Submitted:
23 December 2024
Posted:
24 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The First-Order Formulation
3. The De Donder–Weyl Hamiltonian Formulation
4. The Dirac Brackets
5. The Covariant Hamilton-Jacobi Equation
6. The Relation with the Canonical Hamilton-Jacobi Formulation
6.1. Canonical Hamilton-Jacobi Equation for Electrodynamics
6.2. Canonical Hamilton-Jacobi from the Covariant Hamilton-Jacobi Equation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
| HJ | Hamilton-Jacobi |
| DDW | De Donder–Weyl |
References
- H. V. Tran, Hamilton–Jacobi Equations: Theory and Applications, Providence, RI: American Mathematical Society (AMS), 2021.
- V. Volterra, Sopra una estensione della teoria Jacobi-Hamilton del calcolo delle varizioni, Rend. Cont. Acad. Lincel, ser. IV, vol. VI (1890) 127.
- M. Fréchet, Sur une extension de la méthode de Jacobi-Hamilton, Ann. di Mat. Pura ed Appl. (Ser. 3a) 11 (1905) 187. [CrossRef]
- V. Volterra, Theory of Functionals, Blackie & Son Ltd., London and Glasgow (1931).
- H. Rund, The Hamilton-Jacobi theory in the calculus of variations, D. van Nostrand, London and New York, 1966.
- H. Kastrup, Canonical theories of Lagrangian dynamical systems in physics, Phys. Rep. 101 (1983) 1. [CrossRef]
- D. Saunders Lepage Equivalents and the Variational Bicomplex, SIGMA 20 (2024) 013, arXiv:2309.01594 .
- D. Salisbury, Observables and Hamilton-Jacobi approaches to general relativity. I. The Earlier History, arXiv:2106.11894.
- P. Weiss, On the Hamilton-Jacobi theory and quantization of a dynamical continuum, Proc. R. Soc. Lond. A169 (1938) 102. [CrossRef]
- M. Gotay, private communication to IK, 1995.
- I. V. Kanatchikov, Precanonical Quantization and the Schroedinger Wave Functional, Phys. Lett. A283 (2001) 25, arXiv:hep-th/0012084.
- M.E. Pietrzyk and C. Barbachoux, On the covariant Hamilton-Jacobi equation for the teleparallel equivalent of general relativity, arXiv:2201.01295.
- I.V. Kanatchikov, On a Generalization of the Dirac Bracket in the De Donder-Weyl Hamiltonian Formalism, in: “Differential Geometry and its Applications,” eds. O. Kowalski, D. Krupka , O. Krupková and J. Slovák, World Scientific, Singapore 2008, 615, arXiv:0807.3127.
- Th. De Donder, Théorie invariantive du calcul des variations (Gauthier-Villars, Paris, 1930).
- H. Weyl, Geodesic fields in the calculus of variation for multiple integrals, Ann. Math. 36 (1935) 607. [CrossRef]
- J. von Rieth, The Hamilton–Jacobi theory of De Donder and Weyl applied to some relativistic field theories, J. Math. Phys. 25 (1984) 1102. [CrossRef]
- I. V. Kanatchikov, On the Canonical Structure of De Donder-Weyl Covariant Hamiltonian Formulation of Field Theory 1. Graded Poisson Brackets and Equations of Motion, arXiv:hep-th/9312162.
- I. Kanatchikov, From the Poincaré-Cartan form to a Gerstenhaber algebra of Poisson brackets in field theory, arXiv:hep-th/9511039.
- I. Kanatchikov, Canonical Structure of Classical Field Theory in the Polymomentum Phase Space, Rep. Math. Phys. 41 (1998) 49, arXiv:hep-th/9709229.
- I. Kanatchikov, On Field Theoretic Generalizations of a Poisson Algebra, Rep. Math. Phys. 40 (1997) 225, arXiv:hep-th/9710069.
