Submitted:
29 November 2025
Posted:
02 December 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Postulated Mechanism
The Center and spin of the Universe
Support for the Postulated Mechanism
Conclusions
Acknowledgments
References
- R. Penrose, Cycles of time: an extraordinary new view of the universe (Bodley Head, London, 2010).
- R. Penrose, Black holes, cosmology and space-time singularities. Nobel Lecture, Dec. 8, 2020. https://www.nobelprize.org/uploads/2024/02/penrose-lecture.pdf.
- V. G. Gurzadyan, and R. Penrose, On CCC-predicted concentric low-variance circles in the CMB sky. Eur. Phys. J. Plus. 128, 22 (2013). [CrossRef]
- V. G. Gurzadyan, and R. Penrose, CCC and the Fermi paradox. Eur. Phys. J. Plus. 131, 11 (2016). [CrossRef]
- A. R. King, New types of singularity in general relativity: the general cylindrically symmetric stationary dust solution. Commun. Math. Phys. 38, 157-171 (1974). [CrossRef]
- L. Smolin, The life of the Cosmos (Oxford Univ. Press, New York, 1997).
- The Rapid Burster. https://images.nasa.gov/details-PIA21418.
- C. L. Bennett et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: are there cosmic microwave background anomalies? Astrophys. J. Supp. Ser. 192, 17 (2001). [CrossRef]
- Planck Collaboration: Y. Akrami et al., Planck 2018 results. VII. Isotropy and statistics of the CMB. Astron. Astrophys. 641, A7 (2020). [CrossRef]
- A. Marcos-Caballero, The Cosmic Microwave Background radiation at large scales and the peak theory (Univ. Cantabria Thesis, 2017).
- J. R. Gott III et al., A map of the universe. Astrophys. J. 624, 463-484 (2005). [CrossRef]
- J.-B. Bao, and N. P. Bao, On the fundamental particles and reactions of nature. Preprint, 2020120703 (2021). [CrossRef]
- A. Kovács et al., The DES view of the Eridanus supervoid and the CMB Cold Spot. Mon. Not. R. Astron. Soc. 510, 216-229 (2021). [CrossRef]
- E. Mach, Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit. (Calve, Prag, 1872).
- D. R. Brill, and J. M. Cohen, Rotating masses and their effect on inertial frames. Phys. Rev. 143, 1011-1015 (1966). [CrossRef]
- V. De La Cruz, and W. Israel, Spinning shell as a source of the Kerr metric. Phys. Rev. 170, 1187-1192 (1968). [CrossRef]
- H. Pfister, and K. H. Braun, A mass shell with flat interior cannot rotate rigidly. Class. Quantum Grav. 3, 335-345 (1986). [CrossRef]
- C. Klein, Rotational perturbations and frame dragging in a Friedmann universe. Class. Quantum Grav. 10, 1619-1631 (1993). [CrossRef]
- O. G. Gron, The principle of relativity and inertial dragging. Am. J. Phys. 77, 373-380 (2009). [CrossRef]
- C. Schmid, Mach’s principle: Exact frame-dragging via gravitomagnetism in perturbed Friedmann-Robertson-Walker universes with K = (±1, 0). Phys. Rev. D 79, 064007 (2009). [CrossRef]
- S. Braeck, Inertial frame dragging and relative rotation of ZAMOs in axistationary asymptotically flat spacetimes. Universe 9, 120 (2023). [CrossRef]
- A. H. Guth, Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347-356 (1981). [CrossRef]
- J. Ellis et al., Primordial supersymmetric inflation. Nucl. Phys. B 221, 524-548 (1983). [CrossRef]
- A. D. Linde, The inflationary universe. Rep. Prog. Phys. 47, 925-986 (1984). [CrossRef]
- J. Silk, and M. S. Turner, Double inflation. Phys. Rev. D 35, 419-428 (1987). [CrossRef]
- A. H. Guth, Lecture 23: inflation (MIT Open Course Ware, 2013).
