Submitted:
30 January 2024
Posted:
30 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Material and methods
2.1. Bacterial isolates and patients
2.2. Molecular-genetic investigations
3. Results
3.1. Bacterial isolates and patient's characteristics
3.2. Antimicrobial susceptibility testing
3.3. Molecular-genetic investigations
4. Discussion
5. Conclusions
References
- Available online: https://apps.who.int/gb/MSPI/pdf_files/2022/03/Item1_07-03.pdf.
- Zimlichman, E.; Henderson, D.; Tamir, O.; Franz, C.; Song, P.; Yamin, C.K.; et al. Health Care-associated infections. A meta-analysis of costs and financial impact on the US Health Care System. JAMA Intern. Med. 2013. [Google Scholar] [CrossRef]
- Magiorakos, A.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.; Giske, C.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012, 18(3), 268–281. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
- Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual epidemiological report for 2021. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2021.
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022, 399(10325), 629–655. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. The review on antimicrobial resistance. 2016. Available online: https://amr-review.org/sites/default/files/160525_ Final% 20paper_ with% 20cover.pdf.
- de Kraker, M. E;A.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed]
- Boucher, H.; Talbot, G.; Bradley, J.; Edwards, J.; Gilbert, D.; Rice, L.B.; et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef]
- World Health Organization. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Available online: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua_1.
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- MacLean, R.; San Milla, A. The evolution of antibiotic resistance. Science 2019, 365(6458), 1082–1083. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400(10369), 2221–2248. [Google Scholar] [CrossRef]
- Yigit, H.; Queenan, A.; Anderson, G.; Domenech-Sanchez, A.; Biddle, J.; Steward, C.; et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef]
- David, S.; Reuter, S.; Harris, S.R.; Glasner, C.; Feltwell, T.; Argimon, S.; EuSCAPE Working Group, ESGEM Study Group, Feil EJ, Rossolini GM, Aanensen DM, Grundmann H. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat. Microbiol. 2019, 4, 1919–1929. [Google Scholar] [CrossRef]
- Savov, E.; Politi, L.; Spanakis, N.; Trifonova, A.; Kioseva, E.; Tsakris, A. NDM-1 Hazard in the Balkan States: Evidence of the First Outbreak of NDM-1-Producing Klebsiella pneumoniae in Bulgaria. Microb. Drug Resist. 2018, 24(3), 253–259. [Google Scholar] [CrossRef]
- Todorova, B.; Sabtcheva, S.; Ivanov, I.; Lesseva, M.; Chalashkanov, T.; Ioneva, M.; et al. First clinical cases of NDM-1-producing Klebsiella pneumoniae from two hospitals in Bulgaria. J. Infect. Chemother. 2016, 22(12), 837–840. [Google Scholar] [CrossRef] [PubMed]
- Politi, L.; Gartzonika, K.; Spanakis, N.; Zarkotou, O.; Poulou, A.; Skoura, L.; et al. Emergence of NDM-1-producing Klebsiella pneumoniae in Greece: evidence of a widespread clonal outbreak. J. Antimicrob. Chemother. 2019, 74(8), 2197–2202. [Google Scholar] [CrossRef]
