 ** 53.18 ** 10.41 ** 45.38 **
45 PBW-757X HD-3326 15.69 ** 31.63 ** 29.95 ** 11.66 ** 23.64 ** 16.13 ** 31.47 ** 31.83 ** 29.69 ** 24.85 ** 14.68 ** 28.67 ** 29.55 ** -6.62 ** 22.95 **
“*” and “**” for 5% and 1% Level of Significance, BP stand for better parent and SV stand for standard variety, SV1=HD 2967, SV2= DBW 187, SV3= ORMAN and SV4= BORLAUG 100
Table 11. Estimation of heterosis over better parent and four standard varieties in wheat across three locations.
Table 11. Estimation of heterosis over better parent and four standard varieties in wheat across three locations.
Harvest index
Location 1 Location 2 Location 3
SN Crosses BP SV1 SV2 SV3 SV4 BP SV1 SV2 SV3 SV4 BP SV1 SV2 SV3 SV4
1 BHU-25XPBW ZN1 10.70 * 8.75 12.75 * 5.17 1.1 -3.34 34.70 ** -3.29 -2.25 -7.37** 11.70 ** 8.78 ** 10.37 ** 21.65 ** 5.70 **
2 BHU-25XPBW-343 8.47 6.57 10.49 * 3.06 -0.93 17.38 ** 38.36 ** 20.43 ** 21.72 ** 15.35 ** 16.14 ** 18.54 ** 20.27 ** 32.56 ** 15.19 **
3 BHU-25XHD-3326 -1.72 3.91 7.73 0.49 -3.41 11.65 ** 34.84 ** 12.39 ** 13.59 ** 7.64 ** 23.83 ** 25.54 ** 27.37 ** 40.40 ** 21.99 **
4 WB-02XPBW ZN1 9.99 * 12.41 * 16.53 ** 8.7 4.49 14.57 ** 33.36 ** 16.00 ** 17.24 ** 11.10 ** 39.58 ** 25.80 ** 27.64 ** 40.69 ** 22.25 **
5 WB-02XPBW-343 7.59 9.95 * 13.99 ** 6.33 2.21 12.65 ** 34.84 ** 15.58 ** 16.81 ** 10.70 ** 23.41 ** 25.96 ** 27.79 ** 40.86 ** 22.40 **
6 WB-02XHD-3326 -4.39 1.09 4.81 -2.24 -6.03 27.15 ** 47.95 ** 28.74 ** 30.12 ** 23.31 ** 9.76 ** 11.27 ** 12.89 ** 24.44 ** 8.12 **
7 BHU-31XPBW ZN1 6.77 11.06 * 15.14 ** 7.4 3.24 15.21 ** 53.31 ** 20.04 ** 21.32 ** 14.97 ** 27.78 ** 24.97 ** 26.80 ** 39.76 ** 21.44 **
8 BHU-31XPBW-343 9.78 * 14.19 ** 18.38 ** 10.42 * 6.15 6.84 ** 64.46 ** 11.32 ** 12.51 ** 6.62 ** 22.68 ** 25.21 ** 27.04 ** 40.03 ** 21.67 **
9 BHU-31XHD-3326 7.63 13.81 ** 17.99 ** 10.05 * 5.79 27.93 ** 55.08 ** 33.29 ** 34.72 ** 27.67 ** 10.53 ** 12.06 ** 13.69 ** 25.32 ** 8.89 **
10 HD-3721XPBW ZN1 9.94 * 13.06 ** 17.22 ** 9.33 5.1 13.08 ** 50.35 ** 9.13 ** 10.30 ** 4.53 * 32.04 ** 25.37 ** 27.20 ** 40.20 ** 21.83 **
11 HD-3721XPBW-343 4.24 7.2 11.14 * 3.67 -0.35 27.98 ** 35.47 ** 31.31 ** 32.72 ** 25.77 ** 12.61 ** 14.94 ** 16.62 ** 28.54 ** 11.69 **
12 HD-3721XHD-3326 12.39 ** 18.83 ** 23.19 ** 14.91 ** 10.46 * 16.68 ** 44.57 ** 17.45 ** 18.71 ** 12.50 ** -2.19 -0.84 0.6 10.89 ** -3.23
13 PWB-725X PBW ZN1 2.76 2.76 6.53 -0.63 -4.48 24.27 ** 55.99 ** 28.85 ** 30.22 ** 23.41 ** 27.01 ** 27.01 ** 28.87 ** 42.05 ** 23.43 **
14 PWB-725X PBW-343 11.02 * 11.02 * 15.10 ** 7.36 3.2 17.84 ** 65.02 ** 22.18 ** 23.49 ** 17.02 ** 5.84 ** 8.02 ** 9.60 ** 20.81 ** 4.97 *
15 PWB-725X HD-3326 13.03 ** 19.51 ** 23.90 ** 15.57 ** 11.09 * 20.86 ** 60.23 ** 25.31 ** 26.65 ** 20.02 ** 20.02 ** 21.67 ** 23.45 ** 36.07 ** 18.23 **
16 CRDGEHNU1XPBWZN1 8.23 11.92 * 16.03 ** 8.23 4.03 26.31 ** 92.60 ** 24.97 ** 26.31 ** 19.70 ** 34.47 ** 21.20 ** 22.97 ** 35.54 ** 17.78 **
17 CRDGEHNU1XPBW343 9.11 12.83 * 16.98 ** 9.11 4.89 23.10 ** 70.10 ** 26.30 ** 27.65 ** 20.97 ** 23.48 ** 26.03 ** 27.87 ** 40.95 ** 22.47 **
18 CRDGEHNU1XHD-3326 1.54 7.36 11.31 * 3.82 -0.2 18.08 ** 70.17 ** 18.86 ** 20.13 ** 13.84 ** 23.32 ** 25.01 ** 26.84 ** 39.81 ** 21.48 **
19 PBW-550X PBW ZN1 8.16 16.35 ** 20.63 ** 12.51 ** 8.16 19.43 ** 79.13 ** 24.69 ** 26.03 ** 19.43 ** 21.41 ** 24.94 ** 26.76 ** 39.72 ** 21.41 **
20 PBW-550X PBW-343 7.25 15.37 ** 19.61 ** 11.57 * 7.25 19.62 ** 57.97 ** 24.89 ** 26.23 ** 19.62 ** 8.12 ** 11.26 ** 12.89 ** 24.43 ** 8.12 **
21 PBW-550X HD-3326 8.75 16.99 ** 21.28 ** 13.13 ** 8.75 20.68 ** 48.31 ** 26.00 ** 27.35 ** 20.68 ** 11.19 ** 14.42 ** 16.10 ** 27.97 ** 11.19 **
22 PBW-677XPBW ZN1 13.14 ** 10.83 * 14.90 ** 7.18 3.03 27.78 ** 63.47 ** 27.78 ** 29.15 ** 22.39 ** 27.18 ** 25.35 ** 27.18 ** 40.18 ** 21.81 **
