Submitted:
17 December 2024
Posted:
18 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Barista-Quality Plant-based Milk (BPMAs)
3. BPMAs and Latte Art: Trends, Market and Consumer Acceptance
4. Overview of Barista-quality Plant-based Milk vs Dairy Milk
| Components | Almond Milk | Oat Milk | Soy Milk | Cow Milk | References |
|---|---|---|---|---|---|
| Energy (kcal/100 ml) | 23.90 | 52.70 | 38.10 | 66.70 | [5,33,36,50,51] |
| Carbohydrate (g/100 ml) | 3.00 | 7.82 | 2.80 | 4.60 | |
| Protein (g/100ml) | 0.50 | 2.16 | 2.90 | 3.30 | |
| Fat (g/100 ml) | 1.10 | 1.42 | 1.70 | 3.90 | |
| Fiber (g/100 ml) | 1.40 | 1.30 | 1.20 | - | |
| Minerals (mg/L) | |||||
| Calcium | 325.29 | 12.25 | 205.86 | 119.0 | |
| Zinc | 0.56 | 0.13 | 0.075 | 0.38 | |
| Iron | 0.18 | 0.76 | 0.84 | 0.05 | |
| Magnesium | 21.00 | 42.0 | 0.49 | 13.00 | |
| Potassium | 65.00 | 0.01 | 364.29 | 151.00 | |
| Phosphorus | 48.00 | 0.01 | 108.00 | 93.00 | |
| Vitamins (mg/L) | |||||
| Vitamin C | - | - | - | - | |
| Thiamine | - | - | 0.08 | 0.04 | |
| Riboflavin | 0.02 | - | 0.24 | 0.16 | |
| Niacin | - | - | 0.28 | 0.08 | |
| Vitamin B6 | - | - | 0.10 | 0.04 | |
| Vitamin E | - | - | 4.00 | - | |
| Physicochemical |
[5,6,36,52,53] |
||||
| Conductivity (mS) | 1.22 | 1.83 | 1.95 | 3.27 | |
| Density (kg/L) at 20°C | 1.009 | 1.023 | 1.021 | 1.029 | |
| Titratable acidity (%) | 0.39 | 0.45 | 0.17 | 0.16 | |
| pH | 5.7-6.9 | 7.16 | 6.9-7.4 | 6.64 | |
| Viscosity (mPa∙s) at 20°C | 4.60 | 3.50 | 3.49 | 3.15 | |
| Flow index | 0.82 | 0.89 | 0.90 | 1.00 | |
| Whiteness index | 68.40 | 60.20 | 70.30 | 81.90 | |
| Mean particle size (µm) | 2.40 | 1.70 | 0.94 | 0.36 | |
| Separation rate (%hr) | 33.93 | 40.10 | 13.95 | 3.90 | |
5. Challenges of Barista-quality PMAs in Coffee Application
5.1. Sensory Challenges
5.2. Physcicohemical Challenges
5.3. Foaming Challenges
6. Strategies to Overcome Challenges of PMAs in Coffee Application
6.1. Optimizing Preparation Parameters
6.1.1. Addressing Curdling, Phase Separation, and Sedimentation
6.1.2. Standardization of Preparation Guidelines
6.2. Customizing PMAs for Coffee Applications
6.2.1. Hydrolysis of Starch to Manage Viscosity in Oat Milk
6.2.2. Enzyme Treatments and Ingredient Adjustments for Protein Stability and improve foaming properties
6.2.3. Fermentation
6.3. Flavour Masking and Sweeteners
6.4. Creating Synergies with Blended PMAs
6.5. Next Genegeration Holistic Approach Augmented with Artificial Intelligence (AI)
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siddiqui, S.A.; Mehany, T.; Schulte, H.; Pandiselvam, R.; Nagdalian, A.A.; Golik, A.B.; Asif Shah, M.; Muhammad Shahbaz, H.; Maqsood, S. Plant-based Milk–thoughts of researchers and industries on what should be called as milk. Food Rev. Int. 2024, 40, 1703-1730.
