Submitted:
30 December 2024
Posted:
02 January 2025
You are already at the latest version
Abstract
Beta-lactam drugs hold a central place in the antibacterial arsenal, and the production of beta-lactamases by drug-resistant bacteria has severely compromised the effectiveness of nearly all available beta-lactams. Therefore, in the face of the increasing threat of drug resistance, the combined use of beta-lactamase inhibitors (BLIs) with beta-lactam antibiotics is crucial for treating infections caused by drug-resistant bacteria. Hence, the development of BLIs has always been a hot topic in the field of medicinal chemistry. In recent years, significant progress has been made in screening active drugs by enhancing the affinity of inhibitors for enzymes and the stability of their complexes, based on the design concept of competitive inhibitors. Here, we review the effects and mechanisms of newly synthesized beta-lactamase inhibitors on various BLIs in recent years, to provide ideas for the development of subsequent beta-lactamase inhibitors.
Keywords:
1. Introduction
2. Beta-Lactamase
2.1. MBLs (Class B Beta-Lactamase)
2.2. Serine-Beta-Lactamases
2.2.1. Class A Beta-Lactamase
2.2.2. Class C Beta-Lactamase
2.2.3. Class D Beta-Lactamase
3. Beta-Lactamase Inhibitors
3.1. Class B beta-Lactamase Inhibitors (MBLs INHIBITORS)
3.1.1. NDM Inhibitors
3.1.2. IMP and VIM Inhibitors
3.2. Serine Beta-Lactamases Inhibitor
4. Conclusions
Funding
References
- Collaborators, A.R. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 2022. 399(12):629-655.
- Bush, K., Bradford, P.A. beta-Lactams and beta-Lactamase Inhibitors: An Overview. Cold Spring Harb Perspect Med, 2016. 6(8):a025247.
- Kaderabkova, N., Bharathwaj, M., Furniss, R.C.D., Gonzalez, D., Palmer, T., Mavridou, D. The biogenesis of beta-lactamase enzymes. Microbiology, 2022. 168(8):001217.
- Mezcord, V., Wong, O., Pasteran, F., Corso, A., Tolmasky, M.E., Bonomo, R.A., Ramirez, M.S. Role of β-lactamase inhibitors on cefiderocol activity against carbapenem-resistant Acinetobacter species. International Journal of Antimicrobial Agents, 2023. 61(1):106700.
- Fröberg, G., Ahmed, A., Chryssanthou, E., Davies Forsman, L. The in vitro effect of new combinations of carbapenem-β-lactamase inhibitors for Mycobacterium abscessus. Antimicrob Agents Chemother, 2023. 67(10):e0052823.
- Tooke, C.L., Hinchliffe, P., Bragginton, E.C., Colenso, C.K., Hirvonen, V., Takebayashi, Y., Spencer, J. Beta-Lactamases and beta-Lactamase Inhibitors in the 21st Century. J Mol Biol, 2019. 431(18):3472-3500.
- Bonomo, R.A. beta-Lactamases: A Focus on Current Challenges. Cold Spring Harb Perspect Med, 2017. 7(1):a025239.
- Li, R., Chen, X., Zhou, C., Dai, Q.Q., Yang, L. Recent advances in beta-lactamase inhibitor chemotypes and inhibition modes. Eur J Med Chem, 2022. 242(15):114677.
- Longjam, L.A., Tsering, D.C., Das, D. Molecular Characterization of Class A-ESBLs, Class B-MBLs, Class C-AmpC, and Class D-OXA Carbapenemases in MDR Acinetobacter baumannii Clinical Isolates in a Tertiary Care Hospital, West Bengal, India. Cureus, 2023. 15(8):e43656.
- Salahuddin, P., Kumar, A., Khan, A.U. Structure, Function of Serine and Metallo-beta-lactamases and their Inhibitors. Curr Protein Pept Sci, 2018. 19(2):130-144.
- Zakhour, J., El, A.L., Kanj, S.S. Metallo-beta-lactamases: mechanisms, treatment challenges, and future prospects. Expert Rev Anti Infect Ther, 2024. 22(4):189-201.
- Boyd, S.E., Livermore, D.M., Hooper, D.C., Hope, W.W. Metallo-beta-Lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob Agents Chemother, 2020. 64(10).
- Cornaglia, G., Giamarellou, H., Rossolini, G.M. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis, 2011. 5(11):381-393.
- Xu, S., Chen, Y., Fu, Z., Li, Y., Shi, G., Xu, X., Liu, Y., Wang, M. New Subclass B1 Metallo-beta-Lactamase Gene from a Clinical Pathogenic Myroides odoratus Strain. Microb Drug Resist, 2018. 24(7):909-914.