- I. V. Kanatchikov, Geometric (pre)quantization in the polysymplectic approach to field theory, arXiv:hep-th/0112263.
- F. Hélein and J. Kouneiher, Finite dimensional Hamiltonian formalism for gauge and quantum field theories, J. Math. Phys. 43 (2002) 2306. [CrossRef]
- F. Hélein and J. Kouneiher, Covariant Hamiltonian formalism for the calculus of variations with several variables, arXiv:math-ph/0211046.
- F. Hélein and J. Kouneiher, Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus de Donder-Weyl, Adv. Theor. Math. Phys. 8 (2004) 565. [CrossRef]
- J. Butterfield, On Hamilton-Jacobi theory as a classical root of quantum theory, in “Quo Vadis Quantum Mechanics? Possible Developments in Quantum Theory in the 21st Century," eds. Elitzur, A.C., Dolev, S., and Kolenda, N., New York: Springer (2004) 239.
- D. Bohm and B. Hiley, The Undivided Universe: An Ontological Interpretation of Quantum Theory, Routledge, 1993. [CrossRef]
- P. R. Holland, The Quantum Theory of Motion, Cambridge University Press, 1993.
- D. Dürr and S. Teufel, Bohmian Mechanics. The Physics and Mathematics of Quantum Theory, Springer 2009.
- D. Bohm, B. J. Hiley, P. N. Kaloyerou, An ontological basis for the quantum theory, Phys. Rep. 144 (1987) 323. [CrossRef]
- A. Peres, On Cauchy’s problem in general relativity - II, Nuovo Cimento (1955-1965) 26 (1962) 53. [CrossRef]
- C. Kiefer, Quantum Gravity, Oxford University Press (2004).
- I. V. Kanatchikov, DeDonder-Weyl theory and a hypercomplex extension of quantum mechanics to field theory, Rept. Math. Phys. 43 (1999) 157, arXiv:hep-th/9810165.
- I. V. Kanatchikov, On quantization of field theories in polymomentum variables, AIP Conf. Proc. 453 (1998) 356, arXiv:hep-th/9811016.
- I. V. Kanatchikov, Ehrenfest theorem in precanonical quantization, J. Geom. Symmetry Phys. 37 (2015) 43; arXiv:1501.00480.
- I. V. Kanatchikov, Precanonical quantization of Yang-Mills fields and the functional Schroedinger representation, Rept. Math. Phys. 53 (2004) 181, arXiv:hep-th/0301001.
- I. V. Kanatchikov, On the spectrum of DW Hamiltonian of quantum SU(2) gauge field, Int. J. Geom. Methods Mod. Phys. 14 (2017) 1750123, arXiv:1706.01766.
- I. V. Kanatchikov, Schrödinger wave functional in quantum Yang-Mills theory from precanonical quantization, Rep. Math. Phys. 82 (2018) 373, arXiv:1805.05279.
- I. V. Kanatchikov, From the DeDonder-Weyl Hamiltonian formalism to quantization of gravity, in: Current topics in mathematical cosmology, eds. M. Rainer and H.-J. Schmidt, World Scientific 1998, 472; arXiv:gr-qc/9810076.
- I. V. Kanatchikov, Quantization of gravity: yet another way, in: Coherent states, quantization and gravity, eds. M. Schlichenmaier, A. Strasburger, S. T. Ali and A. Odzijewicz, Warsaw University Press, Warsaw 2001, 189; arXiv:gr-qc/9912094.
- I. V. Kanatchikov, Precanonical perspective in quantum gravity, Nucl. Phys. Proc. Suppl. 88 (2000) 326, arXiv:gr-qc/0004066.
- I. V. Kanatchikov, Precanonical Quantum Gravity: quantization without the space-time decomposition, Int. J. Theor. Phys. 40 (2001) 1121, arXiv:gr-qc/0012074.
- I. V. Kanatchikov, On precanonical quantization of gravity in spin connection variables, AIP Conf. Proc. 1514 (2012) 73, arXiv:1212.6963.
