Submitted:
30 December 2024
Posted:
02 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Isolates and Patients
2.2. Antimicrobial Susceptibility and Phenotypic Tests for β-lactamases
2.3. Molecular Detection of Resistance Genes
2.4. Detection of Resistance Genes by Inter-Array Kit CarbaResist
2.5. Whole Genome Sequencing
2.6. Plasmid Content
2.7. MLST
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates and Patients
4.2. Antimicrobial Susceptibility Testing (AST) and Phenotypic Tests for Detection of ESBLs, Plasmid-mediated AmpC β-lactamases and Carbapenemases
4.3. Molecular Detection of Resistance Genes
4.4. Interarray-Chip Method
4.5. Whole Genome Sequencing (WGS)
4.6. Characterization of Plasmids
4.7. Genotyping of the Isolates
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Morrison, L.; Zembower, T.R. Antimicrobial Resistance. Gastrointest. Endosc. Clin. N. Am. 2020, 30, 619–635. [Google Scholar] [CrossRef] [PubMed]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial Resistance: A Global Emerging Threat to Public Health Systems. Crit. Rev. Food. Sci Nutr. 2017, 2, 2857–2876. [Google Scholar] [CrossRef]
- Podschun, R.; Ullmann, U. Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clin Microbiol Rev. [CrossRef]
- Martin, R.M.; Bachman, M.A. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: an Update on Their Characteristics, Epidemiology and Detection. JAC Antimicrob Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin Microbiol Rev. 2020, 33, e00047–19. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A.; Munoz-Price, L.S. The New β-lactamases. N Engl J Med. 2005, 352, 380–91. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.; Nordmann, P.; Poirel, L. Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrob Agents Chemother. 2015, 59, 5873–84. [Google Scholar] [CrossRef]
- Falagas, M.E.; Rafailidis, P.I.; Matthaiou, D.K. Resistance to Polymyxins: Mechanisms, Frequency and Treatment Options. Drug Resist Updat. [CrossRef]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: a Major Worldwide Source and Shuttle for Antibiotic Resistance. FEMS Microbiol Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin Microbiol Rev. 2018, 31, 31,e00079–17. [Google Scholar] [CrossRef] [PubMed]
- Santerre Henriksen, A.; Arena, F.; Attwood, M.; Canton, R.; Gatermann, S.; Naas, T.; Morrissey, I.; Longshaw, C. ARTEMIS Study Investigators. In vitro Activity of Cefiderocol Against European Enterobacterales, Including Isolates Resistant to Meropenem and Recent β-lactam/β-lactamase Inhibitor Combinations. Microbiol Spectr. 8123. [Google Scholar] [CrossRef]
- Daoud, L.; Allam, M.; Collyns, T.; Ghazawi, A.; Saleem, A.; Al-Marzooq, F. Extreme Resistance to the Novel Siderophore-cephalosporin Cefiderocol in an Extensively Drug-resistant Klebsiella pneumoniae Strain Causing Fatal Pneumonia with Sepsis: Genomic Analysis and Synergistic Combinations for Resistance Reversal. Eur J Clin Microbiol Infect Dis. 2023, 42, 42,1395–1400. [Google Scholar] [CrossRef]
- Yao, J.; Wang, J.; Chen, M.; Cai, Y. Cefiderocol: An Overview of Its in-vitro and in-vivo Activity and Underlying Resistant Mechanisms. Front Med (Lausanne). 2021, 8, 741940. [Google Scholar] [CrossRef]
- Freiberg, J.A. .; Tao, L.; Manuel, C.; Mike, L.A.; Nelson, G.E.; Harris, B.D.; Mathers, A.J.; Talbot, T.R.; Skaar, E.P.; Humphries, R.M. A Multi-species Outbreak of VIM-producing Carbapenem-resistant Bacteria in a Burn Unit and Subsequent Investigation of Rapid Development of Cefiderocol Resistance. Antimicrob Agents Chemother. 2024, 68, e0150723. [CrossRef]
- Kohira, N.; Hackel, M.A.; Oota, M.; Takemura, M.; Hu, F.; Mizuno, H.; Sahm, D.F.; Yamano, Y. In vitro Antibacterial Activities of Cefiderocol Against Gram-negative Clinical Strains Isolated from China in 2020. J Glob Antimicrob Resist. 2023, 32, 32,181–186. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Rousaki, M.; Vassilopoulou, L.; Kritsotakis, E.I. Global Prevalence of Cefiderocol Non-susceptibility in Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia: a Systematic Review and Meta-analysis. Clin Microbiol Infect. 2024, 30, 30,178–188. [Google Scholar] [CrossRef] [PubMed]
- https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-eueea-ears-net-annual-epidemiological-report-2020 (accessed on 15th 24). 20 September.