23 PBW-677XPBW-343 26.12 ** 21.65 ** 26.12 ** 17.64 ** 13.08 ** 22.45 ** 70.80 ** 25.63 ** 26.98 ** 20.33 ** 23.05 ** 25.59 ** 27.42 ** 40.45 ** 22.04 **
24 PBW-677XPBW-343 2.33 8.2 12.17 * 4.63 0.58 22.43 ** 69.96 ** 23.24 ** 24.56 ** 18.04 ** 23.57 ** 25.28 ** 27.11 ** 40.10 ** 21.74 **
25 PBW-822X PBW ZN1 24.27 ** 21.73 ** 26.20 ** 17.72 ** 13.16 ** 30.27 ** 61.99 ** 30.56 ** 31.96 ** 25.05 ** 36.57 ** 25.80 ** 27.63 ** 40.68 ** 22.24 **
26 PBW-822X PBW-343 21.39 ** 12.19 * 16.31 ** 8.49 4.29 34.16 ** 82.09 ** 37.65 ** 39.13 ** 31.84 ** 7.60 ** 9.81 ** 11.42 ** 22.81 ** 6.71 **
27 PBW-822X HD-3326 11.29 * 17.67 ** 21.99 ** 13.79 ** 9.38 * 40.01 ** 60.37 ** 40.94 ** 42.45 ** 34.99 ** 13.59 ** 15.15 ** 16.83 ** 28.78 ** 11.90 **
28 HD-3117X PBW ZN1 2.71 0.61 4.31 -2.71 -6.48 34.65 ** 89.63 ** 30.79 ** 32.19 ** 25.27 ** 24.67 ** 12.71 ** 14.36 ** 26.05 ** 9.53 **
29 HD-3117X PBW-343 13.25 ** 10.82 * 14.90 ** 7.17 3.02 34.68 ** 65.80 ** 38.19 ** 39.66 ** 32.35 ** 6.61 ** 8.80 ** 10.39 ** 21.68 ** 5.73 **
30 HD-3117X HD-3326 6.54 12.65 * 16.79 ** 8.94 4.72 27.95 ** 77.86 ** 28.79 ** 30.17 ** 23.35 ** 23.85 ** 25.55 ** 27.39 ** 40.41 ** 22.01 **
31 DBW-173X PBW ZN1 13.89 ** 14.43 ** 18.63 ** 10.66 * 6.37 40.94 ** 60.93 ** 40.61 ** 42.12 ** 34.68 ** 33.02 ** 25.39 ** 27.23 ** 40.24 ** 21.85 **
32 DBW-173X PBW-343 17.13 ** 17.68 ** 22.01 ** 13.80 ** 9.40 * 33.38 ** 71.51 ** 36.85 ** 38.31 ** 31.07 ** 23.01 ** 25.55 ** 27.38 ** 40.41 ** 22.00 **
33 DBW-173X HD-3326 10.64 * 16.98 ** 21.28 ** 13.12 ** 8.74 36.88 ** 58.53 ** 37.79 ** 39.26 ** 31.97 ** 23.36 ** 25.06 ** 26.89 ** 39.86 ** 21.53 **
34 DH-3086X PBW ZN1 14.14 ** 15.33 ** 19.57 ** 11.53 * 7.21 15.71 ** 60.08 ** 15.42 ** 16.65 ** 10.55 ** 35.58 ** 25.64 ** 27.47 ** 40.51 ** 22.09 **
35 DH-3086X PBW-343 19.14 ** 20.38 ** 24.81 ** 16.41 ** 11.91 * 23.37 ** -2.89 26.58 ** 27.93 ** 21.24 ** 22.83 ** 25.37 ** 27.20 ** 40.20 ** 21.83 **
36 DH-3086X HD-3326 3.39 9.32 13.33 * 5.71 1.62 17.64 ** 76.94 ** 18.42 ** 19.68 ** 13.42 ** 10.16 ** 11.68 ** 13.31 ** 24.89 ** 8.52 **
37 DBW-222X PBW ZN1 11.71 * 18.15 ** 22.49 ** 14.26 ** 9.83 * 38.08 ** 98.31 ** 38.57 ** 40.05 ** 32.72 ** 14.64 ** 12.01 ** 13.64 ** 25.27 ** 8.84 **
38 DBW-222X PBW-343 11.67 * 18.11 ** 22.44 ** 14.21 ** 9.79 * 25.82 ** 51.06 ** 29.09 ** 30.47 ** 23.64 ** 18.89 ** 21.35 ** 23.12 ** 35.71 ** 17.92 **
39 DBW-222X HD-3326 -1.23 4.46 8.3 1.02 -2.9 35.64 ** 41.04 ** 36.53 ** 37.99 ** 30.77 ** 15.34 ** 16.93 ** 18.64 ** 30.77 ** 13.63 **
40 CSW-18XPBW ZN1 23.86 ** 21.33 ** 25.78 ** 17.33 ** 12.78 ** 43.41 ** 46.05 ** 36.17 ** 37.63 ** 30.43 ** 37.24 ** 25.17 ** 26.99 ** 39.98 ** 21.63 **
41 CSW-18XPBW-343 26.90 ** 18.05 ** 22.38 ** 14.15 ** 9.73 * 35.10 ** 64.53 ** 38.62 ** 40.10 ** 32.76 ** 23.42 ** 25.97 ** 27.81 ** 40.88 ** 22.41 **
42 CSW-18XHD-3326 5.37 11.41 * 15.51 ** 7.74 3.57 29.34 ** 60.65 ** 30.19 ** 31.58 ** 24.70 ** 23.82 ** 25.53 ** 27.36 ** 40.38 ** 21.98 **
43 PBW-757X PBW ZN1 11.00 * 15.32 ** 19.56 ** 11.52 * 7.2 26.35 ** 68.19 ** 26.71 ** 28.07 ** 21.37 ** 24.70 ** 26.00 ** 27.84 ** 40.92 ** 22.44 **
44 PBW-757X PBW-343 11.62 * 15.96 ** 20.22 ** 12.14 * 7.8 31.27 ** 71.79 ** 34.69 ** 36.13 ** 29.00 ** 23.39 ** 25.93 ** 27.77 ** 40.84 ** 22.38 **
45 PBW-757X HD-3326 12.47 ** 18.92 ** 23.28 ** 15.00 ** 10.54 * 35.42 ** 57.19 ** 36.32 ** 37.77 ** 30.56 ** 24.17 ** 25.88 ** 27.72 ** 40.78 ** 22.32 **
“*” and “**” for 5% and 1% Level of Significance, BP stand for better parent and SV stand for standard variety, SV1=HD 2967, SV2= DBW 187, SV3= NORMAN and SV4= BORLAUG 100
Table 12. Estimation of heterosis over better parent and four standard varieties in wheat across three locations .