- Welna, M.; Szymczycha-Madeja, A.; Lesniewicz, A.; Pohl, P. The Nutritional Value of Plant Drink against Bovine Milk—Analysis of the Total Concentrations and the Bio-Accessible Fraction of Elements in Cow Milk and Plant-Based Beverages. Processes. 2024, 12, 231. [CrossRef]
- Haas, R.; Schnepps, A.; Pichler, A.; Meixner, O. Cow milk versus plant-based milk substitutes: A comparison of product image and motivational structure of consumption. Sustainability. 2019, 11, 5046. [CrossRef]
- Craig, W.J.; Messina, V.; Rowland, I.; Frankowska, A.; Bradbury, J.; Smetana, S.; Medici, E. Plant-based dairy alternatives contribute to a healthy and sustainable diet. Nutrients. 2023, 15, 3393. [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: a review. J. Food Sci. Technol. 2016, 53, 3408-3423. [CrossRef]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J. Funct. Foods. 2020, 70, 103975. [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science. 2018, 360, 987-992. [CrossRef]
- Moss, R.; LeBlanc, J.; Gorman, M.; Ritchie, C.; Duizer, L.; McSweeney, M.B. A prospective review of the sensory properties of plant-based dairy and meat alternatives with a focus on texture. Foods. 2023, 12, 1709. [CrossRef]
- Xie, A.; Dong, Y.; Liu, Z.; Li, Z.; Shao, J.; Li, M.; Yue, X. A review of plant-based drinks addressing nutrients, flavor, and processing technologies. Foods. 2023, 12, 3952. [CrossRef]
- Karimidastjerd, A.; Gulsunoglu-Konuskan, Z.; Olum, E.; Toker, O.S. Evaluation of rheological, textural, and sensory characteristics of optimized vegan rice puddings prepared by various plant-based milks. Food Sci. Nutr. 2024, 12, 1779-1791.
- Plamada, D.; Teleky, B.-E.; Nemes, S.A.; Mitrea, L.; Szabo, K.; Călinoiu, L.-F.; Pascuta, M.S.; Varvara, R.-A.; Ciont, C.; Martău, G.A. Plant-based dairy alternatives—A future direction to the milky way. Foods 2023, 12, 1883. [CrossRef]
- Halabi, N.; Hristova, V.; Vlaev, I. Milking the Alternatives: Understanding Coffee Consumers’ Preferences for Non-Dairy Milk. Behav. Sci. 2024, 14, 569. [CrossRef]
- Gorman, M.; Knowles, S.; Falkeisen, A.; Barker, S.; Moss, R.; McSweeney, M.B. Consumer perception of milk and plant-based alternatives added to coffee. Beverages. 2021, 7, 80. [CrossRef]
- Zakidou, P.; Varka, E.-M.; Paraskevopoulou, A. Foaming properties and sensory acceptance of plant-based beverages as alternatives in the preparation of cappuccino style beverages. Int. J. Gastron. Food Sci. 2022, 30, 100623. [CrossRef]
- Chung, Y.L.; Kuo, W.Y.; Liou, B.K.; Chen, P.C.; Tseng, Y.C.; Huang, R.Y.; Tsai, M.C. Identifying sensory drivers of liking for plant-based milk coffees: Implications for product development and application. J. Food Sci. 2022, 87, 5418-5429. [CrossRef]
- Velangi, M.; Savla, M. Role of Plant Based Milk Alternatives as a Functional Beverage: A Review. Int. J. Health Sci. Res. 2022, 12, 273-281. [CrossRef]
- Craig, W.J.; Fresán, U. International analysis of the nutritional content and a review of health benefits of non-dairy plant-based beverages. Nutrients. 2021, 13, 842. [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl. Microbiol. Biotechnol. 2019, 103, 9263-9275. [CrossRef]
- Jaeger, S.R.; de Matos, A.D.; Oduro, A.F.; Hort, J. Sensory characteristics of plant-based milk alternatives: Product characterisation by consumers and drivers of liking. Food Res. Int. 2024, 180, 114093. [CrossRef]
- Sheridan, C. Barista milk: climate-friendly and still dairy. Nat. Biotechnol. 2021, 39, 534.