- Tambić-Andrašević, A. Bacterial Susceptibility and Resistance in Croatia, 2023. Croatian Academy of Medical Sciences.
- Antimicrobial resistance: global report on surveillance, ttps://www.who.int/publications/i/item/9789241564748.
- Bedenić, B.; Slade, M.; Starčević, L.Ž.; Sardelić, S.; Vranić-Ladavac, M.; Benčić, A.; Zujić Atalić, V.; Bogdan, M.; Bubonja-Šonje, M.; Tomić-Paradžik, M.; Tot, T.; Lukić-Grlić, A.; Drenjančević, D.; Varda-Brkić, D.; Bandić-Pavlović, D.; Mihaljević, S.; Zarfel, G. ; Gužvinec,M.; Conzemius, R.; Barišić, I.; Tambić-Andraševic, A. Epidemic Spread of OXA-48 beta-lactamase in Croatia. J Med Microbiol, 1031; 67. [Google Scholar] [CrossRef]
- Šuto, S.; Bedenić, B.; Likić, S.; Kibel, S. ,, Anušić, M.; Tičić, V.; Zarfel, G.; Grisold, A.; Barišić, I.; Vraneš, J. Diffusion of OXA-48 Carbapenemase among Urinary Isolates of in Non-hospitalized Elderly Patients. BMC Microbiol. [CrossRef]
- Simner, P.J.; Bergman, Y.; Conzemius, R.; Jacobs, E.; Tekle, T.; Beisken, S.; Tamma, P.D. An NDM-Producing Escherichia coli Clinical Isolate Exhibiting Resistance to Cefiderocol and the Combination of Ceftazidime-Avibactam and Aztreonam: Another Step Toward Pan-β-Lactam Resistance. Open Forum Infect Dis. 2023, 10, ofad276. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.M.; Wang, S.; Chiu, H.C.; Kao, C.Y.; Wen, L.L. Combination of modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) for phenotypic detection of carbapenemase-producing Enterobacteriaceae. BMC Microbiol. 2020, 17, 315. [Google Scholar] [CrossRef]
- Saladin, M.; Cao, V.T.B.; Lambert, T.; Donay, J.L.; Hermann, J.; Ould-Hocine, L. Diversity of CTX-M β-lactamases and Their Promoter Regions from Enterobacteriaceae Isolated in Three Parisian Hospitals. FEMS Microbiol. Lett. 2002, 209, 161–168. [Google Scholar] [CrossRef]
- Ranieri, S.C.; Fabbrizi, V.; D' Amario, A.M.; Frascella, M.G.; Di Biase, V.; Di Francesco, C.; Di Sante, S.; De Berardis, L.; De Martinis, M.; Partenza, M.; Chiaverini, A.; Centorotola, G.; Cammà, C.; Pomilio, F.; Cornacchia, A. First Report of a blaNDM-producing Extensively Drug Resistant Klebsiella pneumoniae ST437 in Italy. Front Cell Infect Microbiol. 2024, 14, 1426817. [Google Scholar] [CrossRef]
- Bedenić, B.; Luxner, J.; Car, H.; Sardelić, S.; Bogdan, M.; Varda-Brkić, D.; Šuto, S.; Grisold, A.; Beader, N.; Zarfel, G. Emergence and Spread of Enterobacterales with Multiple Carbapenemases after COVID-19 Pandemic. Pathogens. 2023, 12, 677. [Google Scholar] [CrossRef] [PubMed]