Table 12. Estimation of heterosis over better parent and four standard varieties in wheat across three locations .
Number of spikelet per spike
Location 1 Location 2 Location 3
SN Cross BP SV1 SV2 SV3 SV4 BP SV1 SV2 VS3 SV4 BP SV1 SV2 SV3 SV4
1 BHU-25XPBW ZN1 6.18 * 5.31 * 4.95 * 5.99 * 3.73 12.00 * 13.76 * 7.02 15.44 * 21.47 ** 11.23 ** 12.98 ** 1.78 -12.91 ** 20.63 **
2 BHU-25XPBW-343 4.88 5.62 * 5.25 * 6.30 * 4.03 -17.04 ** 3.13 -2.99 4.65 10.12 -4.68 * 26.64 ** 14.08 ** -2.38 35.22 **
3 BHU-25XHD-3326 -0.13 2.79 2.43 3.45 1.24 11.31 0.61 -5.35 2.1 7.43 33.53 ** 24.12 ** 11.82 ** -4.32 * 32.53 **
4 WB-02XPBW ZN1 3.01 2.16 1.81 2.82 0.63 5.44 7.1 0.75 8.68 14.36 * 30.06 ** 32.11 ** 19.01 ** 1.84 41.06 **
5 WB-02XPBW-343 2.89 3.62 3.26 4.29 2.06 -9.88 * 12.03 5.39 13.69 * 19.62 ** 0.84 33.97 ** 20.69 ** 3.27 43.05 **
6 WB-02XHD-3326 -2.35 0.51 0.17 1.16 -1 16.55 * 12.93 * 6.24 14.60 * 20.58 ** 29.58 ** 28.60 ** 15.86 ** -0.86 37.32 **
7 BHU-31XPBW ZN1 3.99 3.14 2.78 3.8 1.59 -14.72 * -9.18 -14.57 * -7.84 -3.03 19.44 ** 30.00 ** 17.11 ** 0.21 38.81 **
8 BHU-31XPBW-343 0.25 0.96 0.61 1.61 -0.56 -23.97 ** -5.49 -11.09 -4.1 0.91 0.63 33.69 ** 20.44 ** 3.06 42.75 **
9 BHU-31XHD-3326 -4 -1.19 -1.53 -0.56 -2.68 8.16 15.18 * 8.35 16.88 ** 22.99 ** 25.98 ** 37.12 ** 23.53 ** 5.70 ** 46.41 **
10 HD-3721XPBW ZN1 7.66 ** 7.85 ** 7.48 ** 8.55 ** 6.23 * -0.9 0.66 -5.31 2.15 7.48 45.39 ** 47.68 ** 33.04 ** 13.84 ** 57.69 **
11 HD-3721XPBW-343 -1.86 -1.17 -1.51 -0.53 -2.65 -10.63 * 11.1 4.51 12.74 * 18.63 ** 1.32 34.61 ** 21.26 ** 3.76 43.73 **
12 HD-3721XHD-3326 0.77 3.72 3.36 4.38 2.16 19.00 * 0.85 -5.13 2.34 7.68 59.07 ** 47.86 ** 33.21 ** 13.98 ** 57.89 **
13 PWB-725X PBW ZN1 -1.73 -1.73 -2.07 -1.1 -3.21 0.19 1.77 -4.26 3.28 8.67 41.08 ** 43.30 ** 29.10 ** 10.47 ** 53.02 **
14 PWB-725X PBW-343 4.93 * 5.67 * 5.31 * 6.35 * 4.09 2.51 27.43 ** 19.87 ** 29.31 ** 36.06 ** -3.49 28.21 ** 15.50 ** -1.17 36.90 **
15 PWB-725X HD-3326 -1.85 1.03 0.68 1.68 -0.49 3.9 3.9 -2.26 5.44 10.94 50.92 ** 50.92 ** 35.96 ** 16.34 ** 61.15 **
16 CRDGEHNU1XPBWZN1 2.15 1.5 1.15 2.15 -0.03 43.05 ** 45.30 ** 36.69 ** 47.45 ** 55.15 ** 12.01 ** 45.30 ** 30.90 ** 12.01 ** 55.15 **
17 CRDGEHNU1XPBW343 2.42 3.15 2.79 3.81 1.6 13.24 ** 40.77 ** 32.43 ** 42.85 ** 50.31 ** 17.17 ** 55.66 ** 40.23 ** 20.00 ** 66.21 **
18 CRDGEHNU1XHD-3326 -2.02 0.85 0.5 1.49 -0.67 33.21 ** 31.27 ** 23.49 ** 33.21 ** 40.16 ** 12.67 ** 46.16 ** 31.67 ** 12.67 ** 56.06 **
19 PBW-550X PBW ZN1 2.08 3.63 3.28 4.3 2.08 1.45 3.05 -3.06 4.57 10.03 32.31 ** 34.39 ** 21.07 ** 3.6 43.50 **
20 PBW-550X PBW-343 0.05 1.58 1.23 2.23 0.05 0.61 25.06 ** 17.65 ** 26.91 ** 33.54 ** -5.86 ** 25.06 ** 12.67 ** -3.59 33.54 **
21 PBW-550X HD-3326 2.61 5.62 * 5.25 * 6.30 * 4.03 48.62 ** 39.19 ** 30.94 ** 41.25 ** 48.62 ** 48.62 ** 39.19 ** 25.39 ** 7.30 ** 48.62 **
22 PBW-677XPBW ZN1 -1.33 -0.99 -1.33 -0.35 -2.47 -19.85 ** -14.80 * -19.85 ** -13.54 * -9.03 33.23 ** 47.89 ** 33.23 ** 14.00 ** 57.91 **
23 PBW-677XPBW-343 8.82 ** 9.59 ** 9.21 ** 10.29 ** 7.94 ** 1.87 26.64 ** 19.13 ** 28.51 ** 35.22 ** -4.68 * 26.64 ** 14.08 ** -2.38 35.22 **
24 PBW-677XPBW-343 -1.99 0.87 0.53 1.52 -0.64 -1.61 4.58 -1.61 6.13 11.67 36.58 ** 51.60 ** 36.58 ** 16.87 ** 61.88 **
