Submitted:
10 December 2024
Posted:
11 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
2.1. Trial Design
2.2. Participants
2.3. Interventions
2.4. Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Izquierdo, M.; Merchant, R.A.; Morley, J.E.; Anker, S.D.; Aprahamian, I.; Arai, H.; et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J Nutr Health Aging 2021, 25, 824–853. [Google Scholar] [CrossRef]
- Lang, J.J.; Prince, S.A.; Merucci, K.; Cadenas-Sanchez, C.; Chaput, J.P.; Fraser, B.J.; et al. Cardiorespiratory fitness is a strong and consistent predictor of morbidity and mortality among adults: An overview of meta-analyses representing over 20.9 million observations from 199 unique cohort studies. Br J Sports Med. 2024, 58, 556–566. [Google Scholar] [CrossRef]
- Torres-Ronda, L.; Del Alcázar, X.S.I. The Properties of Water and their Applications for Training. J Hum Kinet. 2014, 44, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Alberton, C.L.; Fonseca, B.A.; Nunes, G.N.; Bergamin, M.; Pinto, S.S. Magnitude of vertical ground reaction force during water-based exercises in women with obesity. Sports Biomech. 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Delevatti, R.S.; Alberton, C.L.; Kanitz, A.C.; Marson, E.C.; Kruel, L.F.M. Vertical ground reaction force during land- and water-based exercise performed by patients with type 2 diabetes. Med Sport. 2015, 11, 2501–2508. [Google Scholar]
- Alberton, C.L.; Tartaruga, M.P.; Pinto, S.S.; Cadore, E.L.; Da Silva, E.M.; Kruel, L.F.M. Cardiorespiratory responses to stationary running. J Sports Med Phys Fitness. 2009, 49, 2. [Google Scholar]
- Heithold, K.; Glass, S. Variations in heart rate and perception of effort during land and water aerobics in older women. J Exerc Physiol Online [Internet]. 2002 [citado 15 de setembro de 2024];5(4). Disponível em: https://www.asep.org/asep/asep/Heithold.pdf.
- Alberton, C.L.; Cadore, E.L.; Pinto, S.S.; Tartaruga, M.P.; da Silva, E.M.; Kruel, L.F.M. Cardiorespiratory, neuromuscular and kinematic responses to stationary running performed in water and on dry land. Eur J Appl Physiol. 2011, 111, 1157–1166. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Dowzer, C.N.; Cable, N. The physiology of deep-water running. J Sports Sci. 2003, 21, 959–972. [Google Scholar] [CrossRef] [PubMed]
- Killgore, G.L. Deep-Water Running: A Practical Review of the Literature with an Emphasis on Biomechanics. Phys Sportsmed. 2012, 40, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.S.; Rhodes, E.C. Physiological and cardiovascular changes associated with deep water running in the young: Possible implications for the elderly. Sports Med. 2001, 31, 33–46. [Google Scholar] [CrossRef]
- So, B.C.L.; Yuen, C.H.N.; Tung, K.L.H.; Lam, S.; Cheng, S.L.; Hung, Z.W.L.; et al. A study on trunk muscle activation of 2 deep water running styles (high-knee and cross-country style) and land walking. J Sport Rehabil. 2020, 29, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.F.; Dias, J.M.; Bela, L.F.D.; Pelegrinelli, A.R.M.; Lima, T.B.; da Silva Carvalho, R.G.; et al. A review on muscle activation behaviour during gait in shallow water and deep-water running and surface electromyography procedures. J Bodyw Mov Ther. 2020, 24, 432–441. [Google Scholar] [CrossRef]
- DeMaere, J.M.; Ruby, B.C. Effects of deep water and treadmill running on oxygen uptake and energy expenditure in seasonally trained cross country runners. J Sports Med Phys Fitness. 1997, 37, 175–181. [Google Scholar] [PubMed]
- Andrade, L.S.; Pinto, S.S.; Silva, M.R.; Campelo, P.C.; Rodrigues, S.N.; Gomes, M.B.; et al. Randomized Clinical Trial of Water-Based Aerobic Training in Older Women (WATER Study): Functional Capacity and Quality of Life Outcomes. J Phys Act Health. 2020, 1–9. [Google Scholar] [CrossRef]
- Costa, R.R.; Kanitz, A.C.; Reichert, T.; Prado, A.K.G.; Coconcelli, L.; Buttelli, A.C.K.; et al. Water-based aerobic training improves strength parameters and cardiorespiratory outcomes in elderly women. Exp Gerontol. 2018, 108, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Moreira, O.C.; Lopes, G.S.; de Matos, D.G.; Mazini-Filho, M.L.; Aidar, F.J.; Silva, S.F.; et al. Impact of two hydrogymnastics class methodologies on the functional capacity and flexibility of elderly women. J Sports Med Phys Fitness. 2019, 59, 126–131. [Google Scholar] [CrossRef]
- Reichert, T.; Prado, A.; Kanitz, A.; Kruel, L. Efeitos da hidroginástica sobre a capacidade funcional de idosos: Metanálise de estudos randomizados. Rev Bras Atividade Física Saúde. 2015, 20, 447. [Google Scholar] [CrossRef]
- Farinha, C.; Ferreira, J.P.; Serrano, J.; Santos, H.; Oliveiros, B.; Silva, F.M.; et al. The impact of aquatic exercise programs on the systemic hematological and inflammatory markers of community dwelling elderly: A randomized controlled trial. Front Physiol. 2022, 13, 838580. [Google Scholar] [CrossRef]
- Reichert, T.; Costa, R.R.; Barroso, B.M.; da Rocha, V.M.B.; Oliveira, H.B.; Bracht, C.G.; et al. Long-Term Effects of Three Water-Based Training Programs on Resting Blood Pressure in Older Women. J Aging Phys Act. 2020, 28, 962–970. [Google Scholar] [CrossRef]
- Costa, R.R.; Pilla, C.; Buttelli, A.C.K.; Barreto, M.F.; Vieiro, P.A.; Alberton, C.L.; et al. Water-Based Aerobic Training Successfully Improves Lipid Profile of Dyslipidemic Women: A Randomized Controlled Trial. Res Q Exerc Sport. 2018, 89, 173–182. [Google Scholar] [CrossRef]
- Kwok, M.M.; Ng, S.S.; Myers, J.; So, B.C. Aquatic High Intensity Interval Deep Water Running Influence on Cardiometabolic Health and Cognitive Psychological Responses in Women. Med Sci Sports Exerc [Internet]. 2024 [citado 15 de setembro de 2024]; Disponível em: https://europepmc.org/article/med/38886917.
- Borg, G.A.; Noble, B.J. Perceived exertion. Exerc Sport Sci Rev. 1974, 2, 131–154. [Google Scholar] [CrossRef] [PubMed]
- Rikli, R.E.; Jones, C.J. Senior fitness test manual; Human kinetics; 2013.
- Slentz, C.A.; Duscha, B.D.; Johnson, J.L.; Ketchum, K.; Aiken, L.B.; Samsa, G.P.; et al. Effects of the amount of exercise on body weight, body composition, and measures of central obesity: STRRIDE--a randomized controlled study. Arch Intern Med. 2004, 164, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cheng, R.; Xie, L.; Hu, F. Comparative efficacy of exercise training modes on systemic metabolic health in adults with overweight and obesity: A network meta-analysis of randomized controlled trials. Front Endocrinol. 2024, 14, 1294362. [Google Scholar] [CrossRef]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef]
- Ke, J.F.; Wang, J.W.; Lu, J.X.; Zhang, Z.H.; Liu, Y.; Li, L.X. Waist-to-height ratio has a stronger association with cardiovascular risks than waist circumference, waist-hip ratio and body mass index in type 2 diabetes. Diabetes Res Clin Pract. 2022, 183, 109151. [Google Scholar] [CrossRef]
- Carmienke, S.; Freitag, M.H.; Pischon, T.; Schlattmann, P.; Fankhaenel, T.; Goebel, H.; et al. General and abdominal obesity parameters and their combination in relation to mortality: A systematic review and meta-regression analysis. Eur J Clin Nutr. 2013, 67, 573–585. [Google Scholar] [CrossRef]
- dos Santos Leonel, L.; de Brum, G.; Lima Alberton, C.; Sudatti Delevatti, R. Aquatic training improves HbA1c, blood pressure and functional outcomes of patients with type 2 diabetes: A systematic review with meta-analysis. Diabetes Res Clin Pract. 2023, 110575. [Google Scholar] [CrossRef] [PubMed]
- Bento, P.C.B.; Lopes, M.F.A.; Cebolla, E.C.; Wolf, R.; Rodacki, A.L.F. Effects of Water-Based Training on Static and Dynamic Balance of Older Women. Rejuvenation Res. 2015, 18, 326–331. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Morales, J.S.; Pareja-Galeano, H.; Izquierdo, M.; Emanuele, E.; de la Villa, P.; et al. Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing Res Rev. 2018, 47, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Nogami, Y. The effect of regular aquatic exercise on blood pressure: A meta-analysis of randomized controlled trials. Eur J Prev Cardiol. 2018, 25, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, A.D.M.; Barroso, W.K.S.; Mion Junior, D.; Nobre, F.; Mota-Gomes, M.A.; Jardim, P.C.B.V.; et al. Diretrizes Brasileiras de Medidas da Pressão Arterial Dentro e Fora do Consultório – 2023. Arq Bras Cardiol. 2024, 121, e20240113. [Google Scholar] [PubMed]
- Aubinière-Robb, L.; Jeemon, P.; Hastie, C.E.; Patel, R.K.; McCallum, L.; Morrison, D.; et al. Blood Pressure Response to Patterns of Weather Fluctuations and Effect on Mortality. Hypertension 2013, 62, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Aslam, N.; Kaur, S.; Soni, R.K.; Midha, V.; Chaudhary, A.; et al. Factors affecting seasonal changes in blood pressure in North India: A population based four-seasons study. Indian Heart J. 2018, 70, 360–367. [Google Scholar] [CrossRef]
- Kruel, L.F.M.; Peyré-Tartaruga, L.A.; Alberton, C.L.; Müller, F.G.; Petkowicz, R. Effects of Hydrostatic Weight on Heart Rate During Water Immersion. Int J Aquat Res Educ [Internet]. maio de 2009 [citado 19 de outubro de 2024];3(2). Disponível em: http://scholarworks.bgsu.edu/ijare/vol3/iss2/8/.

| Mesocycle | Weeks | Mondays (continuous) |
Wednesday (pyramid) |
Duration main part |
|---|---|---|---|---|
| I | 1-4 | RPE 11 | 6x RPE 11-13-15 (3:2:1) | 36 minutes |
| II | 5-9 | RPE 11 | 7x RPE 11-13-15 (3:2:1) | 42 minutes |
| III | 10-12 | RPE 13 | 7x RPE 13-15-17 (3:2:1) | 42 minutes |
| Variables | HYD (n=63) | DWR (n=41) | p value |
|---|---|---|---|
| Age (years) | 59 (47 – 65) | 53 (41 – 64) | 0.329 |
| Sex (female) | 54 (85.7%) | 33 (80.5%) | 0.665 |
| Diabetes mellitus | 3 (4.7 %) | 3 (7.3%) | 0.676 |
| Dyslipidemia | 16 (25.3%) | 13 (31.7%) | 0.869 |
| Systemic arterial hypertension | 18 (28.5%) | 10 (24.4%) | 0.657 |
| Practice of other physical exercises | 31 (49.2%) | 22 (53.6%) | 0.902 |
| ACE inhibitors | 4 (6.3%) | 4 (9.8%) | 0.524 |
| ANG-II antagonist | 9 (14.3%) | 1 (2.4%) | 0.045 |
| Antidepressant | 8 (12.7%) | 5 (12.5%) | 0.940 |
| Antiepileptics | 3 (4.8%) | 2 (4.9%) | 0.978 |
| Antipsychotics | 3 (4.8%) | 1 (2.4%) | 0.547 |
| Antirheumatic | 3 (4.8%) | 0 (0.0%) | 0.156 |
| Beta-blocker | 4 (6.3%) | 1 (2.4%) | 0.362 |
| Biguanide antidiabetics | 1 (1.6%) | 1 (2.4%) | 0.757 |
| Diuretics | 3 (4.8%) | 3 (7.3%) | 0.585 |
| Hmg-Coa reductase inhibitors | 4 (6.3%) | 3 (7.3%) | 0.847 |
| Non-Barbiturates Sedative/Hypnotics | 1 (1.6%) | 1 (2.4%) | 0.757 |
| Proton pump inhibitors | 2 (3.2%) | 2 (4.9%) | 0.659 |
| Statins | 7 (11.1%) | 2 (4.9%) | 0.269 |
| Thyroid preparations | 15 (23.8%) | 6 (14.6%) | 0.255 |
| Outcomes (Analysis) | Group (n) | Baseline ± se |
12 weeks |
Δ (CI95%) |
Value p | ||
|---|---|---|---|---|---|---|---|
| g | t | g*t | |||||
| Anthropometric measurements | |||||||
| Body mass (ITT) |
HYD | 72.39±1.98 | 70.30±2.33 | -2.00 (-5.21;1.02) | 0.611 | 0.710 | 0.134 |
| DWR | 73.40±2.31 | 74.80±3.51 | 3.36 (-3.11; 10.07) | ||||
| Body mass (PP) |
HYD (n=46) | 72.65±2.84 | 73.27±2.90 | 0.62 (-0.47;1.72) | 0.990 | 0.879 | 0.351 |
| DWR (n=24) | 73.11±5.57 | 72.66±4.83 | -0.44 (-2.41;1.51) | ||||
| Body mass index (ITT) |
HYD | 27.57±0.65 | 28.43±1.36 | 0.85 (-1.30;3.00) | 0.825 | 0.236 | 0.925 |
| DWR | 27.35±0.76 | 28.08±1.15 | 0.72 (-0.75;2.21) | ||||
| Body mass index (PP) |
HYD (n=46) | 27.70±1.12 | 27.89±1.10 | 0.19 (-0.19;0.58) | 0.882 | 0.832 | 0.426 |
| DWR (n=24) | 27.59±1.46 | 27.48±1.24 | -0.11 (-0.76;0.53) | ||||
| Waist circumference (ITT) |
HYD | 94.10±1.80 | 87.98±2.19* | -6.11 (-9.21; -3.00) | 0.802 | 0.042 | 0.020 |
| DWR | 91.56±1.96 | 91.98±2.98 | 0.41 (-4.12;4.95) | ||||
| Waist circumference (PP) |
HYD (n=46) | 94.78±2.79 | 91.43±2.88* | -3.35 (-5,86; -0.83) | 0.853 | 0.001 | 0.393 |
| DWR (n=24) | 93.22±3.73 | 91.27±3.78* | -1.95 (-3.93; 0.03) | ||||
| Waist-to-Height Ratio (ITT) | HYD | 0.58±0.01 | 0.54±0.01* | -0.04 (-0.05; -0.01) | 0.923 | 0.084 | 0.028 |
| DWR | 0.56±0.01 | 0.56±0.01 | 0.00 (-0.02;0.03) | ||||
| Waist-to-Height Ratio (PP) | HYD (n=46) | 0.58±0.01 | 0.56±0.01* | -0.02 (-0.03; -0.00) | 0.857 | 0.001 | 0.335 |
| DWR (n=24) | 0.57±0.02 | 0.56±0.02* | -0.01 (-0.02;0.00) | ||||
| Functional Fitness | |||||||
| 30-s chair-stand (ITT) |
HYD | 16.44±0.56 | 17.61±0.77 | 1.17 (-0.22;2.57) | 0.405 | 0.060 | 0.633 |
| DWR | 15.95±0.64 | 16.64±0.84 | 0.68 (-0.73;2.11) | ||||
| 30-s chair-stand (PP) |
HYD (n=29) | 17.13±0.86a | 18.17±0.78*a | 1.03 (-0.02;2.09) | 0.014 | 0.001 | 0.301 |
| DWR (n=13) | 14.30±0.72b | 16.30±0.59*b | 2.00 (0.50;3.49) | ||||
| 30-s arm curl (ITT) |
HYD | 19.52±0.57 | 23.88±0.67* | 4.35 (3.14;5.57) | 0.820 | <0.001 | 0.562 |
| DWR | 19.70±0.55 | 23.29±1.19* | 3.58 (1.27;5.89) | ||||
| 30-s arm curl (PP) |
HYD | 19.44±0.73 | 24.24±0.68* | 4.79 (3.53;6.05) | 0.663 | <0.001 | 0.455 |
| DWR | 19.53±1.23 | 22.92±1.79* | 3.38 (-0.08; 6.85) | ||||
| TUG-h (ITT) |
HYD | 8.17±1.99 | 7.70±0.17 | -0.46 (-0.80; -0.12) | 0.888 | 0.496 | 0.257 |
| DWR | 7.92±0.16 | 8.03±0.48 | 0.11 (-0.83; 1.06) | ||||
| TUG-h (PP) |
HYD (n=29) | 7.89±0.27 | 7.74±0.18 | -0.15 (-0.83;0.53) | 0.498 | 0.762 | 0.744 |
| DWR (n=13) | 7.62±0.20 | 7.62±0.35 | 0.00 (-0.63;0.64) | ||||
| TUG-m (ITT) |
HYD | 6.74±0.17 | 6.15±0.17* | -0.58 (-0.80; -0.36) | 0.450 | 0.131 | 0.027 |
| DWR | 6.57±0.12 | 6.68±0.30 | 0.11 (-0.46; 0.69) | ||||
| TUG-m (PP) |
HYD (n=29) | 6.59±0.23 | 6.18±0.21* | -0.40 (-1.05;0.24) | 0.826 | 0.019 | 0.762 |
| DWR (n=13) | 6.70±0.19 | 6.17±0.22* | -0.52 (-0.95; -0.09) | ||||
| 6-Minute walk test (ITT) | HYD | 543.75±16.10a | 603.52±8.60*a | 59.77 (29.09; 90.44) | 0.040 | <0.001 | 0.468 |
| DWR | 493.54±24.17b | 574.94±16.15*b | 81.40 (31.63; 131.17) | ||||
| 6-Minute walk test (PP) | HYD (n=25) | 591.18±13.67 | 604.80±9.87* | 13.62 (-13.25;40.49) | 0.153 | 0.022 | 0.109 |
| DWR (n=12) | 512.75±47.03 | 589.99±20.53* | 77.24 (4.21;150.27) | ||||
| Hemodynamic | |||||||
| Systolic Blood Pressure (ITT) |
HYD | 109.32±2.46 | 114.00±2.49* | 4.68 (-0.44; 9.80) | 0.567 | 0.036 | 0.563 |
| DWR | 108.73±1.97 | 111.39±2.39* | 2.65 (-1.91; 7.22) | ||||
| Systolic Blood Pressure (PP) |
HYD (n=29) | 112.79±2.67 | 114.29±3.34 | 1.49 (-5.01;2.02) | 0.646 | 0.507 | 0.719 |
| DWR (n=13) | 111.66±2.32 | 112.11±2.57 | 0.44 (-4.07;4.95) | ||||
| Diastolic Blood Pressure (ITT) |
HYD | 72.55±1.18 | 75.20±1.42 | 2.65 (0.51; 4.79) | 0.270 | 0.240 | 0.072 |
| DWR | 72.32±1.26 | 71.77±1.43 | -0.55 (-3.33; 2.21) | ||||
| Diastolic Blood Pressure (PP) |
HYD (n=29) | 74.89±1.83 | 75.58±2.02 | 0.68 (-0.98;2.35) | 0.239 | 0.513 | 0.177 |
| DWR (n=15) | 73.37±1.96 | 71.41±1.50 | -1.96 (-5.43;1.49) | ||||
| Resting Heart Rate (ITT) |
HYD | 75.95±1.44 | 76.24±1.73 | 0.28 (-2.12;2.70) | 0.968 | 0.059 | 0.030 |
| DWR | 78.10±1.50 | 73.92±1.71* | -4.18 (-7.42; -0.94) | ||||
| Resting Heart Rate (PP) |
HYD (n=29) | 76.93±1.91 | 77.94±2.03 | 1.00 (-1.05;3.07) | 0.305 | 0.028 | 0.002 |
| DWR (n=13) | 77.43±3.02 | 71.25±2.02* | -6.17 (-10.31; -2.04) | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