- Christin Brettschneider, K.; Zettel, V.; Sadeghi Vasafi, P.; Hummel, D.; Hinrichs, J.; Hitzmann, B. Spectroscopic-Based Prediction of Milk Foam Properties for Barista Applications. Food Bioprocess. Technol. 2022, 15, 1748-1757. [CrossRef]
- Hassan, L.; Reynoso, M.; Xu, C.; Al Zahabi, K.; Maldonado, R.; Nicholson, R.A.; Boehm, M.W.; Baier, S.K.; Sharma, V. The bubbly life and death of animal and plant milk foams. Soft Matter 2024, 20, 8215-8229. [CrossRef]
- Samoggia, A.; Riedel, B. Coffee consumption and purchasing behavior review: Insights for further research. Appetite. 2018, 129, 70-81. [CrossRef]
- Samoggia, A.; Busi, R. Sustainable coffee capsule consumption: Understanding Italian consumers' purchasing drivers. Front. Sustain. Food Syst. 2023, 7, 1088877. [CrossRef]
- Clay, N.; Sexton, A.E.; Garnett, T.; Lorimer, J. Palatable disruption: the politics of plant milk. In Social Innovation and Sustainability Transition; Springer: 2022; pp. 11-28.
- Hassoun, A.; Marvin, H.J.P.; Bouzembrak, Y.; Barba, F.J.; Castagnini, J.M.; Pallarés, N.; Rabail, R.; Aadil, R.M.; Bangar, S.P.; Bhat, R. Digital transformation in the agri-food industry: recent applications and the role of the COVID-19 pandemic. Front. Sustain. Food Syst. 2023, 7, 1217813. [CrossRef]
- Krampe, C.; Fridman, A. Oatly, a serious ‘problem’for the dairy industry? A case study. Int. Food Agribus. Manag. Rev. 2022, 25, 157-171.
- Popova, A.; Mihaylova, D.; Lante, A. Insights and perspectives on plant-based beverages. Plants. 2023, 12, 3345. [CrossRef]
- Hsu, L.; Chen, Y.-J. Does coffee taste better with latte art? A neuroscientific perspective. Brit. Food J. 2021, 123, 1931-1946. [CrossRef]
- Van Doorn, G.; Colonna-Dashwood, M.; Hudd-Baillie, R.; Spence, C.J.J.o.s.s. Latté art influences both the expected and rated value of milk-based coffee drinks. J. Sens. Stud. 2015, 30, 305-315.
- Gupta, M.; Joshi, R.M. Art infusion phenomenon: A systematic literature review. J. Prod. Brand Manag. 2023, 32, 235-256. [CrossRef]
- Jervis, S.M.; Lopetcharat, K.; Drake, M.A. Application of ethnography and conjoint analysis to determine key consumer attributes for latte-style coffee beverages. J. Sens. Stud. 2012, 27, 48-58. [CrossRef]
- McClements, D.J.; Newman, E.; McClements, I.F. Plant-based milks: A review of the science underpinning their design, fabrication, and performance. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2047-2067.
- Paul, A.A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3005-3023. [CrossRef]
- He, A.; Xu, B. High-pressure homogenisation improves food quality of plant-based milk alternatives. Int. J. Food Sci. Technol. 2024, 59, 399-407.
- Reyes-Jurado, F.; Soto-Reyes, N.; Dávila-Rodríguez, M.; Lorenzo-Leal, A.; Jiménez-Munguía, M.T.; Mani-López, E.; López-Malo, A. Plant-based milk alternatives: Types, processes, benefits, and characteristics. Food Rev. Int. 2023, 39, 2320-2351. [CrossRef]
- Silva, A.R.A.; Silva, M.M.N.; Ribeiro, B.D. Health issues and technological aspects of plant-based alternative milk. Food Res. Int. 2020, 131, 108972. [CrossRef]
- Silva, B.Q.; Smetana, S. Review on milk substitutes from an environmental and nutritional point of view. Appl. Food Res. 2022, 2, 100105. [CrossRef]
- Stanley, N.; Villarino, C.B.; Nyambayo, I. Overcoming barriers to sustainable, healthy diets. Food Sci. Technol. 2022, 36, 40-45.