25 PBW-822X PBW ZN1 6.73 ** 5.85 * 5.49 * 6.53 * 4.26 6.97 8.65 2.21 10.26 16.02 * 30.11 ** 32.16 ** 19.06 ** 1.88 41.12 **
26 PBW-822X PBW-343 3.28 4.01 3.65 4.68 2.45 7.55 33.70 ** 25.77 ** 35.67 ** 42.76 ** 13.61 ** 50.94 ** 35.98 ** 16.35 ** 61.17 **
27 PBW-822X HD-3326 6.01 * 9.11 ** 8.74 ** 9.82 ** 7.47 ** 29.47 ** 23.63 ** 16.30 ** 25.46 ** 32.01 ** 29.47 ** 23.63 ** 11.37 ** -4.70 * 32.01 **
28 HD-3117X PBW ZN1 7.94 ** 7.34 ** 6.97 ** 8.03 ** 5.73 * 23.12 ** 25.06 ** 17.65 ** 26.91 ** 33.54 ** 23.12 ** 25.06 ** 12.67 ** -3.59 33.54 **
29 HD-3117X PBW-343 0.94 1.65 1.3 2.3 0.12 7.58 33.74 ** 25.81 ** 35.71 ** 42.80 ** 4.80 * 39.22 ** 25.42 ** 7.32 ** 48.66 **
30 HD-3117X HD-3326 -2.64 0.21 -0.14 0.85 -1.3 12.41 8.15 1.74 9.75 15.48 * 62.71 ** 51.25 ** 36.26 ** 16.59 ** 61.50 **
31 DBW-173X PBW ZN1 2.46 5.84 * 5.47 * 6.52 * 4.25 -9.98 -8.56 -13.98 * -7.2 -2.36 36.31 ** 38.46 ** 24.74 ** 6.74 ** 47.85 **
32 DBW-173X PBW-343 -4.89 * -1.75 -2.09 -1.12 -3.22 -24.55 ** -6.21 -11.77 * -4.82 0.15 6.58 ** 41.60 ** 27.56 ** 9.15 ** 51.19 **
33 DBW-173X HD-3326 0.27 3.58 3.22 4.24 2.02 14.63 * 0.78 -5.2 2.27 7.61 44.66 ** 34.47 ** 21.14 ** 3.66 43.59 **
34 DH-3086X PBW ZN1 -3.61 -0.29 -0.64 0.35 -1.79 9.68 11.41 4.81 13.06 * 18.96 ** 45.94 ** 48.24 ** 33.55 ** 14.27 ** 58.29 **
35 DH-3086X PBW-343 0.43 3.88 3.53 4.55 2.32 -6.37 16.39 ** 9.49 18.11 ** 24.27 ** 1.76 35.19 ** 21.79 ** 4.22 * 44.36 **
36 DH-3086X HD-3326 2.41 5.94 * 5.57 * 6.62 ** 4.35 36.69 ** 9.92 3.41 11.55 17.37 ** 51.87 ** 42.83 ** 28.68 ** 10.11 ** 52.51 **
37 DBW-222X PBW ZN1 7.33 ** 7.84 ** 7.47 ** 8.53 ** 6.22 * 21.64 ** 37.68 ** 29.52 ** 39.71 ** 47.01 ** 5.53 ** 38.46 ** 24.74 ** 6.74 ** 47.85 **
38 DBW-222X PBW-343 8.11 ** 8.88 ** 8.50 ** 9.58 ** 7.24 ** 3.03 28.07 ** 20.48 ** 29.96 ** 36.75 ** -3.6 28.07 ** 15.38 ** -1.27 36.75 **
39 DBW-222X HD-3326 -0.26 2.66 2.31 3.32 1.12 18.26 ** 33.85 ** 25.92 ** 35.83 ** 42.93 ** 2.02 33.85 ** 20.59 ** 3.18 42.93 **
40 CSW-18XPBW ZN1 -0.19 -0.5 -0.84 0.14 -2 12.64 * 18.57 ** 11.54 * 20.33 ** 26.61 ** 29.92 ** 42.86 ** 28.70 ** 10.13 ** 52.55 **
41 CSW-18XPBW-343 3.03 3.76 3.4 4.43 2.2 6.54 32.44 ** 24.59 ** 34.40 ** 41.42 ** -0.31 32.44 ** 19.32 ** 2.1 41.42 **
42 CSW-18XHD-3326 5.42 * 8.50 ** 8.13 ** 9.20 ** 6.87 ** 24.43 ** 30.99 ** 23.22 ** 32.92 ** 39.86 ** 19.11 ** 30.99 ** 18.00 ** 0.97 39.86 **
43 PBW-757X PBW ZN1 11.68 ** 10.77 ** 10.38 ** 11.48 ** 9.10 ** 10.92 * 24.33 ** 16.96 ** 26.17 ** 32.76 ** 7.17 ** 24.33 ** 12.01 ** -4.16 * 32.76 **
44 PBW-757X PBW-343 5.39 * 6.13 * 5.77 * 6.81 ** 4.54 -18.66 ** 1.11 -4.88 2.61 7.97 5.60 ** 40.29 ** 26.39 ** 8.15 ** 49.80 **
45 PBW-757X HD-3326 4.15 7.20 ** 6.83 ** 7.89 ** 5.59 * -7.6 3.57 -2.57 5.11 10.59 16.30 ** 34.92 ** 21.55 ** 4.01 44.06 **
“*” and “**” for 5% and 1% Level of Significance, BP stand for better parent and SV stand for standard variety, SV1=HD 2967, SV2= DBW 187, SV3= NORMAN and SV4= BORLAUG 100
Table 13. Estimation of heterosis over better parent and four standard varieties in wheat across three locations.
Table 13. Estimation of heterosis over better parent and four standard varieties in wheat across three locations.