- I. V. Kanatchikov, De Donder-Weyl Hamiltonian formulation and precanonical quantization of vielbein gravity, J. Phys. Conf. Ser. 442 (2013) 012041, arXiv:1302.2610.
- I. V. Kanatchikov, On precanonical quantization of gravity, NPCS 17 (2014) 372, arXiv:1407.3101.
- I. V. Kanatchikov, Ehrenfest theorem in precanonical quantization of fields and gravity, in Proc. of the Fourteenth Marcel Grossmann Meeting on General Relativity, eds. M. Bianchi, R. T. Jantzen, R. Ruffini, World Scientific (2018) 2828; arXiv:1602.01083.
- I.V. Kanatchikov, On the “spin connection foam" picture of quantum gravity from precanonical quantization, in Proc. of the Fourteenth Marcel Grossmann Meeting on General Relativity, eds. M. Bianchi, R. T. Jantzen, R. Ruffini, World Scientific (2018) 3907; arXiv:1512.09137.
- Zhi-Qiang Guo and I. Schmidt, Converting classical theories to quantum theories by solutions of the Hamilton-Jacobi equation, Phys. Rev. D 86 (2012) 045012. [CrossRef]
- C.Cremaschini and M. Tessarotto, Hamilton–Jacobi Wave Theory in Manifestly-Covariant Classical and Quantum Gravity, Symmetry 11 (2019) 592. [CrossRef]
- I. V. Kanatchikov, Precanonical quantization of Teleparallel Equivalent of General Relativity. A talk at the Sixteenth Marcel Grossmann Meeting, Rome 2021.
- I. V. Kanatchikov, Towards precanonical quantum teleparallel gravity, arXiv:2302.10695.
- I. V. Kanatchikov, The De Donder-Weyl Hamiltonian formulation of TEGR and its quantization, arXiv:2308.10052.
- N. Riahi and M. E. Pietrzyk, On the Relation Between the Canonical Hamilton–Jacobi Equation and the De Donder–Weyl Hamilton–Jacobi Formulation in General Relativity, Acta Phys. Polon. Supp. 13 (2020) 213. [CrossRef]
- I. V. Kanatchikov, Precanonical quantization and the Schrödinger wave functional revisited, Adv. Theor. Math. Phys. 18 (2014) 1249; arXiv:1112.5801.
- I. V. Kanatchikov, On the precanonical structure of the Schrödinger wave functional, Adv. Theor. Math. Phys. 20 (2016) 1377; arXiv:1312.4518.
- I. V. Kanatchikov, Schrödinger functional of a quantum scalar field in static space-times from precanonical quantization, Int. J. Geom. Meth. Mod. Phys. 16 (2019) 1950017, arXiv:1810.09968.
- I. V. Kanatchikov, Precanonical structure of the Schrödinger wave functional in curved space-time, Symmetry 11 (2019) 1413; arXiv:1812.11264.
- I. V. Kanatchikov, On the precanonical structure of the Schrödinger wave functional in curved space-time, Acta Phys. Polon. B Proc. Suppl. 13 (2020) 313; arXiv:1912.07401.
- P. Hořava, On a covariant Hamilton-Jacobi framework for the Einstein-Maxwell theory, Class. Quant. Grav. 8 (1991) 2069. [CrossRef]
- P. A.M. Dirac, Lectures on Quantum Mechanics, Dover Publications (1964).
- M. Henneaux, Quantization of Gauge Systems, Princeton University Press (1992).
- A. Hanson, T. Regge and C. Teitelboim, Constrained Hamiltonian Systems, Accademia Nazionale dei Lincei, Rome (1976).
- M. de León, J. C. Marrero, D. Martin De Diego, A Geometric Hamilton-Jacobi Theory for Classical Field Theories, arXiv:0801.1181 [math-ph].