- Zujić-Atalić, V.; Bedenić, B.; Kocsis, E.; Mazzariol, A.; Sardelić, S.; Barišić, M.; Plečko, V.; Bošnjak, Z.; Mijač, M.; Jajić, I.; Vranić-Ladavac, M.; Cornaglia, G. Diversity of Carbapenemases in Clinical Isolates of Enterobacteriaceae in Croatia-the Resu,lts of the Multicenter Study. Clinical Microbiology and Infection. 2014, 20, 894–903. [Google Scholar] [CrossRef]
- Mazzariol, A.; Bošnjak, Z.; Ballarini, P.; Budimir, A.; Bedenić, B.; Kalenić, S.; Cornaglia, G. NDM-1-producing Klebsiella pneumoniae, Croatia. Emerg Infect Dis. 2012, 18, 532–4. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12. 2022. Available online: http://www.eucast.org (accessed on 1 October 2022).
- Clinical Laboratory Standard Institution. Performance Standards for Antimicrobial Susceptibility Testing, approved Standard M100-S22, 28th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrug-resistant, Extensively Drug-resistant and Pandrug-resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Davis, R.; Brown, P.D. Multiple Antibiotic Resistance Index, Fitness and Virulence Potential in 408 Respiratory Pseudomonas aeruginosa from Jamaica. J Med Microbiol. 2016, 65, 261–71. [Google Scholar] [CrossRef] [PubMed]
- Jarlier, V.; Nicolas, M.H.; Fournier, G.; Philippon, A. Extended broad-spectrum -lactamases conferring transferable resistance to newer -lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis.
- Peter-Getzlaff, S.; Polsfuss, S.; Poledica, M.; Hombach, M.; Giger, J.; Böttger, E.C.; Zbinden, R.; Bloemberg, G.V. Detection of AmpC beta-lactamase in Escherichia coli: Comparison of Three Phenotypic Confirmation Assays and Genetic Analysis. J Clin Microbiol. 2011, 49, 2924–32. [Google Scholar] [CrossRef] [PubMed]
- Coudron, I. Inhibitor-based Methods for Detection of Plasmid-mediated AmpC β-lactamases in Klebsiella spp. , Escherichia coli and Proteus mirabilis. J. Clin. Microbiol. 2005, 43, 4163–4167. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, J.W.; Chibabhai, V. Evaluation of the RESIST-4 O.K.N.V Immunochromatographic Lateral Flow Assay for the Rapid Detection of OXA-48, KPC, NDM and VIM Carbapenemases from Cultured Isolates. Access Microbiol. 2019, 1, e000031. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance standards for antimicrobial susceptibility testing, M100(S31). Clinical and Laboratory Standards Institute. 2017.
- Lee,, K. ; Lim, Y.S.; Yong, D.; Yum, J.H.; Chong, Y. Evaluation of the Hodge Test and the Imipenem-EDTA-double-disk Synergy Test for Differentiating Metallo-β-lactamase-producing Isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2003, 41, 4623–4629. [Google Scholar] [CrossRef]
- CLSI. Performance standards for antimicrobial susceptibility testing, M100, 31st ed. Clinical and Laboratory Standards Institute, Wayne, PA. 2021.
