Submitted:
23 December 2024
Posted:
25 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Exercise Protocol
2.3. Measurement of Heart Rate
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MAPE | Mean absolute percent error |
| CCC | Lin’s concordance correlation coefficient |
| ECG | Electrocardiogram |
| ICC | Intraclass correlation coefficient |
| PPG | Photoplethysmography |
| CE | Constant error |
| AE | Absolute error |
| APE | Absolute percent error |
| SEE | Standard error of estimate |
| LoA | Limits of agreement |
References
- Newsome, A.M.; Batrakoulis, A.; Camhi, S.M.; Sansone, J. 2025 ACSM Worldwide Fitness Trends: Future Directions of the Health and Fitness Industry. ACSMs Health Fit J 2024, 28, 11–25. [Google Scholar] [CrossRef]
- Newsome, A.M.; Sansone, J.; McAvoy, C. 2024 Worldwide Fitness Trends: Future Directions of the Health and Fitness Industry. ACSMs Health Fit J 2023, 28, 14–26. [Google Scholar] [CrossRef]
- Thompson, W.R. Worldwide survey of fitness trends for 2023. ACSMs Health Fit J 2022, 27, 9–18. [Google Scholar] [CrossRef]
- Thompson, W.R. Worldwide survey of fitness trends for 2022. ACSMs Health Fit J 2021, 26, 11–20. [Google Scholar] [CrossRef]
- El-Amrawy, F.; Nounou, M.I. Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial? Health Inform Res 2015, 21, 315–320. [Google Scholar] [CrossRef]
- Gillinov, S.; Etiwy, M.; Wang, R.; Blackburn, G.; Phelan, D.; Gillinov, A.M.; Houghtaling, P.; Javadikasgari, H.; Desai, M.Y. Variable Accuracy of wearable heart rate monitors during aerobic exercise. Med Sci Sports Exerc 2017, 49, 1697–1703. [Google Scholar] [CrossRef]
- Alugubelli, N.; Abuissa, H.; Roka, A. Wearable devices for remote monitoring of heart rate and heart rate variability-what we know and what is coming. Sensors 2022, 22, 8903. [Google Scholar] [CrossRef]
- Etiwy, M.; Akhrass, Z.; Gillinov, L.; Alashi, A.; Wang, R.; Blackburn, G.; Gillinov, S.M.; Phelan, D.; Gillinov, A.M.; Houghtaling, P.L.; Javadikasgari, H.; Desai, M.Y. Accuracy of wearable heart rate monitors in cardiac rehabilitation. Cardiovasc Diagn Ther 2019, 9, 262–271. [Google Scholar] [CrossRef]
- Shin, G.; Jarrahi, M.H.; Fei, Y.; Karami, A.; Gafinowitz, N.; Byun, A.; Lu, X. Wearable activity trackers, accuracy, adoption, acceptance and health impact: A systematic review. J Biomed Inform 2019, 93, 103153. [Google Scholar] [CrossRef]
- Wang, R.; Blackburn, G.; Desai, M.; Phelan, D.; Gillinov, L.; Houghtaling, P.; Gillinov, M. Accuracy of wrist-worn heart rate monitors. JAMA Cardiol 2016, 2, 104–106. [Google Scholar] [CrossRef]
- Hettiarachchi, I.T.; Hanoun, S.; Nahavandi, D.; Navahandi, S. Validation of Polar OH1 optical heart rate sensor for moderate and high intensity physical activities. PloS One 2019, 14, e0217288. [Google Scholar] [CrossRef] [PubMed]
- Navalta, J.W.; Montes, J.; Bodell, N.G.; Salatto, R.W.; Manning, J.W.; DeBeliso, M. Concurrent heart rate validity of wearable technology devices during trail running. PloS One 2020, 15, e0238569. [Google Scholar] [CrossRef] [PubMed]
- Thiebaud, R.S.; Funk, M.D.; Patton, J.C.; Massey, B.L.; Shay, T.E.; Schmidt, M.G.; Giovannitti, N. Validity of wrist-worn consumer products to measure heart rate and energy expenditure. Digit Health 2018, 4, 2055207618770322. [Google Scholar] [CrossRef] [PubMed]
- Jachymek, M.; Jachymek, M.T.; Kiedrowicz, R.M.; Kaźmierczak, J.; Płońska-Gościniak, E.; Peregud-Pogorzelska, M. Wristbands in home-based rehabilitation-validation of heart rate measurement. Sensors 2021, 22, 60. [Google Scholar] [CrossRef]