- Markovska, R.; Stoeva, T.; Boyanova, L.; Stankova, P.; Schneider, I.; Keuleyan, E.; et al. Multicentre investigation of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in Bulgarian hospitals - Interregional spread of ST11 NDM-1-producing K. pneumoniae. Infect. Genet. Evol. 2019, 69, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Brunel, J-M.; Dubus, J-C.; Reynaud-Gaubert, M.; Rolain, J-M. Colistin: an update on the antibiotic of the 21st century. Expert. Rev. Anti. Infect. Ther. 2012, 10(8), 917-934. [CrossRef]
- Evans, M.E.; Feola, D.J.; Rapp, R.P. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant Gram-negative bacteria. Ann. Pharmacother. 1999, 33(9), 960–967. [Google Scholar] [CrossRef] [PubMed]
- Landman, D.; Georgescu, C.; Martin, D.A.; Quale, J. Polymyxins revisited. Clin. Microbiol. Rev. 2008, 21(3), 449–465. [Google Scholar] [CrossRef]
- Binsker, U.; Käsbohrer, A.; Hammerl, J.A. Global colistin use: a review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol. Rev. 2022, 46(1), 1–37. [Google Scholar] [CrossRef]
- Savov, E.; Todorova, I.; Politi, L.; Trifonova, A.; Borisova, M.; Kioseva, E.; Tsakris, A. Colistin Resistance in KPC-2- and SHV-5-Producing Klebsiella pneumoniae Clinical Isolates in Bulgaria. Chemotherapy 2017, 62(6), 339–342. [Google Scholar] [CrossRef]
- Marteva-Proevska, Y.; Velinov, T.; Markovska, R.; Dobrikova, D.; Pavlov, I.; Boyanova, L.; et al. Antibiotic combinations with colistin against carbapenem-resistant Klebsiella pneumoniae – in vitro assessment. J. IMAB 2018, 24, 2258–2266. [Google Scholar] [CrossRef]
- Markovska, R.; Marteva-Proevska, Y.; Velinov, T.; Pavlov, I.; Kaneva, R.; Boyanova, L. Detection of different colistin resistance mechanisms among multidrug-resistant Klebsiella pneumoniae isolates in Bulgaria. Acta Microbiol. Immunol. Hung. 2022, 69(3), 220–227. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.cnscbt.ro/index.php/analiza-date-supraveghere/infectii-nosocomiale-1/2025-consumul-de-antibiotice-rezistenta-microbiana-si-infectiile-asociate-asistentei-medicale-romania-2018/file.
- Galani, I.; Karaiskos, I.; Karantani, I.; Papoutsaki, V.; Maraki, S.; Papaioannou, V.; et al. Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016. Eurosurveillance 2018, 23, 2–13. [Google Scholar] [CrossRef]
- Cizmeci, Z.; Aktas, E.; Otlu, B.; Acikgoz, O.; Ordekci, S. Molecular characterization of carbapenem-resistant Enterobacteriaceae yields increasing rates of NDM-1 carbapenemases and colistin resistance in an OXA-48-endemic area. J. Chemother. 2017, 29, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, M.; D'Andrea, M.; Pelegrin, A.; Mirande, C.; Brkic, S.; Cirkovic, I.; et al. Genomic Epidemiology of Carbapenem- and Colistin-Resistant Klebsiella pneumoniae Isolates From Serbia: Predominance of ST101 Strains Carrying a Novel OXA-48 Plasmid. Front. Microbiol. 2020, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Gandran, S.; Gupta, P.; Mehta, Y.; Laxminarayan, R.; Sengupta, S. Clinical outcome of dual colistin- and carbapenem-resistant Klebsiella pneumoniae bloodstream infections: A single-center retrospective study of 75 cases in India. Am. J. Infect. Control 2017, 45(11), 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Aydın, M.; Ergönül, Ö.; Azap, A.; Bilgin, H.; Aydın, G.; Çavuş, S.; et al. Rapid emergence of colistin resistance and its impact on fatality among healthcare-associated infections. J. Hospital Infect. 2018, 98(3), 260–263. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility (EUCAST). 2015. Testing breakpoint tables for interpretation of MICs and zone diameters. Version 7.1. Available online: www.eucast.org/clinical_breakpoints (accessed on 14 November 2017).