Chlorophyll content
Location 1 Location 2 Location 3
SN Crosses BP SV1 SV2 SV3 SV4 BP SV1 SV2 SV3 SV4 BP SV1 SV2 SV3 SV4
1 BHU-25XPBW ZN1 5.53 10.64 ** 12.10 ** 5.05 9.15 ** 15.52 ** 12.10 ** 6.32 ** 6.57 ** 11.27 ** 4.65 ** -0.74 ** -0.74 ** -0.74 ** -0.98 **
2 BHU-25XPBW-343 -0.47 0.61 1.94 -4.47 -0.74 10.43 ** 7.16 ** 1.64 1.88 6.37 ** 4.39 ** -0.98 ** -0.98 ** -0.98 ** -1.22 **
3 BHU-25XHD-3326 -0.64 6.48 * 7.88 * 1.1 5.05 2.8 8.64 ** 3.04 * 3.29 * 7.84 ** 3.10 ** -2.21 ** -2.21 ** -2.21 ** -2.44 **
4 WB-02XPBW ZN1 7.29 * 12.49 ** 13.96 ** 6.80 * 10.97 ** 2.9 5.19 ** -0.23 0.0 4.41 ** -0.25 -1.72 ** -1.72 ** -1.72 ** -1.96 **
5 WB-02XPBW-343 15.79 ** 17.06 ** 18.60 ** 11.14 ** 15.48 ** -1.93 0.25 -4.92 ** -4.69 ** -0.49 -1.24 ** -2.70 ** -2.70 ** -2.70 ** -2.93 **
6 WB-02XHD-3326 -5.67 1.09 2.42 -4.02 -0.27 5.14 ** 11.11 ** 5.39 ** 5.63 ** 10.29 ** -4.48 ** -5.88 ** -5.88 ** -5.88 ** -6.11 **
7 BHU-31XPBW ZN1 6.05 * 11.19 ** 12.65 ** 5.57 9.69 ** 8.21 ** 7.41 ** 1.87 2.11 6.62 ** 0.25 0.00 -5.04** 0.00 -0.24
8 BHU-31XPBW-343 10.30 ** 13.24 ** 14.72 ** 7.51 * 11.71 ** 1.74 0.99 -4.22 ** -3.99 ** 0.25 -0.25 -0.49 -0.49 -0.49 -0.73 **
9 BHU-31XHD-3326 9.42 ** 17.26 ** 18.80 ** 11.34 ** 15.68 ** 3.04 * 8.89 ** 3.28 * 3.52 * 8.09 ** -1.97 ** -2.21 ** -2.21 ** -2.21 ** -2.44 **
10 HD-3721XPBW ZN1 1.76 6.69 * 8.09 * 1.3 5.25 3.95 ** 10.37 ** 4.68 ** 4.93 ** 9.56 ** 1.49 ** 0.0 0.0 0.0 -0.24
11 HD-3721XPBW-343 12.01 ** 13.24 ** 14.72 ** 7.51 * 11.71 ** 3.95 ** 10.37 ** 4.68 ** 4.93 ** 9.56 ** -2.99 ** -4.41 ** -4.41 ** -4.41 ** -4.65 **
12 HD-3721XHD-3326 -0.06 7.10 * 8.50 ** 1.68 5.65 4.42 ** 10.86 ** 5.15 ** 5.40 ** 10.05 ** 0.0 -1.47 ** -1.47 ** -1.47 ** -1.71 **
13 PWB-725X PBW ZN1 -1.5 3.28 4.63 -1.94 1.88 -2.96 -2.96 -7.96 ** -7.75 ** -3.68 * -7.11 ** -7.11 ** -7.11 ** -7.11 ** -7.33 **
14 PWB-725X PBW-343 7.36 * 8.53 ** 9.95 ** 3.04 7.07 * 11.11 ** 11.11 ** 5.39 ** 5.63 ** 10.29 ** -2.21 ** -2.21 ** -2.21 ** -2.21 ** -2.44 **
15 PWB-725X HD-3326 1.97 9.28 ** 10.71 ** 3.76 7.81 * 2.57 8.40 ** 2.81 3.05 * 7.60 ** 0.00 -1.12** 0.37 -2.04** -0.24
16 CRDGEHNU1XPBWZN1 4.99 10.58 ** 12.03 ** 4.99 9.09 ** 5.16 ** 10.62 ** 4.92 ** 5.16 ** 9.80 ** -1.47 ** -1.47 ** -1.47 ** -1.47 ** -1.71 **
17 CRDGEHNU1XPBW343 2.92 8.39 ** 9.82 ** 2.92 6.93 * -11.03 ** -6.42 ** -11.24 ** -11.03 ** -7.11 ** -12.50 ** -12.50 ** -12.50 ** -12.50 ** -12.71 **
18 CRDGEHNU1XHD-3326 1.97 9.28 ** 10.71 ** 3.76 7.81 * -3.04 * 2.47 -2.81 -2.58 1.72 0.01 0.00 0.07 0.02 -0.24
19 PBW-550X PBW ZN1 13.73 ** 19.24 ** 20.81 ** 13.22 ** 17.64 ** 0.0 0.74 -4.45 ** -4.23 ** 0.02 0.00 0.25 0.25 0.25 0.00
20 PBW-550X PBW-343 15.15 ** 16.72 ** 18.25 ** 10.82 ** 15.15 ** -8.82 ** -8.15 ** -12.88 ** -12.68 ** -8.82 ** -14.18 ** -13.97 ** -13.97 ** -13.97 ** -14.18 **
21 PBW-550X HD-3326 10.31 ** 18.22 ** 19.77 ** 12.24 ** 16.63 ** 1.64 7.41 ** 1.87 2.11 6.62 ** -0.49 0.25 -0.25 -0.25 -0.49
22 PBW-677XPBW ZN1 0.85 5.73 7.12 * 0.39 4.31 -6.79 ** -1.73 -6.79 ** -6.57 ** -2.45 -6.86 ** -6.86 ** -6.86 ** -6.86 ** -7.09 **
23 PBW-677XPBW-343 13.09 ** 14.33 ** 15.83 ** 8.55 ** 12.79 ** -6.56 ** -1.48 -6.56 ** -6.34 ** -2.21 -7.84 ** -7.84 ** -7.84 ** -7.84 ** -8.07 **
24 PBW-677XPBW-343 -0.45 6.69 * 8.09 * 1.3 5.25 0.93 6.67 ** 1.17 1.41 5.88 ** -4.41 ** -4.41 ** -4.41 ** -4.41 ** -4.65 **