- Jagim, A.R.; Koch-Gallup, N.; Camic, C.L.; Kroening, L.; Nolte, C.; Schroeder, C.; Gran, L.; Erickson, J.L. The accuracy of fitness watches for the measurement of heart rate and energy expenditure during moderate intensity exercise. J Sports Med Phys Fitness 2021, 61, 205–211. [Google Scholar] [CrossRef]
- Jo, E.; Lewis, K.; Directo, D.; Kim, M.J.; Dolezal, B.A. Validation of biofeedback wearables for photoplethysmographic heart rate tracking. J Sports Sci Med 2016, 15, 540–547. [Google Scholar]
- Shumate, T.; Link, M.; Furness, J.; Kemp-Smith, K.; Simas, V.; Climstein, M. Validity of the Polar Vantage M watch when measuring heart rate at different exercise intensities. Peer J 2021, 9, e10893. [Google Scholar] [CrossRef]
- Montalvo, S.; Martinez, A.; Arias, S.; Lozano, A.; Gonzalez, M.P.; Dietze-Hermosa, M.S.; Boyea, B.; Dorgo, S. Smartwatches and commercial heart rate monitors: a concurrent validity analysis. J Strength Cond Res 2023, 37, 1802–1808. [Google Scholar] [CrossRef]
- Reece, J.D.; Bunn, J.A.; Choi, M.; Navalta, J.W. Assessing heart rate using consumer technology association standards. Technologies 2021, 9, 46. [Google Scholar] [CrossRef]
- Orangetheory.com. Available online: https://www.orangetheory.com/en-us/international-opportunities (accessed on 18 December 2024).
- Orangetheory.com. Available online: https://www.orangetheory.com/files/otbeat/user-guide.pdf (accessed on 18 December 2024).
- Moraes, J.L.; Rocha, M.X.; Vasconcelos, G.G.; Vasconcelos Filho, J.E.; de Albuquerque, V.H.C.; Alexandria, A.R. Advances in photoplethysmography signal analysis for biomedical applications. Sensors 2018, 18, 1894. [Google Scholar] [CrossRef]
- Estepp, J.R.; Blackford, E.B.; Meier, C.M. Recovering pulse rate during motion artifact with a multi-imager array for non-contact imaging photoplethysmography. IEEE SMC 2014, 1462–1469. [Google Scholar]
- Hopkins, W.G. Validity thresholds and error rates for test measures used to assess individuals. 21st Annual Congress of the European College of Sport Science, Vienna, Austria, 2016.
- Hajj-Boutros, G.; Landry-Duval, M.A.; Comtois, A.S.; Gouspillou, G.; Karelis, A.D. Wrist-worn devices for the measurement of heart rate and energy expenditure: A validation study for the Apple Watch 6, Polar Vantage V, and Fitbit Sense. Eur J Sport Sci 2023, 23, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Abt, G.; Bray, J.; Benson, A.C. The validity and inter-device variability of the Apple Watch™ for measuring maximal heart rate. J Sports Sci 2017, 36, 1447–1452. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, Z.; Zhang, W.; Kong, W.; Jiang, J.; Zhao, R.; Wang, D.; Feng, L.; Ni, G. Estimation of heart rate and energy expenditure using smart bracelet during different exercise intensities: a reliability and validity study. Sensors 2022, 22, 4661. [Google Scholar] [CrossRef]
- Climstein, M.; Alder, J.L.; Brooker, A.M.; Cartwright, E.J.; Kemp-Smith, K.; Simas, V.; Furness, J. Reliability of the Polar Vantage M sports watch when measuring heart rate at different treadmill exercise intensities. Sports 2020, 8, 117. [Google Scholar] [CrossRef]
- Khushhal, A.; Nichols, S.; Evans, W.; Gleadall-Siddall, D.O.; Page, R.; O’Doherty, A.F.; Carroll, S.; Ingle, L.; Abt, G. Validity and reliability of the Apple Watch for measuring heart rate during exercise. Sports Med Int Open 2017, 1, 206–211. [Google Scholar] [CrossRef]
- Paradiso, C.; Colino, F.; Liu, S. The validity and reliability of the Mi band wearable device for measuring steps and heart rate. Int J Exerc Sci 2020, 13, 689–701. [Google Scholar]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).