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Lescat, M.; Poirel, L.; Nordmann, P. Rapid multiplex PCR for detection of mcr-1 to −5 genes. DMB 2018. [Google Scholar] [CrossRef]
- Cannatelli, A.; Giani, T.; D'Andrea, M.M.; Di Pilato, V.; Arena, F.; Conte, V.; et al. MgrB Inactivation Is a Common Mechanism of Colistin Resistance in KPC-Producing Klebsiella pneumoniae of Clinical Origin. Antimicrob. Agents Chemother. 2014, 58(10), 5696–5703. [Google Scholar] [CrossRef]
- Cerqueira, G.C.; Earl, A.M.; Ernst, C.M.; Grad, Y.H.; Dekker, J.P.; Feldgarden, M.; et al. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proceedings of the National Academy of Sciences of the United States of America 2017, 114, 1135–1140. [Google Scholar] [CrossRef]
- Cannatelli, A.; Di Pilato, V.; Giani, T.; Arena, F.; Ambretti, S.; Gaibani, P.; et al. In vivo evolution to colistin resistance by PmrB sensor kinase mutation in KPC-producing Klebsiella pneumoniae is associated with low-dosage colistin treatment. Antimicrob. Agents Chemother. 2014, 58, 4399–4403. [Google Scholar] [CrossRef]
- Uzairue, L.I.; Rabaan, A.A.; Adewumi, F.A.; Okolie, O.J.; Folorunso, J.B.; Bakhrebah, M.A.; et al. Global Prevalence of Colistin Resistance in Klebsiella pneumoniae from Bloodstream Infection: A Systematic Review and Meta-Analysis. Pathogens 2022, 11(10), 1092. [Google Scholar] [CrossRef] [PubMed]
- Labarca, J.; Poirel, L.; Ozdamar, M.; Turkoglu, S.; Hakko, E.; Nordmann, P. KPC-producing Klebsiella pneumoniae, finally targeting Turkey. New Microbe New Infect. 2014, 2, 50–51. [Google Scholar] [CrossRef] [PubMed]
- Yusof, N.; Norazzman, N.; Hakim, S.; Azlan, M.; Anthony, A.; Mustafa, F.; et al. Prevalence of Mutated Colistin-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2022, 7(12), 414. [Google Scholar] [CrossRef] [PubMed]
- Guducuoglu, H.; Gursoy, N.; Yakupogullari, Y.; Parlak, M.; Karasin, G.; Sunnetcioglu, M.; et al. Hospital Outbreak of a Colistin-Resistant, NDM-1- and OXA-48-Producing Klebsiella pneumoniae: High Mortality from Pandrug Resistance. Microb. Drug. Resist. 2017, 24, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Petrosillo, N.; Taglietti, F.; Granata, G. Treatment Options for Colistin Resistant Klebsiella pneumoniae: Present and Future. J. Clin. Med. 2019, 8(7), 934. [Google Scholar] [CrossRef]
- Schreiber, P.; Sax, H.; Wolfensberger, A.; Clack, L.; Kuster, S. The preventable proportion of healthcare-associated infections 2005-2016: Systematic review and meta-analysis. Infect. Control Hosp. Epidemiol. 2018, 39(11), 1277–1295. [Google Scholar] [CrossRef]
| n. | g | age | diagnose | intervention | previous intervention | Microbiology | ICU stay | outcome | treatment | carbapenemase | ERIC** | Mcr 1-5 plasmid | mgrB | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| sample | date | |||||||||||||
| 1 | f | 69 | Acute kidney bleeding | Left nephrectomy | *RIRS + LT + JJ cystoscopy |
wound blood culture |
31.08 8.09 |
18.08-3.10 | died | unazyn, ceftriaxon, meropenem, colistin |
OXA-48-like NDM-1 |
A | NEG | NEG |
| 3 | m | 71 | Pancreatic cancer | Traverso-Longmire | bile duct stent | wound tracheo-bronchial tree |
3.09 2.10 |
1-5.09 12.09-2.10 |
died | piperacilin/tazobactam, sulcef, linezolid, colistin | OXA-48-like | B | NEG | POS |
| 2 | m | 46 | Pancreatic cancer | Traverso-Longmire | bile duct stent | wound | 12.09 | 18-19.08 12-14.09 |
discharged | piperacilin/tazobactam, ciprofloxacin, colistin | OXA-48-like | B | NEG | POS |
| 4 | m | 82 | Urine bladder cancer | Cystectomy | - | tracheo-bronchial tree blood culture |
4.09 13.09 |
28.08-14.09 | died | unazyn, levofloxacin, doxycycline, colisitn | OXA-48-like | B | NEG | POS |
| 5 | m | 56 | Perforated duodenal ulcer | Suture | - | urine | 11.09 |
5-15.09 | discharged | meropenem | OXA-48-like NDM-1 |
A | NEG | NEG |
| author | country, year | % of MDR |
|---|---|---|
| Markovska, et al. [26] | Bulgaria, 2022 | 37 |
| Galani, et al. [28] | Greece, 2014-2016 | 40.4 |
| epi-net.eu/records/12313/12313/ [27] | Romania, 2018 | 27.5 |
| Palmieri, et al. [30] | Serbia, 2013-2017 | 10.6 |
| Cizmeci, et al. [29] | Türkiye, 2016 | 27.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
