Submitted:
03 January 2025
Posted:
06 January 2025
You are already at the latest version
Abstract
The control structure definition is the most primordial aspect of control process; however, it still constitutes an academic and industrial challenge. Several techniques are used in academic and design problems, but in most of methodologies static process models are used, instead of dynamic models. In this work a new control structure methodology based on linear dynamic models and linear quadratic controllers is presented.
Keywords:
1. Introduction
- Based purely in heuristics;
- Based in mathematical models and control theory;
2. Control Structure in LQR Problems
2.1. Optimal Control Structure in Linear Systems
2.2. Optimal Control Structure in Nonlinear Systems for LQR Problems
3. Control Structure and LQR Controllers
4. Minimum Control Structure Based on LQR Gain Matrix
4.1. Stability in Closed Loop
5. Application of Proposed Methodology
5.1. Application to Stabilizable Systems in Closed Loop
5.2. Stabilizable System in Closed-Loop through Repopulation
5.2.1. Example
5.3. Application to Van de Vusse Reactor
- Mass Balance:
- Energy Balance:
- Perturbations:
- Control action:


5.4. Application in the Tennessee Eastman Problem
5.5. Application of Methodology
6. Conclusions
7. Matrices of Control Structures
References
- Stephanopoulos, G.; NG, C. Perspective on the synthesis of plant-wide control structures. Journal of Process Control 2000, 10, 97–111.
- SKOGESTAD, S.; POSTLETHWAITE, L. Multivariable Feedback Control; John Wiley and Sons: Nova York, USA, 2005.
- Buckley, P.S. Techniques of process control; Jonh Wiley and Sons: Nova York, USA, 1964.
- Luyben, W.L.; Tyreus, B.D.; Luyben, M.L. Plantwide Process Control; McGraw-Hill: Nova York, USA, 1998.
- Umeda, T.; Kuriyama, T.; Ichikawa, A. A logical structure for process control system synthesis. IFAC; , 1978.
- Skogestad, S. Control structure design for complete chemical plants. Computers and Chemical Engineering 2004, 1, 219–234.
- Alstad, V.; Skogestad, S. Null Space Method for Selecting Optimal Measurement Combination as Controlles Variables. Ind. Eng. Chem. Res. 2007, 1, 846–853.
- Halvorsen, I.J.; Skogestad, S.; Morud, J.C.; Alstad, V. Optimal Selection of Controlled Variable. Ind. Eng. Chem. Res. 2003, pp. 3273–3284.
- Kariwala, V. Optimal Measurement Combination for Local Self-Optimizing Control. Ind. Eng. Chem. Res. 2007, pp. 3629–3634.
- Morari, M.; Arkun, Y.; Stephanopoulos, G. Studies in the synthesis control structures for chemical process. Part I. AICHE Journal 1980, 26, 220–231.
- Trierweiler, J.O.; Engell, S. The Robust Performance Number: A New Tool for Control Structure Design. Computers and Chemical Engineering 1997, 21, 409–414.
- Skogestad, S. Plant wide control: the search for self-optimizing control structure. Journal of Process Control 2000, pp. 467–507.
- Downs, J.J.; Moore, C.F. Steady State gain analysis for azeotropic distillation. JACC; , 1981.
- Molina, G.D.; Zumoffen, D.A.R.; Basualdo, M.S. Plant wide control strategy applied to the Tennessee Eastman process at two operating points. Computers and Chemical Engineering 2011, pp. 2081–2097.
- Sharifzadeh, M.; Thornhill, N.F. Optimal controlled variable selection using a nonlinear simulation-optimization framework. Proceedings of 21st European Symposium on Computer Aided Process Engineering, 2011, pp. 597–601.
- Visser, E.; Srinivasan, B.; Palanki, S.; Bonvin, D. A feedback-based implementation scheme for batch process optimization. Journal of Process Control 2000, 10, 399–410.
- Kalman, R.E. Contribution to the Theory of Optimal Control. Boletin de la Sociedad Matematica Mexicana 1960, 15, 102–119.
- Pang, H.P.; Yang, Q. Robust LQR Tracking Control for a Class of Affine Nonlinear Uncertain Systems. Proceedings of 24th Chinese Control and Decision Conference (CCDC), 2012, pp. 1197–1202.
- Liu, Z.X.; Yuan, C.; Zhang, Y.M.; Luo, J. Robust LQR Tracking Control for a Class of Affine Nonlinear Uncertain Systems. Proceedings of 2014 International Conference on Unmanned Aircraft Systems (ICUAS); , 2014; pp. 936–941.
- Borrelli, F.; Keviczky, T. Distributed LQR Design for Identical Dynamically Decoupled Systems. IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2008, 53, 1901–1912.
- Nguyen, D.H. A sub-optimal consensus design for multi-agent systems based on hierarchical LQR. Automatica 2015, 55, 88–94.
- Hassan, M.F.; Boukas, E.K. Constrained Linear Quadratic Regulator: Continuous-Time Case. Nonlinear Dynamics and Systems Theory 2008, 1, 35–42.
- Johansen, T.A.; Petersen, I.; Slupphaug, O. Explicit Suboptimal Linear Quadratic Regulation with Input and State Constraints. Automatica 2002, 1, 1099–1111.
- Prasad, L.B.; Tyagi, B.; Gupta, H.O. Optimal Control of Nonlinear Inverted Pendulum System Using PID Controller and LQR: Performance Analysis Without and With Disturbance Input. International Journal of Automation and Computing 2014, 11, 661–670.