- Niu, W., Ti, R., Li, D., Dong, R., Dong, J., Ye, Y., Xiao, Y., Wang, Z. Structural insight into the subclass B1 metallo-beta-lactamase AFM-1. Biochem Biophys Res Commun, 2024. 720:150102.
- Chen, C., Xiang, Y., Yang, K.W., Zhang, Y., Wang, W.M., Su, J.P., Ge, Y., Liu, Y. A protein structure-guided covalent scaffold selectively targets the B1 and B2 subclass metallo-beta-lactamases. Chem Commun (Camb), 2018. 54(38):4802-4805.
- Dong, X., Liu, W., Dong, Y., Wang, K., Li, K., Bian, L. Metallo-beta-lactamase SMB-1 evolves into a more efficient hydrolase under the selective pressure of meropenem. J Inorg Biochem, 2023. 247:112323.
- Slimene, K., El, S.A., Dziri, O., Mabrouk, A., Miniaoui, D., Gharsa, H., Shokri, S.A., Alhubge, A.M., Achour, W., Rolain, J.M., et al. High Carbapenem Resistance Caused by VIM and NDM Enzymes and OprD Alteration in Nonfermenter Bacteria Isolated from a Libyan Hospital. Microb Drug Resist, 2021. 27(11):1546-1554.
- Wu, W., Feng, Y., Tang, G., Qiao, F., McNally, A., Zong, Z. NDM Metallo-beta-Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev, 2019. 32(2):e00115-18.
- Bose, P., Rangnekar, A., Desikan, P. NDM-beta-lactamase-1: Where do we stand? Indian J Med Res, 2022. 155(2):243-252.
- Li, L., Gao, Y., Wang, L., Lu, F., Ji, Q., Zhang, Y., Yang, S., Cheng, P., Sun, F., Qu, S. The effects of NDM-5 on Escherichia coli and the screening of interacting proteins. Front Microbiol, 2024. 15(30):1328572.
- Wang, T., Xu, K., Zhao, L., Tong, R., Xiong, L., Shi, J. Recent research and development of NDM-1 inhibitors. Eur J Med Chem, 2021. 223(5):113667.
- Aoki, K., Harada, S., Yahara, K., Ishii, Y., Motooka, D., Nakamura, S., Akeda, Y., Iida, T., Tomono, K., Iwata, S., et al. Molecular Characterization of IMP-1-Producing Enterobacter cloacae Complex Isolates in Tokyo. Antimicrob Agents Chemother, 2018. 62(3):e02091-17.
- Ayipo, Y.O., Ahmad, I., Alananzeh, W., Lawal, A., Patel, H., Mordi, M.N. Computational modelling of potential Zn-sensitive non-beta-lactam inhibitors of imipenemase-1 (IMP-1). J Biomol Struct Dyn, 2023. 41(19):10096-10116.
- Krco, S., Davis, S.J., Joshi, P., Wilson, L.A., Monteiro, P.M., Douw, A., Schofield, C.J., Hugenholtz, P., Schenk, G., Morris, M.T. Structure, function, and evolution of metallo-beta-lactamases from the B3 subgroup-emerging targets to combat antibiotic resistance. Front Chem, 2023. 11(20):1196073.
- Farhat, N., Ali, A., Waheed, M., Gupta, D., Khan, A.U. Chemically synthesised flavone and coumarin based isoxazole derivatives as broad spectrum inhibitors of serine beta-lactamases and metallo-beta-lactamases: a computational, biophysical and biochemical study. J Biomol Struct Dyn, 2023. 41(13):5990-6000.
- Philippon, A., Jacquier, H., Ruppe, E., Labia, R. Structure-based classification of class A beta-lactamases, an update. Curr Res Transl Med, 2019. 67(4):115-122.
- Galdadas, I., Qu, S., Oliveira, A., Olehnovics, E., Mack, A.R., Mojica, M.F., Agarwal, P.K., Tooke, C.L., Gervasio, F.L., Spencer, J., et al. Allosteric communication in class A beta-lactamases occurs via cooperative coupling of loop dynamics. Elife, 2021. 10(23):e66567.
- Mallik, D., Jain, D., Bhakta, S., Ghosh, A.S. Role of AmpC-Inducing Genes in Modulating Other Serine Beta-Lactamases in Escherichia coli. Antibiotics (Basel), 2022. 11(1).
- Yoon, E.J., Jeong, S.H. Class D beta-lactamases. J Antimicrob Chemother, 2021. 76(4):836-864.
