Submitted:
02 January 2025
Posted:
03 January 2025
You are already at the latest version
Abstract
Keywords:
Epidemiology of Oral Cancer
Etiology and Risk Factors
Prognosis
Oral Potentially Malignant Disorders (OPMDs)
Tumour Immune Microenvironment-TIME
Tumor Associated Myeloid-Derived Suppressor Cells (MDSCs) and Dendritic Cells (DCs)
Tumor Associated Mast Cells
Tumor-Infiltrating Lymphocytes (TILs)
Tumor-Associated Macrophages
Tumor Associated Neutrophils (TANs)
Cancer Associated Fibroblast (CAF)
Enhancing Tumor Treatment Through Immune Modulation and Combination Therapies
Conclusion
References
- Saman Warnakulasuriya. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009, 45, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Ferlay J, Pisani P, Parkin DM. GLOBOCAN 2002. Cancer incidence, mortality and prevalence worldwide. IARC Cancer Base (2002 estimates). Lyon: IARC Press;
- IARC. Cancer incidence in five continents, vol 1X. Available from: http://wwwdep.iarc.fr. Last update 2023.
- Saman Warnakulasuriya. Living with oral cancer: Epidemiology with particular reference to prevalence and life-style changes that influence survival. Oral Oncology 2010, 46, 407–410. [Google Scholar] [CrossRef]
- Llewellyn CD, Johnson NW, Warnakulasuriya KAAS. Risk factors for squamous cell carcinoma of the oral cavity in young people – a comprehensive literature review. Oral Oncol 2001, 37, 401–418. [Google Scholar] [CrossRef] [PubMed]
- G J Macfarlane, P Boyle, T V Evstifeeva, C Robertson, C Scully. Rising trends of oral cancer mortality among males worldwide: the return of an old public health problem. Cancer Causes Control 1994, 5, 259–265. [Google Scholar] [CrossRef]
- Shiboski CH, Schmidt BL, Jordan RC. Tongue and tonsilar carcinoma: increasing trends in the US population ages 20–44 years. Cancer 2005, 103, 1843–1849. [Google Scholar] [CrossRef]
- Ministry of Health. National Cancer Control Programme, Sri Lanka. Cancer incidence data: Sri Lanka year 2000. 6th Publication. Maharagama: NCCP;
- Sugerman PB, Savage NW. Oral cancer in Australia: 1983–1996. Aust Dent J 2002, 47, 45–56. [CrossRef]
- La Vecchia C, Tavani A, Franceschi S, Levi F, Corrao G, Negri E. Epidemiology and prevention of oral cancer. Oral Oncol 1997, 33, 302–312. [Google Scholar] [CrossRef]
- W J Blot, J K McLaughlin, D M Winn, D F Austin, R S Greenberg, S Preston-Martin, L Bernstein, J B Schoenberg, A Stemhagen, J F Fraumeni Jr. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988, 48, 3282–3287. [Google Scholar]
- J Kierce, Y Shi, H Klieb, N Blanas, W Xu, M Magalhaes. Identification of specific clinical risk factors associated with the malignant transformation of oral epithelial dysplasia. Head & Neck 2021, 43, 3552–3561. [Google Scholar] [CrossRef]
- Saman Warnakulasuriya. Food, nutrition and oral cancer. In: Wilson M, editor. Food constituents and oral health. Current status and future prospects. Woodhead Publishing; [CrossRef]
- Petridou E, Zavras AI, Lefatzis D, Dessypris N, Laskaris G, Dokianakis G, Segas J, Douglas CW, Diehl SR, Trichopoulos D. The role of diet and specific micronutrients in the etiology of oral carcinoma. Cancer 2002, 94, 2981–2988. [Google Scholar] [CrossRef]
- O’Shaughnessy JA, Kelloff GK, Gordon GB, Dannenberg AJ, Hong WK, Fabin CJ, Sigman CC, et al. Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin Cancer Res 2002, 8, 314–346. [Google Scholar]
- Nagao T, Ikeda N, Warnakulasuriya S, Fukano H, Yuasa H, Yano M, Miyazaki H, Ito Y. Serum antioxidant micronutrients and the risk of oral leukoplakia among Japanese. Oral Oncology 2000, 36, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Wang G, Pan C, Cao K, Zhang J, Geng H, Wu K, Wen J, Liu C. Impacts of Cigarette Smoking on the Tumor Immune Microenvironment in Esophageal Squamous Cell Carcinoma. J Cancer 2022, 13, 413–425. [Google Scholar] [CrossRef]
- Matthew, G. Thompson, Flor Navarro, Lennox Chitsike, Luis Ramirez, Elizabeth J. Kovacs, Stephanie K. Watkins. Alcohol exposure differentially effects anti-tumor immunity in females by altering dendritic cell function. Alcohol. [CrossRef]
- National Institute of Dental and Craniofacial Research. Oral Cancer 5-Year Survival Rates by Race, Gender, and Stage of Diagnosis | Available at: https://www.nidcr.nih.gov/research/data-statistics/oral-cancer/survival-rates. 8 July 2021.