- Chrif, L.; Kadda, Z.M. Aircraft Control System Using LQG and LQR Controller with Optimal Estimation-Kalman Filter Design. Procedia Engineering 2014, 80, 245–257.
- Mahmud, M.A. An alternative LQR-based excitation controller design for power systemsto enhance small-signal stability. Electrical Power and Energy Systems 2014, 63, 1–7.
- Nyawako, D.S.; Reynolds, P. LQR controller for an in-service floor. Proceedings of the IMAC-XXVIII - Society for Experimental Mechanics Series; , 2010; pp. 227–237.
- de Oliveira, T.C.; Gaino, R.; Covacic, M.R.; Teixeira, M.C.M.; de Carvalho, A.A. Controle LQR Aplicado ao Movimento de Articulacao do Joelho de Pacientes Paraplegicos. Semina: Ciencias Exatas e Tecnologicas; , 2014; pp. 231–246.
- Edouard, D.; Dufourb, P.; Hammourib, H. Observer based multivariable control of a catalytic reverse flow reactor: comparison between LQR and MPC approaches. Computers and Chemical Engineering 2005, 29, 851–865.
- Neto, E.A. Otimizacao Dinamica em Tempo Real: Arquitetura de Software, Diagnostico e Analise de Inviabilidades. Tese de D.Sc., UFRGS, Porto Alegre, Brasil, 2011.
- Cutler, R.C.; Ramaker, B.L. Dynamic Matrix Control - A Computer Control Algorithm. Proceedings of AICHE 86th National Meeting, 1979, pp. 01–23.
- Isidori, A. Nonlinear Control Systems; Editora Springer: Londres, Inglaterra, 1995.
- Oliveira, M.C.; Bernussou, J.; Geromel, J.C. A new discrete-time robust stability condition. Systems and Control Letters 1999, 37, 261–265.
- Schwaab, M.; Pinto, J.C. Analise de Dados Experientais I - Fundamentos de Estatistica e Estimacao de Parametros; Editora e-papers: Rio de Janeiro, Brasil, 2007.
- Muller-Hermes, A.; Szehr, O. Spectral variation bounds in hyperbolic geometry. Linear Algebra and its Applications 2015, 1, 131–148.
- Grimble, M.J.; Kucera, V. Polynomial Methods for Control Systems Design; Editora Springer: Londres, Inglaterra, 1996.
- Kucera, V. The H2 Control Problem: State-space and Transfer-function Solutions. Proceedings of 14th Mediterranean Conference on Control and Automation; , 2006; pp. 1–5.
- Arnold, W.; Laub, A. Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations. 1984, Vol. 1, pp. 1746–1754.
- de Vusse, J.G.V. Plug-flow type reactor versus tank reactor. Chemical Engineering Science 1964, 19, 994–997.
- Aguirre, L.A. Introducao a identificacao de sistemas Tecnicas lineares e nao lineares aplicadas a sistemas Teoria e Aplicacao; Editora UFMG: Belo Horizonte, Brasil, 2007.
- Ljung, L. System Identification; Prentice Hall, 1987.
- Downs, J.J.; Vogel, E.F. A Plant Wide Industrial Process Control Problem. Computers and Chemical Engineering 1993, pp. 245–255.













| Measured variables | Base case | Unit |
| Feed A | 0.25052 | kscmh |
| Feed D | 3664.0 | kg/h |
| Feed E | 4509.3 | kg/h |
| Feed A e C | 9.347 | kscmh |
| Recycle flow | 26.902 | kscmh |
| Reactor flow | 42.339 | kscmh |
| Reactor pressure | 2705.0 | kPa man. |
| Reactor level | 75.0 | % |
| Reactor temperature | 120.40 | °C |
| Purge flow | 0.33712 | kscmh |
| Temperature of separator product | ||
| 80.109 | °C | |
| Separator level | 50.0 | % |
| Separator pressure | 2633.7 | kPa man. |
| Separator bottom flow | 25.16 | /h |
| Stripper level | 50.0 | % |
| Stripper pressure | 3102.2 | kPa man. |
| Stripper bottom flow | 22.949 | /h |
| Stripper temperature | 65.731 | °C |
| Stripper steam flow | 230.31 | kg/h |
| Compressor power rating | 341.43 | kW |
| Reactor cooler water output temp. | ||
| 94.599 | °C | |
| Product condenser output water temperature | ||
| 77.297 | °C |
| Manipulated variables | Base case [%] |
| Feed D | 63.0 |
| Feed E | 53.9 |
| Feed A | 24.6 |
| Feed A e C | 61.3 |
| Compressor recycle valve | 22.2 |
| Purge valve | 40.0 |
| Separator bottom flow | 38.1 |
| Stripper bottom flow | 46.5 |
| Stripper steam valve | 47.4 |
| Reactor cooler water flow | |
| 41.1 | |
| Condenser cooler water flow | |
| 18.1 | |
| Agitator speed | 50.00 |
| Manipulated variables | Controlled variables |
| XMV1 | Feed A |
| XMV2 | Feed D |
| XMV3 | Feed E |
| XMV4 | Feed A e C |
| XMV5 | Recycle flow |
| XMV6 | Feed E |
| XMV7 | Stripper pressure |
| XMV8 | Stripper steam flow |
| XMV9 | Compressor power rating |
| XMV10 | Purge flow |
| XMV11 | Separator bottom flow |
| XMV12 | Separator level |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