- M. de León, D. Martin De Diego, J. C. Marrero, M. Salgado and S. Vilariño, Hamilton-Jacobi Theory in k-Symplectic Field Theories, Int. J. Geom. Meth. Mod. Phys. 7 (2010) 1491, e-Print: 1005.1496 [math-ph].
- M. de León, P. D. Prieto-Martínez, N. Román-Roy, S.Vilariño, J. Math. Phys. 58 (2017) 092901, arXiv:1504.02020.
- N. Román-Roy, An overview of the Hamilton–Jacobi theory: the classical and geometrical approaches and some extensions and applications, Mathematics 9 (2021) 85, arXiv:2101.03830.
- M. Born, On the quantum theory of the electromagnetic field, Proc. Roy. Soc. A 143 (1934) 410. [CrossRef]
- P.N. Kaloyerou (1994). The causal interpretation of the electromagnetic field, Phys. Rep. 244 (1994) 287.
- P.N. Kaloyerou, An ontological interpretation of boson fields. In “Bohmian Mechanics and Quantum Theory: An Appraisal," Boston Studies in the Philosophy of Science vol. 184, editors J.T. Cushing, A. Fine S. Goldstein, p. 155-167, Springer, Dordrecht 1996.
- M. E. Pietrzyk, C. Barbachoux and J. Kouneiher, The relation between the canonical Hamilton-Jacobi equation and the covariant Hamilton-Jacobi equation for Maxwell’s electrodynamics, arXiv:2312.17474 .
- M. de León and M. Zaja̧c, Hamilton-Jacobi theory for gauge field theories, arXiv:1904.10264.
- J. Berra-Montiel, A. Molgado and D. Serrano-Blanco, De Donder-Weyl Hamiltonian formalism of MacDowell-Mansouri gravity, Class. Quantum Grav. 34 (2017) 235002, arXiv:1703.09755.
- J. Berra-Montiel, A. Molgado and A. Rodriguez-Lopez, Polysymplectic formulation for BF gravity with Immirzi parameter, Class. Quantum Grav. 36 (2019) 115003, arXiv:1901.11532.
- J. Berra-Montiel, A. Molgado and A. Rodriguez-Lopez, A review on geometric formulations for classical field theory: the Bonzom-Livine model for gravity, Class. Quantum Grav. 38 (2021) 135012, arXiv:2101.08960.
- J. Berra-Montiel, E. del Rio and A. Molgado, Polysymplectic formulation for topologically massive Yang-Mills field theory, Int. J. Mod. Phys. A32 (2017) 1750101, arXiv:1702.03076.
- R. Penrose, A generalized inverse for matrices, Proc. Cambridge Phil. Soc. 51 (1955) 406.
- J. C. Marrero, N. Román-Roy, M. Salgado and S. Vilarino, Reduction of polysymplectic manifolds, J. Phys. A: Math. Theor. 48 (2015) 055206, arXiv:1306.0337.
- C. Blacker, Reduction of multisymplectic manifolds, Lett. Math. Phys. 111 (2021) 64. [CrossRef]
- M. Á. Berbel and M. Castrillón López, Poisson-Poincaré reduction for field theories, J. Geom. Phys. 191 (2023) 104879, arXiv:2210.14732.
- M. E. Pietrzyk and I. V. Kanatchikov, Multisymplectic analysis of the Short Pulse Equation and numerical applications, WIAS preprint No. 1278, Berlin 2007.
- M. E. Pietrzyk and I. V. Kanatchikov, On the polysymplectic integrator for the short pulse equation, arXiv:1512.09105.
- M. E. Pietrzyk, Polysymplectic integrator for the short pulse equation and numerical general relativity, In "The Fourteenth Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories: Proceedings of the MG14 Meeting on General Relativity, University of Rome “La Sapienza,” Italy, 12–18 July 2015, eds. Bianchi, M., Jentzen, R.T., Ruffini, R., World Scientific 2018, p. 2677.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).