- Cassie Pan, Zain Rizvi. Oral Cancer: What the General Surgeon Should Know. Surg Clin N Am 2022, 102, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Paul, M. Speight, Joel Epstein, Omar Kujan, Mark W. Lingen, Toru Nagao, Kannan Ranganathan, and Pablo Vargas. Screening for oral cancer a perspective from the Global Oral Cancer Forum. Oral Surg Oral Med Oral Pathol Oral Radiol 2017, 123, 680–687. [Google Scholar] [CrossRef]
- Christina McCord, Alex Kiss, Marco A. Magalhaes, Iona T. Leong, Tanya Jorden, and Grace Bradley. Oral Squamous Cell Carcinoma Associated with Precursor Lesions. Cancer Prevention Research 2021, 14, 873–884. [Google Scholar] [CrossRef]
- Saman Warnakulasuriya, Omar Kujan, José M. Aguirre-Urizar, José V. Bagan, Miguel Ángel González-Moles, Alexander R. Kerr, Giovanni Lodi, Fernanda Weber Mello, Luis Monteiro, Graham R. Ogden, Philip Sloan, Newell W. Johnson. Oral potentially malignant disorders: A consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer. Oral Diseases. 2021, 27, 1862–1880. [Google Scholar] [CrossRef]
- Speight, P. M. , Khurram, S. A., & Kujan, O. Oral potentially malignant disorders: Risk of progression to malignancy. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 2018, 125, 612–627. [Google Scholar] [CrossRef]
- Williams, P. M. , Poh, C. F., Hovan, A. J., Ng, S., & Rosin, M. P. Evaluation of a suspicious oral mucosal lesion. J Can Dent Assoc 2008, 74, 275–280. [Google Scholar]
- Iocca, O. , Sollecito, T. P., Alawi, F., Weinstein, G. S., Newman, J. G., De Virgilio, A., Di Maio, P., Spriano, G., Pardiñas López, S., & Shanti, R. M. Potentially malignant disorders of the oral cavity and oral dysplasia: A systematic review and meta-analysis of malignant transformation rate by subtype. Head and Neck 2020, 42, 539–555. [Google Scholar] [CrossRef]
- Deng S, Wang S, Shi X, Zhou H. Microenvironment in Oral Potentially Malignant Disorders: Multi-Dimensional Characteristics and Mechanisms of Carcinogenesis. Int J Mol Sci 2022, 23, 8940. [Google Scholar] [CrossRef]
- Aryan Abadeh, Aiman A. Ali, Grace Bradley, Marco A. Magalhaes. Increase in detection of oral cancer and precursor lesions by dentists Evidence from an oral and maxillofacial pathology service. JADA 2019, 150, 531–539. [Google Scholar] [CrossRef]
- Labarthe, L. , Henriquez, S., Lambotte, O., Di Santo, J.P., Le Grand, R., Pflumio, F., Arcangeli, M.L., Legrand. N., Bourgeois, C. Frontline Science: Exhaustion and senescence marker profiles on human T cells in BRGSF-A2 humanized mice resemble those in human samples. J Leukoc Biol. 2020, 107, 27–42. [Google Scholar] [CrossRef]
- Neophytou, C.M. , Pierides, C., Christodoulou, M.I., Costeas, P., Kyriakou, T.C., Papageorgis, P. The Role of Tumor-Associated Myeloid Cells in Modulating Cancer Therapy. Front Onco. 2020, 10, 899. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. , Song, E. Turning foes to friends: targeting cancer-associated fibroblasts. Nature Rev Drug Disco. 2019, 18, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S. , Kawai, H. , Eguchi, T., Sukegawa, S., Oo, M.W., Anqi, C., Takabatake, K., Nakano, K., Okamoto, K., Nagatsuka, H. Tumor Angiogenic Inhibition Triggered Necrosis (TAITN) in Oral Cancer. Cells. 2019, 8, 761. [Google Scholar]
- Dave K, Ali A, Magalhaes M. Increased expression of PD-1 and PD-L1 in oral lesions progressing to oral squamous cell carcinoma: a pilot study. Scientific Reports 2020, 10, 9705. [Google Scholar]
- Ali A, Soares AB, Eymael D, Magalhaes M. Expression of invadopodia markers can identify oral lesions with a high risk of malignant transformation. The Journal of Pathology: Clinical Research 2021, 7, 61–74. [Google Scholar] [CrossRef]
- Chadwick JW, Macdonald R, Ali AA, Glogauer M, Magalhaes MA. TNFα signaling is increased in progressing oral potentially malignant disorders and regulates malignant transformation in an oral carcinogenesis model. Frontiers in oncology 2021, 11, 741013. [Google Scholar] [CrossRef]
- Laliberté C, Ng N, Eymael D, Higgins K, Ali A, Kiss A, Bradley G, Magalhaes M. Characterization of oral squamous cell carcinoma associated inflammation: a pilot study. Frontiers in Oral Health 2021, 2, 740469. [Google Scholar] [CrossRef] [PubMed]
- De Visser, K.E. , Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023, 41, 374–403. [Google Scholar] [CrossRef] [PubMed]
- Pang, X. , Fan, H.Y., Tang, Y.L., Wang, S.S., Cao, M.X., Wang, H.F., Dai, L.L., Wang, K., Yu, X.H., Wu, J.B., Tang, Y.J., Liang, X.H. Myeloid derived suppressor cells contribute to the malignant progression of oral squamous cell carcinoma. PLoS One. 2020, 15, e0229089. [Google Scholar] [CrossRef]
- Kouketsu, A. , Haruka, S., Kuroda, K., Hitoshi, M., Kensuke, Y., Tsuyoshi, S., Takahashi, T., Hiroyuki, K. Myeloid-derived suppressor cells and plasmacytoid dendritic cells are associated with oncogenesis of oral squamous cell carcinoma. J Oral Pathol Med. 2023, 52, 9–19. [Google Scholar] [CrossRef]
- Dar, A.A. , Patil, R.S., Pradhan, T.N., Chaukar, D.A., D’Cruzm, A.K., Chiplunkar, S.V. Myeloid-derived suppressor cells impede T cell functionality and promote Th17 differentiation in oral squamous cell carcinoma. Cancer Immunol Immunother. 2020, 69, 1071–1086. [Google Scholar] [CrossRef] [PubMed]
- Han, N. , Li, X., Wang, Y., Wang, L., Zhang, C., Zhang, Z., Ruan, M., Zhang, C. Increased tumor-infiltrating plasmacytoid dendritic cells promote cancer cell proliferation and invasion via TNF-α/NF-κB/CXCR-4 pathway in oral squamous cell carcinoma. J Cancer. 2021, 12, 3045–3056. [Google Scholar] [CrossRef]
- Eric, H. , Piersiala, K., Lagebro, V., Farrajota Neves Da Silva, P., Petro, M., Starkhammar, M., Elliot, A., Bark, R., Margolin, G., Kumlien Georén, S., Cardell, L.O. High expression of PD-L1 on conventional dendritic cells in tumour-draining lymph nodes is associated with poor prognosis in oral cancer. Cancer Immunol Immunother. 2024, 73, 165. [Google Scholar] [CrossRef] [PubMed]
- Mao, L. , Xiao, Y., Yang, Q.C., Yang S.C, Yand, LL, Sun ZJ. TIGIT/CD155 blockade enhances anti-PD-L1 therapy in head and neck squamous cell carcinoma by targeting myeloid-derived suppressor cells. Oral Oncol. 2021, 121, 105472. [Google Scholar] [CrossRef]
- Nguyen, K.A. , De Pledge, L.N., Bian, L., Ke, Y., Samedi, V., Berning, A.A., Owens, P., Wang, X.J., Young, C.D. Polymorphonuclear myeloid-derived suppressor cells and phosphatidylinositol-3 kinase gamma are critical to tobacco-mimicking oral carcinogenesis in mice. Journal for Immuno Therapy of Cancer 2023, 11, e007110. [Google Scholar] [CrossRef] [PubMed]
- Greene, S. , Robbins, Y., Mydlarz, W.K., Huynh, A.P., Schmitt, N.C., Friedman, J., Horn, L.A., Palena, C., Schlom, J., Maeda, D.Y., Zebala, J.A., Clavijo, P.E., Allen, C. Inhibition of MDSC Trafficking with SX-682, a CXCR1/2 Inhibitor, Enhances NK-Cell Immunotherapy in Head and Neck Cancer Models. Clin Cancer Res. 2020, 26, 1420–1431. [Google Scholar] [CrossRef] [PubMed]
- Oo, M.W. , Kawai, H., Takabatake, K., Tomida, S., Eguchi, T., Ono, K., Shan, Q., Ohara, T., Yoshida, S., Omori, H., Sukegawa, S., Nakano, K., Okamoto, K., Sasaki, A., Nagatsuka, H. Resident stroma-secreted chemokine CCL2 governs myeloid-derived suppressor cells in the tumor microenvironment. JCI Insight. 2022, 7, e148960. [Google Scholar] [CrossRef] [PubMed]
- Peng, J. , Hu, Q., Chen, X., Wang, C., Zhang, J., Ren, X., Wang, Y., Tao, X., Li, H., Song, M., Cheng, B., Wu, T., Xia, J. Diet-induced obesity accelerates oral carcinogenesis by recruitment and functional enhancement of myeloid-derived suppressor cells. Cell Death Dis 2021, 12, 946. [Google Scholar] [CrossRef]
- Cai, Z. , Tang, B., Chen, L., Lei, W. Mast cell marker gene signature in head and neck squamous cell carcinoma. BMC Cancer 2022, 22, 577. [Google Scholar] [CrossRef]
- Hemmerlein, B. , Reinhardt, L. , Wiechens, B., Khromov, T., Schliephake, H., Brockmeyer, P. Is CCL2 an Important Mediator of Mast Cell–Tumor Cell Interactions in Oral Squamous Cell Carcinoma? Int J Mol Sci. 2023, 24, 3641. [Google Scholar] [CrossRef]
- Anuraag Parikh, JuneHo Shin, William Faquin, Derrick T Lin, Itay Tirosh, John B Sunwoo, Sidharth V Puram. Malignant cell-specific CXCL14 promotes tumor lymphocyte infiltration in oral cavity squamous cell carcinoma. J Immunother Cancer 2020, 8, e001048. [Google Scholar] [CrossRef]
- Nils Ludwig, Łukasz Wieteska, Cynthia S. Hinck, Saigopalakrishna S. Yerneni, Juliana H. Azambuja, Richard J. Bauer, Torsten E. Reichert, Andrew P. Hinck, Theresa L. Whiteside. Novel TGF-β inhibitors ameliorate oral squamous cell carcinoma progression and improve the anti-tumor immune response of anti-PD-L1 immunotherapy. Mol Cancer Ther. 2021, 20, 1102–1111. [Google Scholar] [CrossRef]
- Jaime, L. Chao, Michael Korzinkin, Alex Zhavoronkov, Ivan V. Ozerov, Matthew T. Walker, Kathleen Higgins, Mark W. Lingen, Evgeny Izumchenko, and Peter A. Savage. Effector T cell responses unleashed by regulatory T cell ablation exacerbate oral squamous cell carcinoma. Cell Rep Med. 2021, 2, 100399. [Google Scholar] [CrossRef]
- Qods Lahmar, Jiri Keirsse, Damya Laoui, Kiavash Movahedi, Eva Van Overmeire, Jo A. Van Ginderachter. Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment. Biochim Biophys Acta, 2: (1), 1865. [CrossRef]
- Xin Pang, Sha-sha Wang, Mei Zhang, Jian Jiang, Hua-yang Fan, Jia-shun Wu, Hao-fan Wang, Xin-hua Liang, Ya-ling Tang. OSCC cell-secreted exosomal CMTM6 induced M2-like macrophages polarization via ERK1/2 signaling pathway. Cancer Immunol Immunother 2021, 70, 1015–1029. [Google Scholar] [CrossRef]
- Wan-Hang Zhou, Yao Wang, Cong Yan, Wei-Dong Du, Maged Ali Al-Aroomi, Li Zheng, Shan-Feng Lin, Jia-Xing Gao, Sheng Jiang, Zeng-Xu Wang, Chang-Fu Sun, Fa-Yu Liu. CC chemokine receptor 7 promotes macrophage recruitment and induces M2-polarization through CC chemokine ligand 19&21 in oral squamous cell carcinoma. Discov Oncol 2022, 13, 67. [Google Scholar] [CrossRef]
- Masanori Oshi, Yoshihisa Tokumaru, Mariko Asaoka, Li Yan, Vikas Satyananda, Ryusei Matsuyama, Nobuhisa Matsuhashi, Manabu Futamura, Takashi Ishikawa, Kazuhiro Yoshida, Itaru Endo; Kazuaki Takabe. M1 Macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical characteristics in breast cancer. Scientific Repot 2020, 10, 16554. [Google Scholar] [CrossRef] [PubMed]
- Yuanhe You, Zhuowei Tian, Zhong Du, Kailiu Wu, Guisong Xu, Meilu Dai, Yan’an Wang; Meng Xiao. M1-like tumor-associated macrophages cascade a mesenchymal/stem-like phenotype of oral squamous cell carcinoma via the IL6/Stat3/THBS1 feedback loop. J Exp Clin Cancer Res 2022, 41, 10. [Google Scholar] [CrossRef]
- Rosa Alessia Battista, Giacomo Maria Pini, Alex Finco, Filippo Corso, Andrea Galli, Gianluigi Arrigoni, Claudio Doglioni, Marcella Callea, Matteo Paccagnella, Luca Porcu, Federica Filipello, Marco Mazzola, Giorgia Foggetti, Vanesa Gregorc, Leone Giordano, Mario Bussi, Aurora Mirabile, and Giulia Veronesi. From Tumor Macroenvironment to Tumor Microenvironment: The Prognostic Role of the Immune System in Oral and Lung Squamous Cell Carcinoma. Cancers 2024, 16, 2759. [Google Scholar] [CrossRef]
- Qiongdong Xu, Xueru Chen, Tao Yu, Qinchao Tang, Zhuoqian Zhou, Hongyu Wang, Wanqian Huang, Tianjing Huang, Feixin Liang. Downregulation of VAP-1 in OSCC suppresses tumor growth and metastasis via NF-κB/IL-8 signaling and reduces neutrophil infiltration. J Oral Pathol Med 2022, 51, 332–341. [Google Scholar] [CrossRef]
- Lisa Andzinski, Nadine Kasnitz, Stephanie Stahnke, Ching-Fang Wu, Marcus Gereke, Maren von K€ockritz-Blickwede, Bastian Schilling, Sven Brandau, Siegfried Weiss, and Jadwiga Jablonska. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer 2016, 138, 1982–1993. [Google Scholar] [CrossRef] [PubMed]
- Cameron Goertzen, Hayder Mahdi, Catherine Laliberte, Tomer Meirson, Denise Eymael, Hava Gil-Henn and Marco Magalhaes. Oral inflammation promotes oral squamous cell carcinoma invasion. Oncotarget 2018, 9, 29047–29063. [Google Scholar] [CrossRef]
- Wana Alkasalias, Lidia Moyano-Galceran, Marie Arsenian-Henriksson and Kaisa Lehti. Fibroblasts in the Tumor Microenvironment: Shield or Spear? Int J Mol Sci 2018, 19, 1532. [CrossRef]
- Tracy, L.E.; Minasian, R.A.; Caterson, E.J. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care 2016, 5, 119–136. [Google Scholar] [CrossRef]
- Tomasek, J.J.; Gabbiani, G.; Hinz, B.; Chaponnier, C.; Brown, R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002, 3, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Custódio M, Biddle A, Tavassoli M. Portrait of a CAF: The Story of Cancer-Associated Fibroblasts in Head and Neck Cancer. Oral Oncol 2020, 110, 104972. [Google Scholar] [CrossRef]
- Joshi RS, Kanugula SS, Sudhir S, Pereira MP, Jain S, Aghi MK. The Role of Cancer-Associated Fibroblasts in Tumor Progression. Cancers (Basel) 2021, 13, 1399. [Google Scholar] [CrossRef]
- Ostman, A. PDGF receptors in tumor stroma: Biological effects and associations with prognosis and response to treatment. Adv. Drug Deliv. Rev. 2017, 121, 117–123. [Google Scholar] [CrossRef]
- Shohei Sekiguchi, Akira Yorozu, Fumika Okazaki, Takeshi Niinuma, Akira Takasawa, Eiichiro Yamamoto, Hiroshi Kitajima, Toshiyuki Kubo, Yui Hatanaka, Koyo Nishiyama, Kazuhiro Ogi, Hironari Dehari, Atsushi Kondo, Makoto Kurose, Kazufumi Obata, Akito Kakiuchi, Masahiro Kai, Yoshihiko Hirohashi, Toshihiko Torigoe, Takashi Kojima, Makoto Osanai, Kenichi Takano, Akihiro Miyazaki and Hiromu Suzuki. ACLP Activates Cancer-Associated Fibroblasts and Inhibits CD8+ T-Cell Infiltration in Oral Squamous Cell Carcinoma. Cancers 2023, 15, 4303. [Google Scholar] [CrossRef] [PubMed]
- Dourado MR, Guerra EN, Salo T, Lambert DW, Coletta RD. Prognostic Value of the Immunohistochemical Detection of Cancer-Associated Fibroblasts in Oral Cancer: A Systematic Review and Meta-Analysis. J Oral Pathol Med 2018, 47, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy A, Khan L, Bensler NP, Bose P, De Carvalho DD. TGF-β-Associated Extracellular Matrix Genes Link Cancer-Associated Fibroblasts to Immune Evasion and Immunotherapy Failure. Nat Commun 2018, 9, 4692. [Google Scholar] [CrossRef] [PubMed]
- Angadi PV, Patil PV, Kale AD, Hallikerimath S, Babji D. Myofibroblast Presence in Apparently Normal Mucosa Adjacent to Oral Squamous Cell Carcinoma Associated with Chronic Tobacco/Areca Nut Use: Evidence for Field Cancerization. Acta Odontol Scand 2014, 72, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Smitha A, Rao K, Umadevi HS, Smitha T, Sheethal HS, Vidya MA. Immunohistochemical Study of α-Smooth Muscle Actin Expression in Oral Leukoplakia and Oral Squamous Cell Carcinoma. J Oral Maxillofac Pathol 2019, 23, 59–64. [Google Scholar] [CrossRef]
- Uma Vasant Datar, Alka Dinesh Kale, Punnya V. Angadi, Seema Hallikerimath, Deepa Mane, Karishma Madhusudan Desai. Role of cancer-associated fibroblasts in oral squamous cell carcinomas, surgical margins, and verrucous carcinomas: An immunohistochemical study. J Clin Transl Res 2022, 8, 80–85. [Google Scholar] [CrossRef]
- de Vicente, J.C. , Rodríguez-Santamarta, T., Rodrigo, J.P., Blanco-Lorenzo, V., Allonca, E., García-Pedrero, J.M. PD-L1 Expression in Tumor Cells Is an Independent Unfavorable Prognostic Factor in Oral Squamous Cell Carcinoma. Cancer Epidemiol Biomarkers Prev. 2019, 28, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Qin, L. Thia, K. Nguyen, T. MacDonald, S. Belobrov, S. Kranz, S. Goode, D. Trapani, J. A. Wiesenfeld. D. Neeson, P.J. Cancer cell-specific PD-L1 expression is a predictor of poor outcome in patients with locally advanced oral cavity squamous cell carcinoma. Journal for Immune Therapy of Cancer. [CrossRef]
- Sasaya, T. , Kubo, T., Murata, K., Mizue, Y., Sasaki, K., Yanagawa, J., Imagawa, M., Kato, H., Tsukahara, T., Kanaseki, T., Tamura, Y., Miyazaki, A., Hirohashi, Y., Torigoe, T. Cisplatin-induced HSF1-HSP90 axis enhances the expression of functional PD-L1 in oral squamous cell carcinoma. Cancer Med 2023, 12, 4605–4615. [Google Scholar] [CrossRef]
- Liu, L. , Lim, M.A., Jung, S.N., Oh, C., Won, H.R., Jin, Y.L., Piao, Y., Kim, H.J., Chang, J.W., Koo, B.S. The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer. Phytomedicine. 2021, 92, 153758. [Google Scholar] [CrossRef]
- Boreel, D.F. , Sandker, G. G.W., Ansems, M., van den Bijgaart, R.J.E., Peters, J.P.W., Span, P.N., Adema, G.J., Heskamp, S., Bussink, J. MHC-I and PD-L1 Expression is Associated with Decreased Tumor Outgrowth and is Radiotherapy-inducible in the Murine Head and Neck Squamous Cell Carcinoma Model MOC1. Mol Imaging Biol. 2024, 26, 835–846. [Google Scholar] [CrossRef]
- Gu, W. , Kim, M., Wang, L., Yang, Z., Nakajima, T., Tsushima, Y. Multi-omics Analysis of Ferroptosis Regulation Patterns and Characterization of Tumor Microenvironment in Patients with Oral Squamous Cell Carcinoma. Int J Biol Sci. 2021, 17, 3476–3492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.K. , Yang, Y.Z., Li, J.X., Xie, X.R., Hao, Y.Q., Zhu, Y.C., Zhang, Z.Y., Fu, J.K., Ma, H.L. Engineered Oxygen Factories Synergize with STING Agonist to Remodel Tumor Microenvironment for Cancer Immunotherapy. Advanced Functional Materials. [CrossRef]
- He, Y. , Dong, Y., Zhang, X., Ding, Z., Song, Y., Huang, X., Chen, S., Wang, Z., Ni, Y., Ding, L. Lipid Droplet-Related PLIN2 in CD68+ Tumor-Associated Macrophage of Oral Squamous Cell Carcinoma: Implications for Cancer Prognosis and Immunotherapy. Front Oncol. 2022, 15, 824235. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y. , Suzuki, S., Takahara, T., Ono, S., Goto, M., Miyabe, S., Sugita, Y., Ogawa, T., Ito, H., Satou, A., Tsuzuki, T., Yoshikawa, K., Ueda, R., Nagao, T. Improving function of cytotoxic T-lymphocytes by transforming growth factor-β inhibitor in oral squamous cell carcinoma. Cancer Sci. 2021, 112, 4037–4049. [Google Scholar] [CrossRef]
- Su, W. , Qiu, W., Li, S.J., Wang, S., Xie, J., Yang, Q.C., Xu, J., Zhang, J., Xu, Z., Sun, Z.J. A Dual-Responsive STAT3 Inhibitor Nanoprodrug Combined with Oncolytic Virus Elicits Synergistic Antitumor Immune Responses by Igniting Pyroptosis. Adv Mater. 2023, 35, e2209379. [Google Scholar] [CrossRef]
- Wu, C. , Zhang, G., Wang, L., Hu, J., Ju, Z., Tao, H., Li, Q., Li, J., Zhang, W., Sheng, J., Hou, X., Hu, Y. Spatial proteomic profiling elucidates immune determinants of neoadjuvant chemo-immunotherapy in esophageal squamous cell carcinoma. Oncogene. 2024, 43, 2751–2767. [Google Scholar] [CrossRef]
- Shi, E. , Shan, T., Wang, H., Mao, L., Liang, Y., Cao, M., Wu, Q., Li, C., Wang, Y., Wang, Y. A Bacterial Nanomedicine Combines Photodynamic-Immunotherapy and Chemotherapy for Enhanced Treatment of Oral Squamous Cell Carcinoma. Small. 2023, 19, e2304014. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Y. , Wang, W.J., Zhang, C.Y., Ling, Y.Y., Hong, X.J., Su, Q., Li, W.G., Mao, Z.W., Cheng, B., Tan, C.P., Wu, T. Ru (II)-modified TiO2 nanoparticles for hypoxia-adaptive photo-immunotherapy of oral squamous cell carcinoma. Biomaterials. 2022, 289, 121757. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. , Pan, K., Huang, S., Zhang, X., Zhu, X., He, Y., Chen, X., Tang, Y., Yuan, L., Yu, D. Graphdiyne Oxide-Mediated Photodynamic Therapy Boosts Enhancive T-Cell Immune Responses by Increasing Cellular Stiffness. Int J Nanomedicine. 2023, 15, 797–812. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.C. , Liu, G.R., Dai, C. L., Wu, J. Li, Q. Immune-enhanced and tumor-targeted PDT cascade therapy for oral squamous cell carcinoma utilizing a carrier-free BRD4 inhibitor/PDT agent nanocomplex. Chemical Engineering Journal 2024, 485, 149446. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