- Lupo, V., Mercuri, P.S., Frere, J.M., Joris, B., Galleni, M., Baurain, D., Kerff, F. An Extended Reservoir of Class-D Beta-Lactamases in Non-Clinical Bacterial Strains. Microbiol Spectr, 2022. 10(2):e0031522.
- Krajnc, A., Brem, J., Hinchliffe, P., Calvopina, K., Panduwawala, T.D., Lang, P.A., Kamps, J., Tyrrell, J.M., Widlake, E., Saward, B.G., et al. Bicyclic Boronate VNRX-5133 Inhibits Metallo- and Serine-beta-Lactamases. J Med Chem, 2019. 62(18):8544-8556.
- Yamada, K., Yanagihara, K., Kaku, N., Harada, Y., Migiyama, Y., Nagaoka, K., Morinaga, Y., Nakamura, S., Imamura, Y., Miyazaki, T., et al. In vivo efficacy of biapenem with ME1071, a novel metallo-beta-lactamase (MBL) inhibitor, in a murine model mimicking ventilator-associated pneumonia caused by MBL-producing Pseudomonas aeruginosa. Int J Antimicrob Agents, 2013. 42(3):238-43.
- Hamrick, J.C., Docquier, J.D., Uehara, T., Myers, C.L., Six, D.A., Chatwin, C.L., John, K.J., Vernacchio, S.F., Cusick, S.M., Trout, R., et al. VNRX-5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine- and Metallo-beta-Lactamases, Restores Activity of Cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob Agents Chemother, 2020. 64(3).
- Livermore, D.M., Mushtaq, S., Morinaka, A., Ida, T., Maebashi, K., Hope, R. Activity of carbapenems with ME1071 (disodium 2,3-diethylmaleate) against Enterobacteriaceae and Acinetobacter spp. with carbapenemases, including NDM enzymes. J Antimicrob Chemother, 2013. 68(1):153-8.
- Wenzler, E., Gotfried, M.H., Loutit, J.S., Durso, S., Griffith, D.C., Dudley, M.N., Rodvold, K.A. Meropenem-RPX7009 Concentrations in Plasma, Epithelial Lining Fluid, and Alveolar Macrophages of Healthy Adult Subjects. Antimicrob Agents Chemother, 2015. 59(12):7232-9.
- Ono, D., Mojica, M.F., Bethel, C.R., Ishii, Y., Drusin, S.I., Moreno, D.M., Vila, A.J., Bonomo, R.A. Structural role of K224 in taniborbactam inhibition of NDM-1. Antimicrobial Agents and Chemotherapy, 2024. 68(2).
- Li, H., Duan, S., Li, L., Zhao, G., Wei, L., Zhang, B., Ma, Y., Wu, M.X., Mao, Y., Lu, M. Bio-Responsive Sliver Peroxide-Nanocarrier Serves as Broad-Spectrum Metallo-β-lactamase Inhibitor for Combating Severe Pneumonia. Advanced Materials, 2024. 36(11).
- Chigan, J., Hu, Z., Liu, L., Xu, Y., Ding, H., Yang, K. Quinolinyl sulfonamides and sulphonyl esters exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorganic Chemistry, 2022. 120:105654.
- Moreira, J.S., Galvao, D.S., Xavier, C., Cunha, S., Pita, S., Reis, J.N., Freitas, H.F. Phenotypic and in silico studies for a series of synthetic thiosemicarbazones as New Delhi metallo-beta-lactamase carbapenemase inhibitors. J Biomol Struct Dyn, 2022. 40(24):14223-14235.
- Zhang, B., Yang, Y., Yuan, J., Chen, L., Tong, H., Huang, T., Shi, L., Jiang, Z. Methimazole and α-lipoic acid as metallo-β-lactamases inhibitors. The Journal of Antibiotics, 2022. 75(5):282-286.
- Vasudevan, A., Kesavan, D.K., Wu, L., Su, Z., Wang, S., Ramasamy, M.K., Hopper, W., Xu, H. In Silico and In Vitro Screening of Natural Compounds as Broad-Spectrum β-Lactamase Inhibitors against Acinetobacter baumannii New Delhi Metallo-β-lactamase-1 (NDM-1). BioMed Research International, 2022. 2022:1-19.
- Scaccaglia, M., Rega, M., Bacci, C., Giovanardi, D., Pinelli, S., Pelosi, G., Bisceglie, F. Bismuth complex of quinoline thiosemicarbazone restores carbapenem sensitivity in NDM-1-positive Klebsiella pneumoniae. Journal of Inorganic Biochemistry, 2022. 234:111887.
- Muteeb, G., Alsultan, A., Farhan, M., Aatif, M. Risedronate and Methotrexate Are High-Affinity Inhibitors of New Delhi Metallo-β-Lactamase-1 (NDM-1): A Drug Repurposing Approach. Molecules, 2022. 27(4):1283.
- La Piana, L., Viaggi, V., Principe, L., Di Bella, S., Luzzaro, F., Viale, M., Bertola, N., Vecchio, G. Polypyridine ligands as potential metallo-β-lactamase inhibitors. Journal of Inorganic Biochemistry, 2021. 215:111315.
- Ge, Y., Kang, P., Li, J., Gao, H., Zhai, L., Sun, L., Chen, C., Yang, K. Thiosemicarbazones exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). The Journal of Antibiotics, 2021. 74(9):574-579.
- Yue, K., Xu, C., Wang, Z., Liu, W., Liu, C., Xu, X., Xing, Y., Chen, S., Li, X., Wan, S. 1,2-Isoselenazol-3(2H)-one derivatives as NDM-1 inhibitors displaying synergistic antimicrobial effects with meropenem on NDM-1 producing clinical isolates. Bioorganic Chemistry, 2022. 129:106153.
- Gao, H., Li, J., Kang, P., Chigan, J., Wang, H., Liu, L., Xu, Y., Zhai, L., Yang, K. N-acylhydrazones confer inhibitory efficacy against New Delhi metallo-β-lactamase-1. Bioorganic Chemistry, 2021. 114:105138.
- Lomovskaya, O., Tsivkovski, R., Totrov, M., Dressel, D., Castanheira, M., Dudley, M. New boronate drugs and evolving NDM-mediated beta-lactam resistance. Antimicrobial Agents and Chemotherapy, 2023. 67(9).
- Tian, H., Wang, Y., Dai, Y., Mao, A., Zhou, W., Cao, X., Deng, H., Lu, H., Ding, L., Shen, H., et al. A Cephalosporin-Tripodalamine Conjugate Inhibits Metallo-β-Lactamase with High Efficacy and Low Toxicity. Antimicrobial Agents and Chemotherapy, 2022. 66(10).
- Liu, L., Xu, Y., Chigan, J., Zhai, L., Ding, H., Wu, X., Chen, W., Yang, K. Dihydroxyphenyl-substituted thiosemicarbazone: A potent scaffold for the development of metallo-β-lactamases inhibitors and antimicrobial. Bioorganic Chemistry, 2022. 127:105928.
- Chigan, J.Z., Li, J.Q., Ding, H.H., Xu, Y.S., Liu, L., Chen, C., Yang, K.W. Hydroxamates as a potent skeleton for the development of metallo-β-lactamase inhibitors. Chemical Biology & Drug Design, 2022. 99(2):362-372.
- Li, J., Gao, H., Zhai, L., Sun, L., Chen, C., Chigan, J., Ding, H., Yang, K. Dipyridyl-substituted thiosemicarbazone as a potent broad-spectrum inhibitor of metallo-β-lactamases. Bioorganic & Medicinal Chemistry, 2021. 38:116128.
- Samuelsen, O., Astrand, O., Frohlich, C., Heikal, A., Skagseth, S., Carlsen, T., Leiros, H.S., Bayer, A., Schnaars, C., Kildahl-Andersen, G., et al. ZN148 Is a Modular Synthetic Metallo-beta-Lactamase Inhibitor That Reverses Carbapenem Resistance in Gram-Negative Pathogens In Vivo. Antimicrob Agents Chemother, 2020. 64(6).
- Krasavin, M., Zhukovsky, D., Solovyev, I., Barkhatova, D., Dar'In, D., Frank, D., Martinelli, G., Weizel, L., Proschak, A., Rotter, M., et al. RhII -Catalyzed De-symmetrization of Ethane-1,2-dithiol and Propane-1,3-dithiol Yields Metallo-β-lactamase Inhibitors. ChemMedChem, 2021. 16(22):3410-3417.
- Omolabi, K.F., Reddy, N., Mdanda, S., Ntshangase, S., Singh, S.D., Kruger, H.G., Naicker, T., Govender, T., Bajinath, S. Thein vitro andin vivo potential of metal-chelating agents as metallo-beta-lactamase inhibitors against carbapenem-resistantEnterobacterales. FEMS Microbiology Letters, 2023. 370.
- Bognanni, N., Brisdelli, F., Piccirilli, A., Basile, L., La Piana, L., Di Bella, S., Principe, L., Vecchio, G., Perilli, M. New polyimidazole ligands against subclass B1 metallo-β-lactamases: Kinetic, microbiological, docking analysis. Journal of Inorganic Biochemistry, 2023. 242:112163.
- Chen, F., Bai, M., Liu, W., Kong, H., Zhang, T., Yao, H., Zhang, E., Du, J., Qin, S. H2dpa derivatives containing pentadentate ligands: An acyclic adjuvant potentiates meropenem activity in vitro and in vivo against metallo-β-lactamase-producing Enterobacterales. European Journal of Medicinal Chemistry, 2021. 224(15):113702.
- Rotter, M.J., Zentgraf, S., Weizel, L., Frank, D., Burgers, L.D., Brunst, S., Fürst, R., Proschak, A., Wichelhaus, T.A., Proschak, E. Integrating Siderophore Substructures in Thiol-Based Metallo-β-Lactamase Inhibitors. Molecules, 2023. 28(4):1984.
- Caburet, J., Verdirosa, F., Moretti, M., Roulier, B., Simoncelli, G., Haudecoeur, R., Ghazi, S., Jamet, H., Docquier, J., Boucherle, B., et al. Aurones and derivatives as promising New Delhi metallo-β-lactamase (NDM-1) inhibitors. Bioorganic & Medicinal Chemistry, 2024. 97:117559.
- Hu, L., Yang, H., Yu, T., Chen, F., Liu, R., Xue, S., Zhang, S., Mao, W., Ji, C., Wang, H., et al. Stereochemically altered cephalosporins as potent inhibitors of New Delhi metallo-β-lactamases. European Journal of Medicinal Chemistry, 2022. 232:114174.
- Kaya, C., Konstantinović, J., Kany, A.M., Andreas, A., Kramer, J.S., Brunst, S., Weizel, L., Rotter, M.J., Frank, D., Yahiaoui, S., et al. N -Aryl Mercaptopropionamides as Broad-Spectrum Inhibitors of Metallo-β-Lactamases. Journal of Medicinal Chemistry, 2022. 65(5):3913-3922.
- Farley, A.J.M., Ermolovich, Y., Calvopiña, K., Rabe, P., Panduwawala, T., Brem, J., Björkling, F., Schofield, C.J. Structural Basis of Metallo-β-lactamase Inhibition byN -Sulfamoylpyrrole-2-carboxylates. ACS Infectious Diseases, 2021. 7(6):1809-1817.
- Tehrani, K.H.M.E., Wade, N., Mashayekhi, V., Brüchle, N.C., Jespers, W., Voskuil, K., Pesce, D., van Haren, M.J., van Westen, G.J.P., Martin, N.I. Novel Cephalosporin Conjugates Display Potent and Selective Inhibition of Imipenemase-Type Metallo-β-Lactamases. Journal of Medicinal Chemistry, 2021. 64(13):9141-9151.
- Verdirosa, F., Gavara, L., Sevaille, L., Tassone, G., Corsica, G., Legru, A., Feller, G., Chelini, G., Mercuri, P.S., Tanfoni, S., et al. 1,2,4-Triazole-3-Thione Analogues with a 2-Ethylbenzoic Acid at Position 4 as VIM-type Metallo-β-Lactamase Inhibitors. ChemMedChem, 2022. 17(7).
- Yan, Y., Li, W., Chen, W., Li, C., Zhu, K., Deng, J., Dai, Q., Yang, L., Wang, Z., Li, G. Structure-guided optimization of 1H-imidazole-2-carboxylic acid derivatives affording potent VIM-Type metallo-β-lactamase inhibitors. European Journal of Medicinal Chemistry, 2022. 228:113965.
- Gavara, L., Legru, A., Verdirosa, F., Sevaille, L., Nauton, L., Corsica, G., Mercuri, P.S., Sannio, F., Feller, G., Coulon, R., et al. 4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors. Bioorganic Chemistry, 2021. 113:105024.
- Yan, Y., Ding, H., Zhu, K., Mu, B., Zheng, Y., Huang, M., Zhou, C., Li, W., Wang, Z., Wu, Y., et al. Metal binding pharmacophore click-derived discovery of new broad-spectrum metallo-β-lactamase inhibitors. European Journal of Medicinal Chemistry, 2023. 257:115473.
- Wachino, J.I., Jin, W., Kimura, K., Kurosaki, H., Sato, A., Arakawa, Y. Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-beta-Lactamase Inhibitors for Controlling Bacterial Carbapenem Resistance. mBio, 2020. 11(2).
- Mishra, A., Cosic, I., Loncarevic, I., Cosic, D., Fletcher, H.M. Inhibition of β-lactamase function by de novo designed peptide. PLOS ONE, 2023. 18(9):e0290845.
- Lomovskaya, O., Castanheira, M., Lindley, J., Rubio-Aparicio, D., Nelson, K., Tsivkovski, R., Sun, D., Totrov, M., Loutit, J., Dudley, M. In vitro potency of xeruborbactam in combination with multiple β-lactam antibiotics in comparison with other β-lactam/β-lactamase inhibitor (BLI) combinations against carbapenem-resistant and extended-spectrum β-lactamase-producingEnterobacterales. Antimicrobial Agents and Chemotherapy, 2023. 67(11).
- Papp-Wallace, K.M., McLeod, S.M., Miller, A.A. Durlobactam, a Broad-Spectrum Serine β-lactamase Inhibitor, Restores Sulbactam Activity AgainstAcinetobacter Species. Clinical Infectious Diseases, 2023. 76(Supplement_2):S194-S201.
- Bouchet, F., Barnier, J.P., Sayah, I., Bagdad, Y., Miteva, M.A., Arthur, M., Ethève Quelquejeu, M., Iannazzo, L. Ruthenium-Catalyzed Cycloaddition for Introducing Chemical Diversity in Second-Generation β-Lactamase Inhibitors. ChemMedChem, 2023. 18(9).
- Alsenani, T.A., Rodríguez, M.M., Ghiglione, B., Taracila, M.A., Mojica, M.F., Rojas, L.J., Hujer, A.M., Gutkind, G., Bethel, C.R., Rather, P.N., et al. Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses. Antimicrobial Agents and Chemotherapy, 2023. 67(1).
- Romero, E., Oueslati, S., Benchekroun, M., D Hollander, A.C.A., Ventre, S., Vijayakumar, K., Minard, C., Exilie, C., Tlili, L., Retailleau, P., et al. Azetidinimines as a novel series of non-covalent broad-spectrum inhibitors of β-lactamases with submicromolar activities against carbapenemases KPC-2 (class A), NDM-1 (class B) and OXA-48 (class D). European Journal of Medicinal Chemistry, 2021. 219(5):113418.
- Krajewska, J., Chyży, P., Durka, K., Wińska, P., Krzyśko, K.A., Luliński, S., Laudy, A.E. Aromatic Diboronic Acids as Effective KPC/AmpC Inhibitors. Molecules, 2023. 28(21):7362.
- Lomovskaya, O., Rubio-Aparicio, D., Tsivkovski, R., Loutit, J., Dudley, M. The Ultrabroad-Spectrum Beta-Lactamase Inhibitor QPX7728 Restores the Potency of Multiple Oral Beta-Lactam Antibiotics against Beta-Lactamase-Producing Strains of Resistant Enterobacterales. Antimicrob Agents Chemother, 2022. 66(2):e0216821.
- Shi, S., Zhang, X., Yao, Z., Xu, M., Zhou, B., Liu, Q., Zhang, Y., Zhou, C., Zhou, T., Ye, J. Synergistic effect of the novel β-lactamase inhibitor BLI-489 combined with imipenem or meropenem against diverse carbapenemase-producing carbapenem-resistant Enterobacterales. Journal of Antimicrobial Chemotherapy, 2022. 77(5):1301-1305.
- Farhat, N., Gupta, D., Ali, A., Kumar, Y., Akhtar, F., Kulanthaivel, S., Mishra, P., Khan, F., Khan, A.U. Broad-Spectrum Inhibitors against Class A, B, and C Type β-Lactamases to Block the Hydrolysis against Antibiotics: Kinetics and Structural Characterization. Microbiology Spectrum, 2022. 10(5).
- Trout, R.E., Zulli, A., Mesaros, E., Jackson, R.W., Boyd, S., Liu, B., Hamrick, J., Daigle, D., Chatwin, C.L., John, K., et al. Discovery of VNRX-7145 (VNRX-5236 Etzadroxil): An Orally Bioavailable β-Lactamase Inhibitor for Enterobacterales Expressing Ambler Class A, C, and D Enzymes. Journal of Medicinal Chemistry, 2021. 64(14):10155-10166.
- Yan, Y., Li, Z., Ning, X., Deng, J., Yu, J., Luo, Y., Wang, Z., Li, G., Li, G., Xiao, Y. Discovery of 3-aryl substituted benzoxaboroles as broad-spectrum inhibitors of serine- and metallo-β-lactamases. Bioorg Med Chem Lett, 2021. 41(1):127956.
- Hinchliffe, P., Moreno, D.M., Rossi, M.A., Mojica, M.F., Martinez, V., Villamil, V., Spellberg, B., Drusano, G.L., Banchio, C., Mahler, G., et al. 2-Mercaptomethyl Thiazolidines (MMTZs) Inhibit All Metallo-beta-Lactamase Classes by Maintaining a Conserved Binding Mode. ACS Infect Dis, 2021. 7(9):2697-2706.
- Paquet-Côté, P., Alejaldre, L., Lapointe Verreault, C., Gobeil, S.M.C., Lamoureux, R., Bédard, L., Normandeau, C., Lemay-St-Denis, C., Pelletier, J.N., Voyer, N. Development of sulfahydantoin derivatives as β-lactamase inhibitors. Bioorganic & Medicinal Chemistry Letters, 2021. 35:127781.
| Compounds | Substrates | Enzymes | Activity | Pathogens | Ref. |
| Taniborbactam | cefepime, ceftazidime, imipenem, tebipenem, and cefiderocol | NDM-1 | reduced MIC by 32, 133, and 33 fold | EC | [37] |
| Ag2O2@BP-MT@MM | meropenem | NDM-1 | IC50 = 0.24 μM | KP | [38] |
| Quinolinyl sulfonamides | meropenem | NDM-1 | IC50 = 0.02-24.8 μM | EC | [39] |
| Thiosemicarbazones | meropenem | NDM-1 | FICI = 0.34 | E. cloacae | [40] |
| α-lipoic acid , methimazole | meropenem | NDM-1 | reduced MIC by 16 and 4 fold | EC | [41] |
| Withaferin A, mangiferin | imipenem | NDM-1 | FICI = 0.0625-0.5 | AB | [42] |
| Bismuth complexes | meropenem | NDM-1 | reduced MIC by 128 fold | KP | [43] |
| Risedronate, Methotrexate, D-captopril |
nitrocefin, ampicillin, cefotaxime, imipenem, meropenem | NDM-1 | IC50 = 24.6 µM, 29.7 µM, 11.8 µM | EC | [44] |
| Polypyridine ligands | meropenem | NDM-1 | reduced MIC by 8 to 128 fold | KP, SM, Enterobacter cloacae |
[45] |
| Thiosemicarbazones | ampicillin, cefazolin, meropenem | NDM-1 | reduced MIC by 4-32, 4-32, and 4-8 fold | EC | [46] |
| 1,2-Isoselenazol-3(2H)-one derivatives | meropenem | NDM-1 | FICI = 0.0625-0.25 µM | carbapenem-resistant Enterobacteriaceae | [47] |
| N-acylhydrazones | meropenem | NDM-1 | reduced MIC by 4-16 fold | EC, KP | [48] |
| Xeruborbactam | meropenem, cefepime | NDM-1, NDM-9 | IC50 = 0.24-1.2 μM | EC, KP | [49] |
| ANT2681 | meropenem | NDM-1, NDM-4, NDM-5, NDM-7 | reduced MIC by 16-512 fold | EC | [50] |
| Thiosemicarbazones | meropenem | NDM-1, ImiS (B2) | reduced MIC by 8-32 fold | EC, PK | [51] |
| Hydroxamates | meropenem, cefazolin | IMP, NDM-1, VIM-2, Li, ImiS (B2) | IC50 = 0.1 - 0.23 μM | not specified | [52] |
| Dipyridyl-substituted thiosemicarbazone | meropenem | NDM-1, VIM-2, IMP-1, ImiS (B2), Li (B3) | reduced MIC by 32 fold | EC, PK | [53] |
| Compounds | Substrates | Enzymes | Activity | Pathogens | Ref. |
| ZN148 | meropenem | VIM-2 | reduced MIC by 2 fold | PA, AB | [54] |
| Alkylthio-substituted aliphatic thiols 3 | imipenem | VIM-1 | IC50 = 0.3 μM and 0.02 μM | EC | [55] |
| 1,4,7-triazacyclononane-1,4,7 triacetic acid | meropenem | IMP-1 | decreased MIC by 9-11 fold | EC, KP, E. cloacae | [56] |
| Cephalosporin-Tripodalamine Conjugate | meropenem | IMP-4 | reduced MIC by 16-512 fold | EC | [35] |
| Polyimidazole ligands | meropenem, aztreonam | VIM-1, IMP-1 | reduced MIC by 4 fold | EC, KP | [57] |
| H2dpa derivatives | meropenem | IMP-1, VIM-2 | FICI = 0.07-0.18 | EC | [58] |
| Two catechol-conjugated compounds | imipenem | VIM-1, IMP-7 | FICI = 0.045-4.3 | KP | [59] |
| Aurones and derivatives | meropenem | VIM-2, IMP-1 | Ki = 1.7 and 2.5 µM | EC | [60] |
| Cephalosporin derivatives | meropenem, doripenem | IMP-1, VIM-27 | IC50 = 0.13 mM | Acinetobacter | [61] |
| N-Aryl Mercaptopropionamides | imipenem | IMP-7, VIM-1 | reduced MIC by 256 fold | EC | [62] |
| N-Sulfamoylpyrrole-2-carboxylates | meropenem | VIM-1, VIM-2, IMP-1 | reduced MIC from 64 to 0.375 μg/mL | EC, KP | [63] |
| Cephalosporin Conjugates | meropenem | IMP-1, IMP-28, VIM-2 | reduced MIC by 64 fold | EC, KP, E. cloacae | [64] |
| 1,2,4-Triazole-3-Thione Analogues | meropenem | VIM-1, VIM-2, VIM-4, IMP-1 | reduced MIC by 4-16 fold | EC | [65] |
| 1H-imidazole-2-carboxylic acidderivatives | meropenem | VIM-2, VIM-1, VIM-5, IMP-1 | reduced MIC by 64 fold | EC | [66] |
| 4-Alkyl-1,2,4-triazole-3-thione analogues | meropenem | VIM-2, VIM-4 | IC50 = 0.27 μM | KP | [67] |
| Phthalic acid, phenylboronic acid and benzyl phosphoric acid | not specified | IMP-1, VIM-1, VIM-2, VIM-5 | IC50 = 0.00012 - 0.64 μM | not specified | [68] |
| Compounds | substrates | Enzymes | Activity | Pathogens | Ref. |
| Sulfamoyl Heteroarylcarboxylic Acids | meropenem | TMB-2, SPM-1, DIM-1, SIM-1, KHM-1 | reduced MIC by 128 fold | EC | [69] |
| Pep3 peptide | meropenem | TEM-1 | 500 μg of pep3 peptide can completely inhibit the activity of TEM-1 β-lactamase | EC, E. cloacae | [70] |
| Xeruborbactam | cefepime, ceftolozane, ceftriaxone, aztreonam, oiperacillin, ertapenem | KPC-2, CTX-M-14, CTX-M-15, SHV-12, TEM-10 | reduced MIC by 8 fold | Enterobacterales | [71] |
| Durlobactam | sulbactam | TEM-1,KPC-2 ,ADC-7 ,OXA-24 | reduced MIC by 32 fold | Acinetobacter | [72] |
| 1,5 disubstituted, 1,4,5 trisubstituted triazole DBOs |
aztreonam | KPC-2 | reduced the MIC from 512 μg/ml to < 0.016 μg/ml | EC | [73] |
| A-amido-b-triazolylethaneboronic acid transition state | not specified | KPC2, CTX-M-96, CTX-M-15 | IC50 = 2 - 135 nM | EC | [74] |
| Azetidinimines | not specified | KPC-2, OXA-48 | Ki = 0.07, 0.28 and 0.07 mM | EC | [75] |
| Aromatic Diboronic Acids | meropenem, Imipenem, ceftazidime | CMY-2, CMY-2, KPC-3 | reduced MIC by 8-16 fold | KP, EC, PA | [76] |
| QPX7728 | tebipenem, ceftibuten, amdinocillin |
OXA-48, CMY-2 | reduced MIC by 4-32 fold | Enterobacterales | [77] |
| BLI-489 | imipenem, meropenem | KPC-2, KPC-2, OXA-23 | reduced MIC by 16 fold | Enterobacterales | [78] |
| D63, D2148, D2573 | imipenem, meropenem | KPC-2, CTX-M-15, SHV-1, TEM-1, NDM-1, Amp-C | reduced MIC by 16 fold | EC | [79] |
| VNRX-7145 | ceftibuten | SHV-5, KPC-2, AmpC, OXA-48 | IC50 = 0.003-8.55 μM | EC, KP | [80] |
| 3-aryl substituted benzoxaborole derivatives | meropenem | KPC-2, AmpC, TEM-1 | IC50 = 86 nM | EC, KP | [81] |
| 2-Mercaptomethyl thiazolidines | imipenem | SHI-1 | reduced MIC by 4 fold | EC | [82] |
| Aulfahydantoin derivatives | not specified | TEM-1, TEM-15 | IC50 =130 - 510 μM | not specified | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).