25 PBW-822X PBW ZN1 22.52 ** 28.45 ** 30.14 ** 21.96 ** 26.72 ** -8.02 ** -3.70 * -8.67 ** -8.45 ** -4.41 ** -2.24 ** -3.68 ** -3.68 ** -3.68 ** -3.91 **
26 PBW-822X PBW-343 11.74 ** 12.96 ** 14.45 ** 7.26 * 11.44 ** -11.32 ** -7.16 ** -11.94 ** -11.74 ** -7.84 ** -11.94 ** -13.24 ** -13.24 ** -13.24 ** -13.45 **
27 PBW-822X HD-3326 12.22 ** 20.26 ** 21.84 ** 14.19 ** 18.65 ** 1.64 7.41 ** 1.87 2.11 6.62 ** 1.49 ** 1.23** 0.00 0.00 -0.24
28 HD-3117X PBW ZN1 -0.65 4.16 5.53 -1.1 2.76 -5.11 ** -3.70 * -8.67 ** -8.45 ** -4.41 ** 6.25 ** 2.03** 3.54** 6.06** -0.24
29 HD-3117X PBW-343 8.84 ** 10.03 ** 11.48 ** 4.47 8.55 ** 5.11 ** 6.67 ** 1.17 1.41 5.88 ** 6.25 ** 1.34 0.09 2.50** -0.24
30 HD-3117X HD-3326 3.06 10.44 ** 11.89 ** 4.86 8.95 ** 1.64 7.41 ** 1.87 2.11 6.62 ** 5.70 ** 0.86 0.76 0.90** -0.24
31 DBW-173X PBW ZN1 2.8 7.78 * 9.19 ** 2.33 6.33 * 1.58 -4.94 ** -9.84 ** -9.62 ** -5.64 ** 11.48 ** 0.02 0.21 1.56** -0.24
32 DBW-173X PBW-343 17.41 ** 18.70 ** 20.25 ** 12.70 ** 17.10 ** 6.91 ** -0.74 -5.85 ** -5.63 ** -1.47 10.00 ** -0.25 -0.25 -0.25 -0.49
33 DBW-173X HD-3326 6.05 * 13.65 ** 15.14 ** 7.90 ** 12.12 ** 3.74 * 9.63 ** 3.98 ** 4.23 ** 8.82 ** -5.96 ** -11.03 ** -11.03 ** -11.03 ** -11.25 **
34 DH-3086X PBW ZN1 2.54 7.51 * 8.92 ** 2.07 6.06 * -7.04 ** -2.22 -7.26 ** -7.04 ** -2.94 3.91 ** -2.21 ** -2.21 ** -2.21 ** -2.44 **
35 DH-3086X PBW-343 19.91 ** 21.22 ** 22.81 ** 15.09 ** 19.59 ** -9.62 ** -4.94 ** -9.84 ** -9.62 ** -5.64 ** -1.56 ** -7.35 ** -7.35 ** -7.35 ** -7.58 **
36 DH-3086X HD-3326 1.08 8.32 ** 9.75 ** 2.85 6.87 * -4.67 ** 0.74 -4.45 ** -4.23 ** 0.00 5.96 ** 0.25 0.25 0.25 0.00
37 DBW-222X PBW ZN1 13.80 ** 19.31 ** 20.88 ** 13.28 ** 17.70 ** 1.67 5.19 ** -0.23 0.0 4.41 ** -2.92 ** -2.21 ** -2.21 ** -2.21 ** -2.44**
38 DBW-222X PBW-343 4.03 7.51 * 8.92 ** 2.07 6.06 * -8.11 ** -4.94 ** -9.84 ** -9.62 ** -5.64 ** -8.03 ** -7.35 ** -7.35 ** -7.35 ** -7.58**
39 DBW-222X HD-3326 0.64 7.85 * 9.26 ** 2.4 6.39 * -1.87 3.70 * -1.64 -1.41 2.94 -4.14 ** -3.43 ** -3.43 ** -3.43 ** -3.67**
40 CSW-18XPBW ZN1 7.22 * 12.42 ** 13.89 ** 6.74 * 10.90 ** 0.24 4.44 ** -0.94 -0.7 3.68 * -2.71 ** -3.19 ** -3.19 ** -3.19 ** -3.42**
41 CSW-18XPBW-343 21.67 ** 22.99 ** 24.61 ** 16.78 ** 21.34 ** -0.47 3.70 * -1.64 -1.41 2.94 -10.59 ** -11.03 ** -11.03 ** -11.03 ** -11.25**
42 CSW-18XHD-3326 11.40 ** 19.38 ** 20.95 ** 13.35 ** 17.77 ** -7.48 ** -2.22 -7.26 ** -7.04 ** -2.94 -1.72 ** -2.21 ** -2.21 ** -2.21 ** -2.44**
43 PBW-757X PBW ZN1 18.42 ** 24.15 ** 25.78 ** 17.88 ** 22.48 ** 10.65 ** 5.19 ** -0.23 0.00 4.41 ** -2.21 ** -2.21 ** -2.21 ** -2.21 ** -2.44**
44 PBW-757X PBW-343 11.54 ** 12.76 ** 14.24 ** 7.06 * 11.24 ** 9.87 ** 4.44 ** -0.94 -0.7 3.68 * -10.54 ** -10.54 ** -10.54 ** -10.54 ** -10.76**
45 PBW-757X HD-3326 0.32 7.51 * 8.92 ** 2.07 6.06 * -5.37 ** 0.00 -5.15 ** -4.93 ** -0.74 0.00 - 1.07** 0.00 -2.05** -0.24
“*” and “**” for 5% and 1% Level of Significance, BP stand for better parent and SV stand for standard variety, SV1=HD 2967, SV2= DBW 187, SV3= NORMAN and SV4= BORLAUG 100
Table 14. Estimation of heterosis over better parent and four standard varieties in wheat across three locations.
Table 14. Estimation of heterosis over better parent and four standard varieties in wheat across three locations.