- Rasane, P.; Jha, A.; Sabikhi, L.; Kumar, A.; Unnikrishnan, V.S. Nutritional advantages of oats and opportunities for its processing as value added foods-a review. J. Food Sci. Technol. 2015, 52, 662-675. [CrossRef]
- Deswal, A.; Deora, N.S.; Mishra, H.N. Optimization of enzymatic production process of oat milk using response surface methodology. Food Bioprocess. Technol. 2014, 7, 610-618. [CrossRef]
- Zhang, H.; Önning, G.; Triantafyllou, A.Ö.; Öste, R. Nutritional properties of oat-based beverages as affected by processing and storage. J. Sci. Food Agric. 2007, 87, 2294-2301. [CrossRef]
- Giri, S.; Mangaraj, S. Processing influences on composition and quality attributes of soymilk and its powder. Food Eng. Rev. 2012, 4, 149-164. [CrossRef]
- Cruz, N.; Capellas, M.; Hernández, M.; Trujillo, A.J.; Guamis, B.; Ferragut, V. Ultra high pressure homogenization of soymilk: Microbiological, physicochemical and microstructural characteristics. Food Res. Int. 2007, 40, 725-732. [CrossRef]
- Kopf-Bolanz, K.A.; Villareal Cruz, M.C.; Walther, B.; Denkel, C.; Guggisberg, D. Comparison of physicochemical properties of commercial UHT-treated plant-based beverages and cow's milk. Agrar. Schweiz. 2023, 14, 43-56.
- Sevillano Pires, V.; Zuklic, J.; Hryshko, J.; Hansen, P.; Boyer, M.; Wan, J.; Jackson, L.S.; Sandhu, A.K.; Redan, B.W. Market basket survey of the micronutrients vitamin A, vitamin D, calcium, and potassium in eight types of commercial plant-based milk alternatives from United States markets. ACS Food Sci. Technol. 2022, 3, 100-112. [CrossRef]
- Suryamiharja, A.; Gong, X.; Zhou, H. Towards more sustainable, nutritious, and affordable plant-based milk alternatives: A critical review. Sust. Food Prot. 2024, 2, 250–267.
- Grainger, E.M.; Jiang, K.; Webb, M.Z.; Kennedy, A.J.; Chitchumroonchokchai, C.; Riedl, K.M.; Manubolu, M.; Clinton, S.K.J.J.o.A.; Chemistry, F. Bioactive (Poly) phenol Concentrations in Plant-Based Milk Alternatives in the US Market. J. Agric. Food Chem. 2024, 72, 18638-18648. [CrossRef]
- Xiong, X.; Wang, W.; Bi, S.; Liu, Y.J.C.R.i.F.S.; Nutrition. Application of legumes in plant-based milk alternatives: a review of limitations and solutions. Crit. Rev. Food Sci. Nutr. 2024. [CrossRef]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339-349. [CrossRef]
- Vanga, S.K.; Raghavan, V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J. Food Sci. Technol. 2018, 55, 10-20.
- McClements, D.J. Development of next-generation nutritionally fortified plant-based milk substitutes: Structural design principles. Foods. 2020, 9, 421. [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes. Plant Foods Hum. Nutr. 2017, 72, 26-33. [CrossRef]
- Grant, C.A.; Hicks, A.L. Comparative life cycle assessment of milk and plant-based alternatives. Environ. Eng. Sci. 2018, 35, 1235-1247. [CrossRef]
- Cardello, A.V.; Llobell, F.; Giacalone, D.; Roigard, C.M.; Jaeger, S.R. Plant-based alternatives vs dairy milk: Consumer segments and their sensory, emotional, cognitive and situational use responses to tasted products. Food Qual. Prefer. 2022, 100, 104599. [CrossRef]
- Schiano, A.N.; Harwood, W.S.; Drake, M.A. A 100-year review: Sensory analysis of milk. J. Dairy Sci. 2017, 100, 9966-9986. [CrossRef]
- Huppertz, T. Foaming properties of milk: A review of the influence of composition and processing. Int. J. Dairy Technol. 2010, 63, 477-488. [CrossRef]
- McCarthy, K.S.; Lopetcharat, K.; Drake, M.A. Milk fat threshold determination and the effect of milk fat content on consumer preference for fluid milk. J. Dairy Sci. 2017, 100, 1702-1711. [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res. Int. 2018, 110, 42-51. [CrossRef]
- Maghsoudlou, Y.; Alami, M.; Mashkour, M.; Shahraki, M.H. Optimization of ultrasound-assisted stabilization and formulation of almond milk. J. Food Process. Preserv. 2016, 40, 828-839. [CrossRef]
- Francisquini, J.d.A.; Altivo, R.; Diaz, C.C.M.; Da Costa, J.d.C.; Kharfan, D.; Stephani, R.; Perrone, I.T. Physicochemical analysis of thermally treated commercial plant-based beverages coffee added. Eur. Food Res. Technol. 2023, 249, 3191-3199. [CrossRef]
- Moss, R.; Barker, S.; Falkeisen, A.; Gorman, M.; Knowles, S.; McSweeney, M.B. An investigation into consumer perception and attitudes towards plant-based alternatives to milk. Food Res. Int. 2022, 159, 111648. [CrossRef]
- Nindita, S.; Nahdlah, Z. Formulations of Milk Cappuccino from Soy Milk with Evaluation Sensorys and Benefit of Health. In Proceedings of the International Conference on Tourism, Gastronomy, and Tourist Destination (ICTGTD 2016), 2016; pp. 78-82.