- Arlet, G.; Brami, G.; Decre, D.; Flippo, A.; Gaillot, O.; Lagrange, P.H.; Philippon, A. Molecular Characterization by PCR Restriction Fragment Polymorphism of TEM β-lactamases. FEMS Microbiol. Lett. 1995, 134, 203–208. [Google Scholar] [CrossRef]
- Nüesch-Inderbinen, M.T.; Hächler, H.; Kayser, F.H. Detection of Genes Coding for Extended-spectrum SHV β-lactamases in Clinical Isolates by a Molecular Genetic Method, and Comparison with the E test. Eur. J. Clin. Microbiol. Infect. Dis. 1996, 15, 398–402. [Google Scholar] [CrossRef]
- Woodford, N.; Ward, M.E.; Kaufmann, M.E.; Turton, J.; Fagan, E.J.; James, D.; Johnson, A.P.; Pike, R.; Warner, M.; Cheasty, T. Community and Hospital Spread of Escherichia coli producing CTX-M Extended-spectrum β-lactamases in the UK. J. Antimicrob. Chemother. 2004, 54, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Robicsek, A.; Jacoby, G.A.; Hooper, D.C. The Worldwide Emergence of Plasmid-mediated Quinolone Resistance. Lancet Infect. Dis. 2006, 6, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.F.; Gu, D.; Ren, H.; Chen, X.; Lv, L. , He, D.; Zhou, H.; Liang, Z.; Liu, J.H.;, Shen, J. Emergence of Plasmid-mediated Colistin Resistance Mechanism MCR-1 in Animals and Human Beings in China: a Microbiological and Molecular Biological Study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for Rapid Detection of Genes Encoding CTX-M extended-spectrum β-lactamases. J. Antimicrob. Chemother. 2006, 57, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Perez-Perez, F.J.; Hanson, N.D. Detection of Plasmid-mediated AmpC β-lactamase Genes in Clinical Isolates by Using Multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuveiller, V.; Nordman, P. Multiplex PCR for Detection of Acquired Carbapenemases Genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Héritier, C.; Tolün, V.; Nordmann, P. Emergence of Oxacillinase-mediated Resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Aarestrup, F.M.; Larsen, M.V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threfall, E.J. Identification of Plasmids by PCR-based Replicon Typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Seiffert, S.N.; Schwendener, S.; Perreten, V.; Endimiani, A. Differentiation of IncL and IncM Plasmids Associated with the Spread of Člinically Relevant Antimicrobial Resistance. PLoS ONE 2015, 10, e0123063. [Google Scholar] [CrossRef]