Number of grain per spike
Location 1 Location 2 Location 3
SN Crosses BP SV1 SV2 SV3 SV4 BP SV1 SV2 SV3 SV4 BP SV1 SV2 SV3 SV4
1 BHU-25XPBW ZN1 9.40 18.74 ** 27.05 ** 22.16 ** 26.02 ** 43.47 ** 36.55 ** 68.96 ** 68.96 ** 31.78 ** 16.32 31.20 ** 33.29 ** 12.17 42.96 **
2 BHU-25XPBW-343 10.35 * 17.43 ** 25.65 ** 20.82 ** 24.63 ** 56.53 ** 48.97 ** 84.33 ** 84.33 ** 43.77 ** 17.12 24.15 * 26.13 * 6.14 35.28 **
3 BHU-25XHD-3326 14.62 ** 21.98 ** 30.52 ** 25.50 ** 29.46 ** 38.02 ** 31.36 ** 62.54 ** 62.54 ** 26.78 * 43.19 ** 53.66 ** 56.10 ** 31.36 ** 67.43 **
4 WB-02XPBW ZN1 14.28 ** 24.03 ** 32.71 ** 27.60 ** 31.63 ** 43.79 ** 43.79 ** 77.91 ** 77.91 ** 38.77 ** 12.73 27.15 * 29.18 * 8.71 38.55 **
5 WB-02XPBW-343 15.96 ** 21.57 ** 30.07 ** 25.07 ** 29.02 ** 37.39 ** 37.39 ** 70.00 ** 70.00 ** 32.60 ** 22.66 * 30.03 * 32.10 ** 11.16 41.68 **
6 WB-02XHD-3326 15.64 ** 22.78 ** 31.37 ** 26.32 ** 30.31 ** 44.27 ** 44.27 ** 78.51 ** 78.51 ** 39.23 ** 43.19 ** 53.66 ** 56.10 ** 31.36 ** 67.43 **
7 BHU-31XPBW ZN1 19.85 ** 30.07 ** 39.17 ** 33.82 ** 38.05 ** 41.71 ** 44.27 ** 78.51 ** 78.51 ** 39.23 ** 29.86 ** 46.48 ** 48.81 ** 25.22 * 59.60 **
8 BHU-31XPBW-343 24.04 ** 29.26 ** 38.30 ** 32.98 ** 37.18 ** 40.88 ** 43.43 ** 77.46 ** 77.46 ** 38.42 ** 40.97 ** 59.01 ** 61.54 ** 35.94 ** 73.26 **
9 BHU-31XHD-3326 13.76 ** 20.79 ** 29.24 ** 24.27 ** 28.19 ** 46.33 ** 48.97 ** 84.33 ** 84.33 ** 43.77 ** 10.07 24.15 * 26.13 * 6.14 35.28 **
10 HD-3721XPBW ZN1 7.10 16.24 ** 24.37 ** 19.59 ** 23.37 ** 71.34 ** 38.48 ** 71.34 ** 71.34 ** 33.64 ** 41.32 ** 59.40 ** 61.94 ** 36.27 ** 73.68 **
11 HD-3721XPBW-343 24.84 ** 30.09 ** 39.19 ** 33.84 ** 38.07 ** 78.96 ** 44.63 ** 78.96 ** 78.96 ** 39.58 ** 27.46 * 35.12 ** 37.27 ** 15.51 47.23 **
12 HD-3721XHD-3326 17.16 ** 24.39 ** 33.09 ** 27.97 ** 32.01 ** 60.27 ** 41.13 ** 74.63 ** 74.63 ** 36.20 ** 16.06 24.54 * 26.53 * 6.47 35.70 **
13 PWB-725X PBW ZN1 13.14 * 22.80 ** 31.39 ** 26.34 ** 30.33 ** 41.86 ** 41.86 ** 75.52 ** 75.52 ** 36.90 ** 35.07 ** 52.35 ** 54.77 ** 30.25 ** 66.00 **
14 PWB-725X PBW-343 1.01 5.26 12.63 * 8.3 11.72 * 31.85 ** 31.85 ** 63.13 ** 63.13 ** 27.24 * 17.49 24.54 * 26.53 * 6.47 35.70 **
15 PWB-725X HD-3326 19.53 ** 26.91 ** 35.79 ** 30.57 ** 34.69 ** 48.97 ** 48.97 ** 84.33 ** 84.33 ** 43.77 ** 20.8 29.63 * 31.70 ** 10.83 41.25 **
16 CRDGEHNU1XPBWZN1 10.48 * 19.90 ** 28.29 ** 23.36 ** 27.26 ** 74.03 ** 40.65 ** 74.03 ** 74.03 ** 35.74 ** 15.85 35.51 ** 37.67 ** 15.85 47.65 **
17 CRDGEHNU1XPBW343 22.04 ** 27.18 ** 36.08 ** 30.84 ** 34.98 ** 62.39 ** 31.24 ** 62.39 ** 62.39 ** 26.66 * 24.33 * 45.43 ** 47.75 ** 24.33 * 58.46 **
18 CRDGEHNU1XHD-3326 14.10 ** 21.14 ** 29.62 ** 24.64 ** 28.57 ** 55.48 ** 36.91 ** 69.40 ** 69.40 ** 32.13 ** 21.76 * 42.43 ** 44.69 ** 21.76 * 55.19 **
19 PBW-550X PBW ZN1 11.09 * 20.57 ** 29.00 ** 24.04 ** 27.96 ** 32.48 ** 37.27 ** 69.85 ** 69.85 ** 32.48 ** 32.18 ** 49.09 ** 51.46 ** 27.46 ** 62.45 **
20 PBW-550X PBW-343 13.62 * 18.40 ** 26.68 ** 21.81 ** 25.66 ** 32.13 ** 36.91 ** 69.40 ** 69.40 ** 32.13 ** 44.33 ** 53.00 ** 55.44 ** 30.80 ** 66.71 **
21 PBW-550X HD-3326 11.67 * 18.56 ** 26.86 ** 21.98 ** 25.83 ** 27.94 ** 32.57 ** 64.03 ** 64.03 ** 27.94 ** 45.26 ** 55.87 ** 58.36 ** 33.26 ** 69.84 **
22 PBW-677XPBW ZN1 17.70 ** 27.75 ** 36.69 ** 31.43 ** 35.58 ** 74.48 ** 41.01 ** 74.48 ** 74.48 ** 36.09 ** 19.79 35.12 ** 37.27 ** 15.51 47.23 **
23 PBW-677XPBW-343 17.06 ** 21.99 ** 30.53 ** 25.51 ** 29.47 ** 73.13 ** 39.93 ** 73.13 ** 73.13 ** 35.04 ** 27.46 * 35.12 ** 37.27 ** 15.51 47.23 **