- Li, C. Recent progress in understanding starch gelatinization-An important property determining food quality. Carbohydr. Polym. 2022, 293, 119735. [CrossRef]
- Daszkiewicz, T.; Michalak, M.; Śmiecińska, K. A comparison of the quality of plain yogurt and its analog made from coconut flesh extract. J. Dairy Sci. 2024, 107, 3389-3399. [CrossRef]
- Schochat, P.R.; Lepp, L.; Karbstein, H.P.; Leister, N. Changing the Oral Tribology of Emulsions Through Crystallization of the Dispersed Triglyceride Phase. J. Texture Stud. 2024, 55, e12871. [CrossRef]
- Meiland, P.; Aljabbari, A.; Kihara, S.; Bērziņš, K.; Andersen, U.; Kirkensgaard, J.J.K.; Boyd, B.J. Comparing the lipid self-assembly behaviour and fatty acid composition of plant-based drinks to bovine milk during digestion. Food Chem. 2024, 465, 142031. [CrossRef]
- Blasi, F.; Ianni, F.; Cossignani, L. Phenolic profiling for geographical and varietal authentication of extra virgin olive oil. Trends Food Sci. Technol. 2024, 147, 104444. [CrossRef]
- Fibrianto, K.; Maharani, Y. The effect of different non-dairy creamer on ready-to-drink milk coffee. In Proceedings of the IOP conference series: Earth and environmental science, 2021; p. 032083.
- Ohlau, M.; Risius, A. Integrating a Real-Life Experience with Consumer Evaluation: Sensory Acceptance and Willingness to Pay for Coffee Drinks in a Real Café. J. Int. Food Agribus. Mark. 2022, 34, 123-143. [CrossRef]
- Zakidou, P.; Paraskevopoulou, A. Aqueous sesame seed extracts: Study of their foaming potential for the preparation of cappuccino-type coffee beverages. LWT 2021, 135, 110258. [CrossRef]
- Brown, M.; Laitano, F.; Williams, C.; Gibson, B.; Haw, M.; Sefcik, J.; Johnston, K. “Curdling” of soymilk in coffee: A study of the phase behaviour of soymilk coffee mixtures. Food Hydrocoll. 2019, 95, 462-467.
- Illy, E.; Navarini, L. Neglected food bubbles: The espresso coffee foam. Food Biophys. 2011, 6, 335-348. [CrossRef]
- Ho, T.M.; Bhandari, B.R.; Bansal, N. Effect of shearing-induced lipolysis on foaming properties of milk. J. Sci. Food Agric. 2023, 103, 5312-5321. [CrossRef]
- Ho, T.M.; Xiong, X.; Bhandari, B.R.; Bansal, N. Foaming Properties and Foam Structure of Milk Determined by Its Protein Content and Protein to Fat Ratio. Food Bioprocess Technol. 2024, 17, 4665–4678 . [CrossRef]
- Ho, T.M.; Lu, Y.J.; Xiong, X.; Bhandari, B.R.; Bansal, N. Ability to re-foam frothed milk at different solid concentrations and their foam structure. Int. J. Dairy Technol. 2024, 77, 874-883. [CrossRef]
- Dias, F.F.G.; Yang, J.S.; Pham, T.T.K.; Barile, D.; LN de Moura Bell, J.M. Unveiling the contribution of Osborne protein fractions to the physicochemical and functional properties of alkaline and enzymatically extracted green lentil proteins. Sustain. Food Proteins. 2024. [CrossRef]
- Yu, Y.; Li, X.; Zhang, J.; Li, X.; Wang, J.; Sun, B. Oat milk analogue versus traditional milk: Comprehensive evaluation of scientific evidence for processing techniques and health effects. Food Chem: X 2023, 19, 100859. [CrossRef]
- Lima Nascimento, L.G.; Odelli, D.; Fernandes de Carvalho, A.; Martins, E.; Delaplace, G.; Peres de sá Peixoto Júnior, P.; Nogueira Silva, N.F.; Casanova, F. Combination of milk and plant proteins to develop novel food systems: what are the limits? Foods. 2023, 12, 2385. [CrossRef]
- Jimenez-Junca, C.; Sher, A.; Gumy, J.-C.; Niranjan, K. Production of milk foams by steam injection: The effects of steam pressure and nozzle design. J. Food Eng. 2015, 166, 247-254. [CrossRef]
- Kamath, S.; Webb, R.E.; Deeth, H.C. The composition of interfacial material from skim milk foams. J. Dairy Sci. 2011, 94, 2707-2718. [CrossRef]
- Wu, J.; Li, H.; A'yun, Q.; Doost, A.S.; De Meulenaer, B.; Van der Meeren, P. Conjugation of milk proteins and reducing sugars and its potential application in the improvement of the heat stability of (recombined) evaporated milk. Trends Food Sci. Technol. 2021, 108, 287-296. [CrossRef]
- Vogelsang-O'Dwyer, M.; Sahin, A.W.; Zannini, E.; Arendt, E.K. Physicochemical and nutritional properties of high protein emulsion-type lupin-based model milk alternatives: effect of protein source and homogenization pressure. J. Sci. Food Agric. 2022, 102, 5086-5097. [CrossRef]
- Ho, T.M.; Le, T.H.A.; Yan, A.; Bhandari, B.R.; Bansal, N. Foaming properties and foam structure of milk during storage. Food Res. Int. 2019, 116, 379-386. [CrossRef]
- Santos, N.C.; Almeida, R.L.J.; de Medeiros, M.d.F.D.; Hoskin, R.T.; da Silva Pedrini, M.R. Foaming characteristics and impact of ethanol pretreatment in drying behavior and physical characteristics for avocado pulp powder obtained by foam mat drying. J. Food Sci. 2022, 87, 1780-1795. [CrossRef]
- Shameena Beegum, P.P.; Manikantan, M.R.; Anju, K.B.; Vinija, V.; Pandiselvam, R.; Jayashekhar, S.; Hebbar, K.B. Foam mat drying technique in coconut milk: Effect of additives on foaming and powder properties and its economic analysis. J. Food Process. Preserv. 2022, 46, e17122. [CrossRef]
- Akesowan, A. Influence of konjac flour on foaming properties of milk protein concentrate and quality characteristics of gluten-free cookie. Int. J. Food Sci. Technol. 2016, 51, 1560-1569. [CrossRef]
- Martínez-Padilla, L.P.; García-Rivera, J.L.; Romero-Arreola, V.; Casas-Alencáster, N.B. Effects of xanthan gum rheology on the foaming properties of whey protein concentrate. J. Food Eng. 2015, 156, 22-30. [CrossRef]
- Jimenez-Junca, C.A.; Gumy, J.C.; Sher, A.; Niranjan, K. Rheology of milk foams produced by steam injection. J. Food Sci. 2011, 76, E569-E575. [CrossRef]
- Buccioni, A.; Minieri, S.; Rapaccini, S. Effect of Total Proteosepeptone Content on the Variability of Bovine Milk Foaming Property. Ital. J. Anim. Sci. 2013, 12, e12. [CrossRef]
- Ibrahim, F.S.; Ateteallah, H.A.J.J.o.F.; Sciences, D. Assessment some Function Properties of Acid Casein in Different Types of Milk. J. Food Dairy Sci. 2019, 10, 171-173. [CrossRef]
- Tan, S.H.; Mailer, R.J.; Blanchard, C.L.; Agboola, S.O. Canola proteins for human consumption: extraction, profile, and functional properties. J. Food Sci. 2011, 76, R16-R28. [CrossRef]
- Shimizu, M.; Saito, M.; Yamauchi, K. Emulsifying and structural properties of β-lactoglobulin at different pHs. Agric. Biol. Chem. 1985, 49, 189-194. [CrossRef]
- Jaeger, A.; Sahin, A.W.; Nyhan, L.; Zannini, E.; Arendt, E.K. Functional properties of brewer’s spent grain protein isolate: the missing piece in the plant protein portfolio. Foods. 2023, 12, 798. [CrossRef]
- Ma, K.K.; Greis, M.; Lu, J.; Nolden, A.A.; McClements, D.J.; Kinchla, A.J. Functional performance of plant proteins. Foods. 2022, 11, 594. [CrossRef]
- Sutariya, S.G.; Salunke, P. Effect of hyaluronic acid and kappa-carrageenan on milk properties: Rheology, protein stability, foaming, water-holding, and emulsification properties. Foods. 2023, 12, 913. [CrossRef]
- Lazidis, A.; Hancocks, R.D.; Spyropoulos, F.; Kreuß, M.; Berrocal, R.; Norton, I.T. Whey protein fluid gels for the stabilisation of foams. Food Hydrocoll. 2016, 53, 209-217. [CrossRef]
- Liu, X.; Wang, C.; Zhang, X.; Zhang, G.; Zhou, J.; Chen, J. Application prospect of protein-glutaminase in the development of plant-based protein foods. Foods. 2022, 11, 440. [CrossRef]
- Pua, A.; Tang, V.C.Y.; Goh, R.M.V.; Sun, J.; Lassabliere, B.; Liu, S.Q. Ingredients, processing, and fermentation: addressing the organoleptic boundaries of plant-based dairy analogues. Foods. 2022, 11, 875. [CrossRef]
- Zhang, X.; Zhang, Z.; Shen, A.; Zhang, T.; Jiang, L.; El-Seedi, H.; Zhang, G.; Sui, X. Legumes as an alternative protein source in plant-based foods: Applications, challenges, and strategies. Curr. Res. Food Sci. 2024, 9, 100876. [CrossRef]
- Kumar, M.; Selvasekaran, P.; Chidambaram, R.; Zhang, B.; Hasan, M.; Gupta, O.P.; Rais, N.; Sharma, K.; Sharma, A.; Lorenzo, J.M. Tea (Camellia sinensis (L.) Kuntze) as an emerging source of protein and bioactive peptides: A narrative review. Food Chem. 2023, 428, 136783. [CrossRef]
- Tangyu, M.; Fritz, M.; Tan, J.P.; Ye, L.; Bolten, C.J.; Bogicevic, B.; Wittmann, C. Flavour by design: food-grade lactic acid bacteria improve the volatile aroma spectrum of oat milk, sunflower seed milk, pea milk, and faba milk towards improved flavour and sensory perception. Microb. Cell Fact. 2023, 22, 133. [CrossRef]
- Tzifi, F.; Grammeniatis, V.; Papadopoulos, M. Soy-and rice-based formula and infant allergic to cow's milk. Endocr. Metab. Immune Disord. Drug Targets. 2014, 14, 38-46.
- Vaikma, H.; Kaleda, A.; Rosend, J.; Rosenvald, S. Market mapping of plant-based milk alternatives by using sensory (RATA) and GC analysis. Future Foods 2021, 4, 100049. [CrossRef]
- Patra, T.; Rinnan, Å.; Olsen, K. The physical stability of plant-based drinks and the analysis methods thereof. Food Hydrocoll. 2021, 118, 106770. [CrossRef]
- Mehany, T.; Siddiqui, S.A.; Olawoye, B.; Olabisi Popoola, O.; Hassoun, A.; Manzoor, M.F.; Punia Bangar, S. Recent innovations and emerging technological advances used to improve quality and process of plant-based milk analogs. Crit. Rev. Food Sci. Nutr. 2024, 64, 7237-7267. [CrossRef]
- Pointke, M.; Albrecht, E.H.; Geburt, K.; Gerken, M.; Traulsen, I.; Pawelzik, E. A comparative analysis of plant-based milk alternatives part 1: composition, sensory, and nutritional value. Sustainability. 2022, 14, 7996. [CrossRef]
- Abou Ayana, I.A.A.; Elgarhy, M.R.; Al-Otibi, F.O.; Omar, M.M.; El-Abbassy, M.Z.; Khalifa, S.A.; Helmy, Y.A.; Saber, W.I.A. Artificial Intelligence-Powered Optimization and Milk Permeate Upcycling for Innovative Sesame Milk with Enhanced Probiotic Viability and Sensory Appeal. ACS Omega. 2024, 9, 25189−25202. [CrossRef]


| Parameter | Cow Milk | Soy Milk | Oat Milk | Almond Milk |
|---|---|---|---|---|
| Water use (L) | 620 | 40 | 60 | 380 |
| Greenhouse gas emissions (kg CO₂ eq/L) | 3.2 | 1 | 0.9 | 0.8 |
| Land use (m²/L) | 9 | ≤1 | ≤1 | ≤1 |
| Eutrophication (g PO₄³⁻ eq/L) | 11 | 1 | 1.9 | 1.8 |
| Fossil fuel depletion (MJ/L) | 2.92 | 1.04 | N/A | 1.53 |
| Ecotoxicity (CTUe/L) | 133 | 9.64 | N/A | 31.3 |
| Product format0 | Type of Milk used# | Additive supplementation | Sample size | Sensory method^ | Panellist | Findings | Issues reported | Reference |
|---|---|---|---|---|---|---|---|---|
| Cappuccino | C, COSO, O, S | - | 5 | H (7- point) | 50 untrained | Overall liking C>COSO>O>S | S scored low in taste due to off flavours, while O scored lowest for colour, gloss, texture, and aroma due to its low protein content. | [14] |
| Espresso + Milk (N.D) | Barista style A, C, CO, O, S |
- | 12 | H (9-point), CATA, QDA |
80 Untrained, 9 Trained |
Sensory attributes “Smooth, milky, thick textures” drive liking; while “rancid, greasy, and astringent notes negatively impact sensory acceptance. | Astringency, off-flavors (especially in S), inconsistent sweetness, and lack of creaminess/mild flavors created barriers in acceptance. | [15] |
| Espresso + Milk (N.D) | A, D, O, S | - | 4 | H (9-Point), CATA | 116 (n=58; dairy consumers), (n=58; plant consumers) |
Sweetness drives liking; beany, grassy and earthy notes reduced it. |
Beany, vegetative, and grassy notes in S & A were major barriers for acceptance. | [13] |
| Cappuccino | O, P | - | 2 | H (9-point) | 144 untrained (n=72; for O), (n= 72; for P) |
Overall liking O>P |
Both O & P lack mouthfeel and had off-flavours | [70] |
| Cappuccino | C, S* | Non-dairy creamer (0%, 5% & 10%) |
4 | H (4- Point), QDA | 10 untrained | S with 5% non- dairy creamer matched cow's milk cappuccino; while S alone was least liked. | Despite the addition of non-dairy creamer, S milk have beany flavor, less creamy mouthfeel, and lacks richness compared to C. | [63] |
| Product format0 / Treatment | Sample used | Method of Evaluation | Key findings | Reference | ||
|---|---|---|---|---|---|---|
| Physical | Chemical | Foaming | ||||
| Cappuccino (65 °C) | C, COSO, O, S | Particle size [surface-weighted mean diameter (d3,2) and volume-weighted mean diameter (d4,3)], |
Fat, protein, pH (at 25°C) | Foam expansion (%), Foam stability (%), Foam overrun (%), Foam strength (g) | S can replace C with satisfactory foaming properties but need modification for stability. | [14] |
| Cappuccino (60 °C) | A, C, CA, CO, H, O, R, S, SP | Viscosity color, particle size distribution (volume-weighted particle diameters). |
Fat, protein, carbohydrate, sugar, fiber, salt content, Phytic Acid, pH (at 25°C) | Initial foam height and foam height instability, initial bubble size and bubble size instability | S & O exhibited better foaming among PMAs, while C milk remained best. Phytic acid in S, positively influenced foam height at 60°C and above. |
[45] |
|
T0: Room temperature (25°C ± 1.5°C). T1: Heated at 85°C/5 min. T2: Heated at 85°C/5 min, with 1 g soluble coffee added. |
A, CN, CO O, S | Heat coagulation time (HCT), Particle size distribution optical microscopy |
pH (at 25°C) |
- | Coffee addition reduced pH (6.4–7.9) and decreased thermal stability but had no effect on particle size or morphology. | [61] |
| Cappuccino (65 °C) | C, S, SSE*(roasted or blanched with or without gums) | Particle size distribution | pH, moisture, fat, protein, lipid, fatty acid profile, volatile compounds (GC-MS) | Foam expansion (%), Foam stability (%), Foam overrun (%), Foam strength (g) | Modified SSE (rosting with xanthan gum) showed potential as PMA coffee foam. | [71] |
| 25 °C to 60°C with Coffee/water ratio (0.0125 to 0.075) |
S (2% to 25% w/w) | Phase behaviour, kinetics of separation | pH | Soymilk-coffee mixtures separate into two phases at high temperatures, reversible by cooling or increasing soymilk concentration. stabilizers (e.g., gellan gum) can reduce curdling |
[72] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