- Diancourt, L.; Passet, V.; Verhoef, J.; Grimont, P.A.; Brisse, S. Multilocus Sequence Typing of Klebsiella pneumoniae Nosocomial Isolates. J. Clin. Microbiol. 2005, 43, 4178–4182. [Google Scholar] [CrossRef] [PubMed]
| Center | Strain | AMC | TZP | CRO | IMI | MEM | GM | AMI | CIP | COL | CZA | C/T | β-lactamase content | ||
| 1 | UHCS | UG65815 | >128 | 128 | >128 | 64 | 128 | 64 | 32 | 64 | 0.5 | R | R | VIM-1, NDM-5, CTX-M SHV |
|
| 2 | UHCS | UG76341 | >128 | >128 | >128 | 64 | 128 | >128 | >128 | >128 | 0.5 | R | R | OXA-48+NDM, CTX-M, SHV |
|
| 3 | UHCS | UG72466 | >128 | 128 | >128 | 8 | 32 | 1 | 2 | >128 | 1 | S | R | OXA-48, CTX-M, SHV | |
| 4 | UHCS | UG54341 | >128 | 128 | >128 | 1 | 2 | >128 | >128 | >128 | 1 | R | R | NDM, SHV, TEM | |
| 5 | UHCS | UG68640 | >128 | 128 | >128 | 64 | >128 | >128 | >128 | >128 | 1 | S | R | OXA-48, CTX-M, SHV | |
| 6 | UHCS | UG72747 | >128 | 128 | >128 | 64 | >128 | >128 | >128 | >128 | 64 | S | R | OXA-48, CTX-M, SHV | |
| 7 | UHCS | UG78315 | >128 | 128 | >128 | 16 | 32 | 128 | >128 | >128 | 1 | S | R | OXA-48,, CTX-M, SHV | |
| 8 | UHCS | UG85877 | >128 | 128 | >128 | 32 | 64 | 128 | >128 | >128 | 0.5 | S | R | OXA-48, CTX-M, SHV | |
| 9 | UHCS | UG78871 | >128 | 128 | >128 | 32 | 64 | >128 | >128 | >128 | 128 | S | R | OXA-48, CTX-M, SHV | |
| 10 | UHCS | UG81973 | >128 | >128 | >128 | 64 | 64 | >128 | >128 | >128 | 128 | S | R | OXA-48, CTX-M, SHV | |
| 11 | UHCS | UG45741 | >128 | 128 | >128 | 16 | 64 | >128 | >128 | >128 | 0.5 | S | R | OXA-48, CTX-M, SHV | |
| 12 | UHCS | UG78464 | >128 | 128 | >128 | 32 | 64 | >128 | >128 | >128 | 32 | S | R | OXA-48, CTX-M, SHV | |
| 13 | UHCS | UG75475 | >128 | 128 | >128 | 32 | 32 | >128 | >128 | >128 | 2 | S | R | OXA-48, CTX-M, SHV | |
| 14 | UHCSM | VG34989 | >128 | 128 | >128 | 4 | 4 | 64 | 16 | >128 | 16 | S | R | OXA-48, CTX-M, SHV | |
| 15 | UHCSM | VG51854 | >128 | 128 | >128 | 32 | 64 | >128 | >128 | >128 | 0.5 | S | R | KPC, TEM, SHV, TEM | |
| 16 | UHCSM | VG51612 | >128 | 128 | >128 | 64 | 128 | 64 | 64 | >128 | 0.5 | S | R | KPC, TEM, SHV | |
| 17 | UHCSM | VG51788 | >128 | 128 | >128 | 32 | 64 | >128 | >128 | >128 | 0.5 | S | R | KPC, TEM, SHV | |
| 18 | UHCSM | VG52055 | >128 | >128 | >128 | 16 | 8 | >128 | >128 | >128 | 0.5 | S | R | KPC, TEM, SHV | |
| 19 | UHCSM | VG54301 | >128 | >128 | >128 | 32 | 64 | >128 | >128 | >128 | 8 | S | R | KPC, TEM, SHV, | |
| 20 | UHCSM | VG56379 | >128 | >128 | >128 | 64 | >128 | >128 | >128 | >128 | S | R | KPC, TEM, SHV | ||
| 21 | PH | 80862-24 | >128 | >128 | >128 | 64 | 128 | >128 | >128 | >128 | 32 | R | R | OXA-48+NDM | |
| 22 | PH | 51785-24 | >128 | 128 | 128 | 128 | 128 | 64 | 32 | >128 | 0.5 | S | R | KPC, TEM, SHV, TEM | |
| 23 | PH | 46551-24 | >128 | >128 | >128 | 8 | 32 | >128 | >128 | >128 | 0.5 | S | R | OXA-48, CTX-M, SHV | |
| 24 | PH | 45896-24 | 128 | 128 | 16 | 16 | 32 | 64 | 32 | >128 | 0.5 | S | R | OXA-48, CTX-M, SHV, TEM | |
| 25 | PH | 49359-24 | >128 | >128 | >128 | 8 | 32 | 128 | 32 | >128 | 0.5 | S | R | OXA-48, CTX-M, SHV | |
| 26 | PH | 46238-24 | >128 | >128 | >128 | 8 | 32 | >128 | >128 | >128 | 16 | S | R | OXA-48, CTX-M, SHV, TEM | |
| 27 | PH | 51750-24 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 0.5 | S | R | KPC, TEM, SHV | |
| 28 | PH | 46092-24 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 0.5 | S | R | KPC, TEM, SHV | |
| 29 | PH | 56620-24 | >128 | >128 | >128 | 8 | 16 | >128 | >128 | >128 | 8 | S | R | OXA-48, CTX-M, SHV | |
| 30 | PH | 53807-24 | >128 | >128 | >128 | 8 | 16 | >128 | >128 | >128 | 0.5 | S | R | OXA-48, CTX-M, SHV | |
| 31 | PH | 51785-24 | >128 | 128 | >128 | >128 | >128 | >128 | >128 | >128 | 1 | S | R | KPC, TEM, SHV |
| Isolate | β-Lactam | Aminoglycosides | Fluoroquinolones | Sulphonamides | Trimethoprim | Efflux Pump |
|---|---|---|---|---|---|---|
| 1 (UG65815) |
blaVIM blaNDM blaoxa-1 |
aac(6´)-Ib aadA1 aadA2 |
qnrB |
Sul1 |
dfrA12 | |
| 2 (UG76341) |
blaNDM ISEcp-blaCTX-M-15 blaTEM blaoxa-1 |
aac(6´)-Ib aphA |
Sul1 | oqxA | ||
| 3 (VG-34989) |
blaOXA-48 ISEcp-blaCTX-M-15 blaSHV |
aadA2 armA |
Sul1 |
oqxA oqxB |
||
| 4 (8086-24) |
blaNDM blaOXA-48 ISEcp-blaCTX-M-15 blaSHV |
aadA2 rmtC |
Sul1 | oqxB |
| Isolate | β-Lactam | Aminoglycosides | Sulphonamide | Trimethoprim | Chloramphenicol | Efflux pumps | Plasmid Inc group |
|---|---|---|---|---|---|---|---|
| 1 (UG65815) |
blaNDM-5 blaOXA-1 blaSHV-187 |
Aph(3)-VI (APPJ01000012) Aph(3’’)Ib (AF321550) aadA2 (JQ364967) aac/6”)-Ib (HQ170510) |
Sul1 (EU780013) |
dfrA12 (AM040708) |
catB3 (U13880) |
Col(pHAD28) (KU674895 ColpVC (JX133088) IncFIB(K) (JN233704) IncN (AY046276) IncR (DQ449578) IncX3 (JN247852) |
|
| 2 (UG 76341) |
blaNDM-1 (FN396876) blaCTX-M-15 (AY044436) blaTEM-1B (AY458016) blaOXA-1 (HQ1705109) blaSHV-28 (AF299299) |
aac/6”)-Ib-cr (DQ303918) aac(3”)-Ia (V00359) aphA (M28829) |
Sul1 (EU780013) Sul2 (AY034138) |
OqxB (EU370913) |
ColRNAI (DQ298019) IncFIB(K) (JN233704) IncFII(K) (CP000648) IncL (JN626286) |
||
| 3 (VG-34989) |
blaNDM-5 (JN104597) blaOXA-48 (AY236073) blaCTX-M-15 (AY044436) blaSHV-158 (JX121125) |
aadA2 (JQ364967) armA (AY220558) |
Sul1 (U12338) |
dfrA12 (AM040708) |
OqxB (EU370913) |
IncFIB (JN233705) IncL (JN626286) IncX3 (JN247852) |
|
| 4 (8086-24) |
blaNDM-5 (FN396876) blaOXA-48 (AY236073) blaCTX-M-15 (AY044436) blaSHV-158 (JX121125) |
aadA2 (D43625) rmtC (AB194779) |
Sul1 (U12338) |
OqxB (EU370913) |
IncFII (CP000670) IncL (JN626286) |
| Gene | Primer sequence 5’-3’ |
Annealing temperature | Product length | Reference |
| blaTEM | 5'-ATG-AGT-ATT- CAA-CAT-TTC-CG-3’ 5'-CCA-ATG-CTT-AAT-CAG-TGA-GG-3' |
55 | 850 | 41 |
| blaSHV | 5'-TTC-GCC-TGT-GTA-TTA-TCT-CCC-3 5'-TTA-GCG-TTG-CCA-GTG-YTC-GAT-3' |
58 | 1000 | 42 |
| blaCTX-M | 5’-SCS-ATG-TGC-AGY-ACC-AGT-AA-3’ 5’-CGC-CRA-TAT-GRT-TGG-TGG-TG-3’ |
55 | 550 | 43 |
| blaCTX-M-1 | 5’-AAA-AAT-CAC-TGC-GCC-AGT--TC-3’ 5’-TTG-GTG-ACG-ATT-TTA-GCC-GC-3’ |
52 | 415 | 46 |
| blaCTX-M-2 | 5’-CGA-CGC-TAC-CCC-TGC-TAT-T--3’ 5’-CCA-GCG-TCA-GAT-TTT-TCA-GG-3’ |
52 | 552 | 46 |
| blaCTX-M-9 | 5'-CAA-AGA-GAG-TGC-AAC-GGA-TG-3’3’ 5'ATT-GGA-AAG-CGT-TCA-TCA-CC-3’ |
52 | 205 | 46 |
| blaCTX-M-8 | 5’-TCG-CGT-TAA-GCG-GAT-GAT-GC-3’ 5’-AAC-CCA-CGA-TGT-GGG-TAG-C |
52 | 666 | 46 |
| blaCTX-M-25 | 5’-GCA-CGA-TGA-CAT-TCG-GG-3’ 5’-AAC-CCA-CGA-TGT-GGG-TAG-C-3’ |
52 | 327 | 46 |
| blaMOX | 5’GCT-GCT-CAA-GGA-GCA-CAG-GAT-3’’ 5’CAC-ATT-GAC-ATA-GGT-GTG-GTG-C |
64 | 520 | 47 |
| blaCMY | 5’TGG-CCA-GAA-CTG-ACA-GGC-AAA 5’TTT-CTC-CTG-AAC-GTG-GCT-GGT |
64 | 462 | 47 |
| blaDHA | 5’AAC-TTT-CAC-AGG-TGT-GCT-GGG-T CCG-TAC-GCA-TAC-TGG-CTT-TGC |
64 | 405 | 47 |
| blaACC | 5’AAC-AGC-CTC-AGC-AGC-CGG-TTA TTC-GCC-GCA-ATC-ATC-CCT-AG |
64 | 346 | 47 |
| blaMIR | 5’TCG-GTA-AAG-CCG-ATG-TTG-CGG CTT-CCA-CTG-CGG-CTG-CCA-GTT |
64 | 302 | 47 |
| blaFOX | 5’AAC-ATG-GGG-TAT-CAG-GGA-GAT-G-3’ 5’CAA-AGC-GCG-TAA-CCG-GAT-TGG-3’ |
64 | 190 | 47 |
| blaIMP | 5’GGAATAGAGTGGCTTAAYTCTC-3’ GGTTTAAYAAAACAACCACC-3’ |
52 | 232 | 48 |
| blaVIM | 5-’GATGGTGTTTGGTCGCATA-3’ 5-’CGAATGCGCAGCACCAG-3’ |
52 | 390 | 48 |
| blaNDM | 5’-GGTTTGGCGATCTGGTTTTC-3’ 5’-CGGAATGGCTCATCACGATC-3’ |
52 | 621 | 48 |
| blaKPC | 5’CGTCTAGTTCTGCTGTCTTG-3’ 5’-CTTGTCATCCTTGTTAGGCG-3’ |
52 | 798 | 48 |
| blaOXA-48 | 5’-GCGTGGTTAAGGATGAACAC-3’ 5’-CATCAAGTTCAACCCAACCG-3’ |
52 | 438 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