24 PBW-677XPBW-343 12.95 * 19.92 ** 28.31 ** 23.38 ** 27.28 ** 46.30 ** 28.83 * 59.40 ** 59.40 ** 24.33 * 21.53 * 30.42 ** 32.49 ** 11.5 42.11 **
25 PBW-822X PBW ZN1 8.84 18.12 ** 26.39 ** 21.53 ** 25.37 ** 49.19 ** 44.15 ** 78.36 ** 78.36 ** 39.12 ** 20.14 35.51 ** 37.67 ** 15.85 47.65 **
26 PBW-822X PBW-343 8.16 13.71 * 21.67 ** 16.99 ** 20.69 ** 59.18 ** 53.80 ** 90.30 ** 90.30 ** 48.43 ** 34.11 ** 42.17 ** 44.43 ** 21.54 * 54.91 **
27 PBW-822X HD-3326 16.47 ** 23.66 ** 32.31 ** 27.23 ** 31.24 ** 16.23 12.3 38.96 ** 38.96 ** 8.38 43.80 ** 54.31 ** 56.76 ** 31.92 ** 68.14 **
28 HD-3117X PBW ZN1 14.09 ** 23.83 ** 32.49 ** 27.40 ** 31.42 ** 59.05 ** 52.71 ** 88.96 ** 88.96 ** 47.38 ** 14.27 31.72 ** 33.82 ** 12.61 43.53 **
29 HD-3117X PBW-343 10.34 * 17.17 ** 25.37 ** 20.54 ** 24.35 ** 22.36 17.49 45.37 ** 45.37 ** 13.39 15.97 33.68 ** 35.81 ** 14.29 45.66 **
30 HD-3117X HD-3326 16.74 ** 23.96 ** 32.64 ** 27.54 ** 31.57 ** 37.31 ** 31.85 ** 63.13 ** 63.13 ** 27.24 * 31.82 ** 51.96 ** 54.38 ** 29.91 ** 65.58 **
31 DBW-173X PBW ZN1 4.96 14.34 ** 22.34 ** 17.63 ** 21.35 ** 61.56 ** 55.13 ** 91.94 ** 91.94 ** 49.71 ** 26.27 * 42.43 ** 44.69 ** 21.76 * 55.19 **
32 DBW-173X PBW-343 13.38 ** 23.51 ** 32.16 ** 27.07 ** 31.09 ** 28.02 * 22.92 * 52.09 ** 52.09 ** 18.63 24.26 * 31.72 ** 33.82 ** 12.61 43.53 **
33 DBW-173X HD-3326 13.34 ** 23.47 ** 32.11 ** 27.03 ** 31.04 ** 37.69 ** 32.21 ** 63.58 ** 63.58 ** 27.59 * 12.04 20.23 22.15 2.79 31.01 *
34 DH-3086X PBW ZN1 9.37 18.70 ** 27.01 ** 22.12 ** 25.98 ** 26.56 ** 44.27 ** 78.51 ** 78.51 ** 39.23 ** 29.40 ** 45.95 ** 48.28 ** 24.78 * 59.03 **
35 DH-3086X PBW-343 23.25 ** 29.62 ** 38.69 ** 33.36 ** 37.57 ** 26.46 ** 44.15 ** 78.36 ** 78.36 ** 39.12 ** 34.24 ** 42.30 ** 44.56 ** 21.65 * 55.05 **
36 DH-3086X HD-3326 19.55 ** 26.93 ** 35.81 ** 30.59 ** 34.71 ** 33.97 ** 52.71 ** 88.96 ** 88.96 ** 47.38 ** 41.61 ** 51.96 ** 54.38 ** 29.91 ** 65.58 **
37 DBW-222X PBW ZN1 14.49 ** 24.26 ** 32.95 ** 27.84 ** 31.88 ** 61.41 ** 32.21 ** 63.58 ** 63.58 ** 27.59 * 49.77 ** 68.93 ** 71.62 ** 44.42 ** 84.07 **
38 DBW-222X PBW-343 16.21 ** 23.23 ** 31.85 ** 26.78 ** 30.79 ** 86.16 ** 52.47 ** 88.66 ** 88.66 ** 47.15 ** 37.29 ** 52.35 ** 54.77 ** 30.25 ** 66.00 **
39 DBW-222X HD-3326 10.27 * 17.08 ** 25.27 ** 20.45 ** 24.25 ** 63.42 ** 43.91 ** 78.06 ** 78.06 ** 38.88 ** 30.47 ** 44.78 ** 47.08 ** 23.77 * 57.75 **
40 CSW-18XPBW ZN1 10.49 * 19.92 ** 28.31 ** 23.38 ** 27.28 ** 58.17 ** 27.26 * 57.46 ** 57.46 ** 22.82 * 32.29 ** 49.22 ** 51.59 ** 27.57 ** 62.59 **
41 CSW-18XPBW-343 24.79 ** 30.04 ** 39.14 ** 33.78 ** 38.01 ** 73.55 ** 36.91 ** 69.40 ** 69.40 ** 32.13 ** 22.66 * 30.03 * 32.10 ** 11.16 41.68 **
42 CSW-18XHD-3326 18.11 ** 25.40 ** 34.17 ** 29.01 ** 33.09 ** 68.36 ** 48.25 ** 83.43 ** 83.43 ** 43.07 ** 43.19 ** 53.66 ** 56.10 ** 31.36 ** 67.43 **
43 PBW-757X PBW ZN1 16.02 ** 25.92 ** 34.73 ** 29.55 ** 33.64 ** 64.32 ** 32.21 ** 63.58 ** 63.58 ** 27.59 * 34.72 ** 51.96 ** 54.38 ** 29.91 ** 65.58 **
44 PBW-757X PBW-343 19.79 ** 24.83 ** 33.56 ** 28.43 ** 32.48 ** 69.42 ** 33.66 ** 65.37 ** 65.37 ** 28.99 ** 44.46 ** 53.13 ** 55.57 ** 30.92 ** 66.86 **
45 PBW-757X HD-3326 9.85 16.63 ** 24.80 ** 20.00 ** 23.79 ** 46.44 ** 28.95 ** 59.55 ** 59.55 ** 24.45 * 32.48 ** 42.17 ** 44.43 ** 21.54 * 54.91 **
“*” and “**” for 5% and 1% Level of Significance, BP stand for better parent and SV stand for standard variety, SV1=HD 2967, SV2= DBW 187, SV3= NORMAN and SV4= BORLAUG 100
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated