Submitted:
31 December 2024
Posted:
03 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Data Analysis
4. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobzhasnky, T. Genetic Nature of Species Differences. Am. Nat. 1937, 71, 404–420. [Google Scholar]
- Mayr, E. Systematics and the Origin of Species from the Viewpoint of a Zoologist; Harvard University Press: Cambridge, MA, 1942. [Google Scholar]
- Orr, H.A.; Coyne, J.A. Speciation; Sinauer: Sunderland, 2004. [Google Scholar]
- Sobel, J.M.; Chen, G.F.; Watt, L.R.; Schemske, D.W. The Biology of Speciation. Evolution (N. Y). 2010, 64, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Baack, E.; Melo, M.C.; Rieseberg, L.H.; Ortiz-Barrientos, D. The Origins of Reproductive Isolation in Plants. New Phytol. 2015, 207, 968–984. [Google Scholar] [CrossRef]
- Grant, V. Plant Speciation; Columbia University Press: New York, 1981. [Google Scholar]
- Levin, D.A. Polyploidy and Novelty in Flowering Plants. Am. Nat. 1983, 122. [Google Scholar] [CrossRef]
- Levin, D.A. The Role of Chromosomal Change in Plant Evolution; Oxford University Press: Oxford, England, 2002. [Google Scholar]
- Wood, T.E.; Takebayashi, N.; Barker, M.S.; Mayrose, I.; Greenspoon, P.B.; Rieseberg, L.H. The Frequency of Polyploid Speciation in Vascular Plants. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 13875–13879. [Google Scholar] [CrossRef] [PubMed]
- Coyne, J.A.; Orr, H.A. The Genetics of Postzygotic Isolation in the e H. Allen Orr and Jerry A. Coyne Drosophila Vidis Group. Genet. Soc. Am. 1989, 121, 527–537. [Google Scholar]
- Ramsey, J.; Bradshaw, H.D.; Schemske, D.W. Components of Reproductive Isolation between the Monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution (N. Y). 2003, 57, 1520–1534. [Google Scholar] [CrossRef]
- Martin, N.H.; Willis, J.H. Ecological Divergence Associated with Mating System Causes Nearly Complete Reproductive Isolation between Sympatric Mimulus Species. Evolution (N. Y). 2007, 61, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.M.; Chen, G.F. Unification of Methods for Estimating the Strength of Reproductive Isolation. Evolution (N. Y). 2014, 68, 1511–1522. [Google Scholar] [CrossRef] [PubMed]
- Stankowski, S.; Ravinet, M. Defining the Speciation Continuum. Evolution (N. Y). 2021, 75, 1256–1273. [Google Scholar] [CrossRef]
- Lowry, D.B.; Modliszewski, J.L.; Wright, K.M.; Wu, C.A.; Willis, J.H. Review. The Strength and Genetic Basis of Reproductive Isolating Barriers in Flowering Plants. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3009–3021. [Google Scholar] [CrossRef]
- Christie, K.; Fraser, L.S.; Lowry, D.B. The Strength of Reproductive Isolating Barriers in Seed Plants: Insights from Studies Quantifying Premating and Postmating Reproductive Barriers over the Past 15 Years. Evolution (N. Y). 2022, 76, 2228–2243. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.L.; Tang, S.; Knapp, S.J.; Martin, N.H. Asymmetric Introgressive Hybridization among Louisiana Iris Species. Genes (Basel). 2010, 1, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Keller, B.; de Vos, J.M.; Schmidt-Lebuhn, A.N.; Thomson, J.D.; Conti, E. Both Morph- and Species-Dependent Asymmetries Affect Reproductive Barriers between Heterostylous Species. Ecol. Evol. 2016, 6, 6223–6244. [Google Scholar] [CrossRef]
- Broyles, S.B. Hybrid Bridges to Gene Flow: A Case Study in Milkweeds (Asclepias). Evolution (N. Y). 2002, 56, 1943–1953. [Google Scholar] [CrossRef]
- Sweigart, A.L.; Willis, J.H. Patterns of Nucleotide Diversity in Two Species of Mimulus Are Affected by Mating System and Asymmetric Introgression. Evolution (N. Y). 2003, 57, 2490–2506. [Google Scholar] [CrossRef]
- Petit, R.J.; Bodénès, C.; Ducousso, A.; Roussel, G.; Kremer, A. Hybridization as a Mechanism of Invasion in Oaks. New Phytol. 2004, 161, 151–164. [Google Scholar] [CrossRef]
- Currat, M.; Ruedi, M.; Petit, R.J.; Excoffier, L. The Hidden Side of Invasions: Massive Introgression by Local Genes. Evolution (N. Y). 2008, 62, 1908–1920. [Google Scholar] [CrossRef] [PubMed]
- Prentis, P.J.; White, E.M.; Radford, I.J.; Lowe, A.J.; Clarke, A.R. Can Hybridization Cause Local Extinction: A Case for Demographic Swamping of the Australian Native Senecio Pinnatifolius by the Invasive Senecio Madagascariensis? New Phytol. 2007, 176, 902–912. [Google Scholar] [CrossRef]
- Field, D.L.; Ayre, D.J.; Whelan, R.J.; Young, A.G. Relative Frequency of Sympatric Species Influences Rates of Interspecific Hybridization, Seed Production and Seedling Performance in the Uncommon Eucalyptus aggregata. J. Ecol. 2008, 96, 1198–1210. [Google Scholar] [CrossRef]
- Keim, P.; Paige, K.N.; Whitham, T.G.; Lark, K.G. Genetic Analysis of an Interspecific Hybrid Swarm of Populus: Occurrence of Unidirectional Introgression. Genetics 1989, 123, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Cruzan, M.B.; Arnold, M.L. Assortative Mating and Natural Selection in an Iris Hybrid Zone. Evolution (N. Y). 1994, 48, 1946–1958. [Google Scholar] [CrossRef]
- Martin, N.H.; Bouck, A.C.; Arnold, M.L. Detecting Adaptive Trait Introgression between Iris fulva and I. brevicaulis in Highly Selective Field Conditions. Genetics 2006, 172, 2481–2489. [Google Scholar] [CrossRef]
- Suarez-Gonzalez, A.; Lexer, C.; Cronk, Q.C.B. Adaptive Introgression: A Plant Perspective. Biol. Lett. 2018, 14. [Google Scholar] [CrossRef]
- Arnold, M.L. Natural Hybridization and Evolution; Oxford University Press: Oxford, England, 1997. [Google Scholar]
- Ma, Y.-P.; Tian, X.-L.; Zhang, J.-L.; Zhi-Kun Wu, W.; Sun, E.-B. Evidence for Natural Hybridization between Primula beesiana and P. bulleyana, Two Heterostylous Primroses in NW Yunnan, China. J. Syst. Evol. 2014, 52, 500–507. [Google Scholar] [CrossRef]
- Campbell, D.R.; Waser, N.M.; Wolf, P.G. Pollen Transfer by Natural Hybrids and Parental Species in an Ipomopsis Hybrid Zone. Evolution (N. Y). 1998, 52, 1602–1611. [Google Scholar] [CrossRef]
- Campbell, D.R.; Crawford, M.; Brody, A.K.; Forbis, T.A. Resistance to Pre-Dispersal Seed Predators in a Natural Hybrid Zone. Oecologia 2002, 131, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.R.; Waser, N.M. Genotype-by-Environment Interaction and the Fitness of Plant Hybrids in the Wild. Evolution (N. Y). 2001, 55, 669–676. [Google Scholar] [CrossRef]
- Wu, C.A.; Campbell, D.R. Cytoplasmic and Nuclear Markers Reveal Contrasting Patterns of Spatial Genetic Structure in a Natural Ipomopsis Hybrid Zone. Mol. Ecol. 2005, 14, 781–792. [Google Scholar] [CrossRef]
- Liao, W.J.; Zhu, B.R.; Li, Y.F.; Li, X.M.; Zeng, Y.F.; Zhang, D.Y. A Comparison of Reproductive Isolation between Two Closely Related Oak Species in Zones of Recent and Ancient Secondary Contact. BMC Evol. Biol. 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Zeng, Y.F.; Liao, W.J.; Petit, R.J.; Zhang, D.Y. Geographic Variation in the Structure of Oak Hybrid Zones Provides Insights into the Dynamics of Speciation. Mol. Ecol. 2011, 20, 4995–5011. [Google Scholar] [CrossRef]
- Young, N.D. An Analysis of the Causes of Genetic Isolation in Two Pacific Coast Iris Hybrid Zones. Can. J. Bot. 1996, 74, 2006–2013. [Google Scholar] [CrossRef]
- Nelson, T.C.; Stathos, A.M.; Vanderpool, D.D.; Finseth, F.R.; Yuan, Y.W.; Fishman, L. Ancient and Recent Introgression Shape the Evolutionary History of Pollinator Adaptation and Speciation in a Model Monkeyflower Radiation (Mimulus Section Erythranthe). PLoS Genet. 2021, 17, 1–26. [Google Scholar] [CrossRef]
- Ivey, C.T.; Habecker, N.M.; Bergmann, J.P.; Ewald, J.; Frayer, M.E.; Coughlan, J.M. Weak Reproductive Isolation and Extensive Gene Flow between Mimulus glaucescens and M. guttatus in Northern California. Evolution (N. Y). 2023, 77, 1245–1261. [Google Scholar] [CrossRef]
- Wolfe, A.D.; Elisens, W.J. Nuclear Ribosomal DNA Restriction-Site Variation in Penstemon Section Peltanthera (Scrophulariaceae): An Evaluation of Diploid Hybrid Speciation and Evidence for Introgression. Am. J. Bot. 1994, 81, 1627–1635. [Google Scholar] [CrossRef]
- Chari, J.; Wilson, P. Factors Limiting Hybridization between Penstemon spectabilis and Penstemon centranthifolius. Can. J. Bot. 2001, 79, 1439–1448. [Google Scholar] [CrossRef]
- Rifkin, J.L.; Castillo, A.S.; Liao, I.T.; Rausher, M.D. Rifkin, J. L., Castillo, A. S., Liao, I. T., & Rausher, M. D. (2019). Gene Flow, Divergent Selection and Resistance to Introgression in Two Species of Morning Glories (Ipomoea). Mol. Ecol. 2019, 28, 1709–1729. [Google Scholar]
- Rifkin, J.L.; Ostevik, K.L.; Rausher, M.D. Complex Cross-Incompatibility in Morning Glories Is Consistent with a Role for Mating System in Plant Speciation. Evolution (N. Y). 2023, 77, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Surget-Groba, Y.; Kay, K.M. Restricted Gene Flow within and between Rapidly Diverging Neotropical Plant Species. Mol. Ecol. 2013, 22, 4931–4932. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, X.; Ma, Y.; Zhao, J.; Li, L.; Li, Q. Natural Hybridization and Reproductive Isolation between Two Primula Species. J. Integr. Plant Biol. 2017, 59, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Brys, R.; Vanden Broeck, A.; Mergeay, J.; Jacquemyn, H. The Contribution of Mating System Variation to Reproductive Isolation in Two Closely Related Centaurium Species (Gentianaceae) with a Generalized Flower Morphology. Evolution (N. Y). 2014, 68, 1281–1293. [Google Scholar] [CrossRef]
- Brys, R.; van Cauwenberghe, J.; Jacquemyn, H. The Importance of Autonomous Selfing in Preventing Hybridization in Three Closely Related Plant Species. J. Ecol. 2016, 104, 601–610. [Google Scholar] [CrossRef]
- Zhang, J.J.; Montgomery, B.R.; Huang, S.Q. Evidence for Asymmetrical Hybridization despite Pre- and Post-Pollination Reproductive Barriers between Two Silene Species. AoB Plants 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, R.L.; Theodoridis, S.; Mora-Carrera, E.; Keller, B.; Potente, G.; Yousefi, N.; Jay, P.; Léveillé-Bourret, É.; Choudhury, R.R.; Celep, F.; et al. The Genomes of Darwin’s Primroses Reveal Chromosome-Scale Adaptive Introgression and Differential Permeability of Species Boundaries. New Phytol. 2024, 241, 911–925. [Google Scholar] [CrossRef]
- Young, N.D. Concordance and Discordance: A Tale of Two Hybrid Zones in the Pacific Coast Irises (Iridaceae). Am. J. Bot. 1996, 83, 1623–1629. [Google Scholar] [CrossRef]
- Kay, K.M. Reproductive Isolation Between Two Closely Related Hummingbird-Pollinated Neotropical Gingers. Evolution (N. Y). 2006, 60, 538. [Google Scholar] [CrossRef]
- Zhao, W.; Meng, J.; Wang, B.; Zhang, L.; Xu, Y.; Zeng, Q.Y.; Li, Y.; Mao, J.F.; Wang, X.R. Weak Crossability Barrier but Strong Juvenile Selection Supports Ecological Speciation of the Hybrid Pine Pinus densata on the Tibetan Plateau. Evolution (N. Y). 2014, 68, 3120–3133. [Google Scholar] [CrossRef]
- Wang, B.; Mao, J.F.; Gao, J.I.E.; Zhao, W.E.I.; Wang, X.R. ( Colonization of the Tibetan Plateau by the Homoploid Hybrid Pine Pinus densata. Mol. Ecol. 2011, 20, 3796–3811. [Google Scholar] [CrossRef] [PubMed]
- Sambatti, J.B.M.; Strasburg, J.L.; Ortiz-Barrientos, D.; Baack, E.J.; Rieseberg, L.H. Reconciling Extremely Strong Barriers with High Levels of Gene Exchange in Annual Sunflowers. Evolution (N. Y). 2012, 66, 1459–1473. [Google Scholar] [CrossRef] [PubMed]
- Sedeek, K.E.M.; Scopece, G.; Staedler, Y.M.; Schönenberger, J.; Cozzolino, S.; Schiestl, F.P.; Schlüter, P.M. Genic Rather than Genome-Wide Differences between Sexually Deceptive Ophrys Orchids with Different Pollinators. Mol. Ecol. 2014, 23, 6192–6205. [Google Scholar] [CrossRef]
- Soliva, M.; Widmer, A. Gene Flow across Species Boundaries in Sympatric, Sexually Deceptive Ophrys (Orchidaceae) Species. Evolution (N. Y). 2003, 57, 2252–2261. [Google Scholar] [CrossRef]
- Keller, B.; Ganz, R.; Mora-Carrera, E.; Nowak, M.D.; Theodoridis, S.; Koutroumpa, K.; Conti, E. Asymmetries of Reproductive Isolation Are Reflected in Directionalities of Hybridization: Integrative Evidence on the Complexity of Species Boundaries. New Phytol. 2021, 229, 1795–1809. [Google Scholar] [CrossRef]
| Species 1 | Species 2 | RIspecies1 | RIspecies2 | Introgression Direction |
|---|---|---|---|---|
| Iris douglasiana | Iris innominata | 1.0 | 0.72975 | Species 2 [37,50]* |
| Ipomopsis tenuituba | Ipomopsis aggregata | 0.87208889 | 0.4684096 | Species 2 [33,34]* |
| Penstemon centranthifolius | Penstemon spectabilis | 0.97913942 | 0.47501345 | Species 2 [40,41]* |
| Mimulus cardinalis | Mimulus lewisii | 0.99842332 | 0.98956871 | Species 2 [11,38]* |
| Costus pulverulentus | Costus scaber | 1.0 | 0.99754474 | Species 2 [44,51]* |
| Pinus yunnanensis | Pinus densata | 0.556039 | 0.464428 | Species 2 [52,53]* |
| Pinus tabuliformis | Pinus densata | 0.739177 | 0.612348 | Species 2 [52,53]* |
| Primula beesiana | Primula bulleyana | 1.0 | 0.61760791 | Species 2 [30]* |
| Primula secundiflora | Primula poissonii | 0.961773 | 0.62171704 | Species 2 [45]* |
| Quercus mogolica | Quercus liaotungensis | 0.3808 | 0.123289 | Species 2 [35,36]* |
| Ipomoea lacunosa | Ipomoea cordatotriloba | 0.607344 | 0.490876 | Species 2 [42,43] |
| Mimulus glaucescens | Mimulus guttatus | 0.632 | 0.39 | Species 2 [39] |
| Mimulus guttatus | Mimulus nasutus | 0.98973968 | 0.16531978 | Species 1 [12]* |
| Helianthus petiolaris | Helianthus annuus | 0.99989231 | 0.99979006 | Species 1 [54]* |
| Centaurium erythraea | Centaurium littorale | 0.98969618 | 0.98601173 | Species 1 [46]* |
| Ophrys incubacea | Ophrys garganica | 1.0 | 0.86108599 | Species 1 [55,56]* |
| Primula vulgaris | Primula elatior | 0.93715411 | 0.88941822 | Species 1 [18,49]* |
| Silene yunnanensis | Silene ascelepiadae | 0.7954445 | 0.685 | Species 1 [48]* |
| Primula vulgaris | Primula veris | 0.91873543 | 0.654731 | Species 1 [49,57]* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