- H. Pfister, and K. H. Braun, Induction of correct centrifugal force in a rotating mass shell. Class. Quantum Grav. 2, 909-918 (1985). [CrossRef]
- A. G. Riess et al., JWST validates HST distance measurements: Selection of supernova subsample explains differences in JWST estimates of local H0. Astrophys. J. 977, 120 (2024). [CrossRef]
- Planck Collaboration: N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters. Astro. Astrophys. 641, A6 (2020). [CrossRef]
- A. G. Riess et al., JWST observations reject unrecognized crowding of Cepheid photometry as an explanation for the Hubble tension at 8σ confidence. Astrophys. J. Lett. 962, L17 (2024). [CrossRef]
- J. A. King et al., Spatial variation in the fine-structure constant – new results from VLT/UVES. Mon. Not. R. Astron. Soc. 422, 3370-3414 (2012). [CrossRef]
- A. Mariano, and L. Perivolaropoulos, Is there correlation between fine structure and dark energy cosmic dipoles? Phys. Rev. D 86, 083517 (2012). [CrossRef]
- Z. Chang, and H.-N. Lin, Comparison between hemisphere comparison method and dipole-fitting method in tracing the anisotropic expansion of the Universe use the Union2 data set. Mon. Not. R. Astron. Soc. 446, 2952–2958 (2015). [CrossRef]
- K. Migkas et al., Cosmological implications of the anisotropy of ten galaxy cluster scaling relations. Astro. Astrophys. 649, A151 (2021). [CrossRef]
- L. Campanelli, P. Cea, and L. Tedesco, Ellipsoidal universe can solve the CMB quadrupole problem. Phys. Rev. Lett. 97, 131302 (2006). [CrossRef]
- A. Kashlinsky et al., A measurement of large-scale peculiar velocities of clusters of galaxies: technical details. Astrophys. J. 691, 1479–1493 (2009). [CrossRef]
- H. A. Feldman, R. Watkins, and M. J. Hudson, Cosmic flows on 100 h−1 Mpc scales: standardized minimum variance bulk flow, shear and octupole moments. Mon. Not. R. Astron. Soc. 407, 2328–2338 (2010). [CrossRef]
- S. J. Turnbull et al., Cosmic flows in the nearby universe from Type Ia supernovae. Mon. Not. R. Astron. Soc. 420, 447–454 (2012). [CrossRef]
- E. Abdalla et al., Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrophys. 34, 49-211 (2022). [CrossRef]
- L. Perivolaropoulos, and F. Skara. Challenges for ΛCDM: An update. New Astron. Rev. 95, 101659 (2022). [CrossRef]
- P. K. Aluri et al., Is the Observable Universe Consistent with the Cosmological Principle? Class. Quantum Grav. 40, 094001 (2023). [CrossRef]
- A. Witze, Four revelations from the Webb telescope about distant galaxies. Nature 608, 18-19 (2022). [CrossRef]
- D. Clery, Earliest galaxies found by JWST confound theory. Science 379, 1280-1281 (2023). [CrossRef]
- I. Labbé et al., A population of red candidate massive galaxies ~600 Myr after the Big Bang. Nature 616, 266-269 (2023). [CrossRef]
- M. Boylan-Kolchin, Stress testing ΛCDM with high-redshift galaxy candidates. Nat. Astron. 7, 731-735 (2023). [CrossRef]
- J. Silk et al., Which came first: supermassive black holes or galaxies? Insights from JWST. Astrophys. J. Lett. 961, L39 (2024). [CrossRef]
- A. Matteri, A. Ferrara, and A. Pallottini, Beyond the first galaxies primordial black holes shine. Astro. Astrophys. 701, A186 (2025). [CrossRef]
- P. G. Perez-Gonzalez et al., The rise of the galactic empire: ultraviolet luminosity functions at z ~ 17 and z ~ 25 estimated with the MIDIS+NGDEEP ultra-deep JWST/NIRCam dataset. Astrophys. J. 991, 179 (2025). [CrossRef]
- R. P. Kerr, Do black holes have singularities? ArXiv:2312.00841 (2023). [CrossRef]
- de Oliveira-Costa, A. et al. Significance of the largest scale CMB fluctuations in WMAP. Phys. Rev. D 69, 063516 (2004). [CrossRef]
- A. Wright, Across the universe. Nat. Phys. 9, 264 (2013). [CrossRef]
- D. R. Faulkner, The Axis of Evil and the cold spot—serious problems for the Big Bang? Answer Depth, 13 (2018). https://answersingenesis.org/big-bang/axis-evil-cold-spot-sea-rious-problems-big-bang/.
- E. Bodnia et al., The quest for CMB signatures of conformal cyclic cosmology. J. Cosmol. Astropart. Phys. 2024 (05), 009 (2024). [CrossRef]
- Planck Collaboration: P. A. R. Ade et al., Planck 2015 results. XVI. Isotropy and statistics of the CMB. Astron. Astrophys. 594, A16 (2016). [CrossRef]
- B. Ryden, Introduction to Cosmology. 2nd. edn. (Cambridge Univ. Press, Cambridge, 2017).
- D. Castelvecchi, Is dark energy getting weaker? Fresh data bolster shock finding. Nature, 639, 849 (2025). [CrossRef]
- P. C. W. Davies, T. M. Davis, and C. H. Lineweaver, Black holes constrain varying constants. Nature 418, 602-603 (2003). [CrossRef]
- S. Carlip, and S. Vaidya, Do black holes constrain varying constants? Nature 421, 498 (2003). [CrossRef]
- A. Kogut et al., Dipole anisotropy in the Cobe differential microwave radiometers first-year sky maps. Astrophys. J. 419, 1-6 (1993). [CrossRef]
- M. Aaronson et al., A distance scale from the infrared magnitude/H I velocity-width relation. V. Distance moduli to 10 galaxy clusters, and positive detection of bulk supercluster motion toward the microwave anisotropy. Astrophys. J. 302, 536-563 (1986). [CrossRef]
- The Virgo Cluster of Galaxies. http://www.messier.seds.org/more/virgo.html.
- D. Lynden-Bell et al., Photometry and Spectroscopy of Elliptical Galaxies. V. Galaxy Streaming toward the New Supergalactic Center. Astrophys. J. 326, 19-49 (1988). [CrossRef]
- Voyage to the Great Attractor. https://lweb.cfa.harvard.edu/~dfabricant/huchra/seminar/attractor/.
- M. Ahlers, Deciphering the dipole anisotropy of galactic cosmic rays. Phys. Rev. Lett. 117, 151103 (2016). [CrossRef]
- The Pierre Auger Collaboration: A. Aab et al., Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV. Science 357, 1266-1270 (2017). [CrossRef]
- R. B. Tully, C. Howlett, and D. Pomarède, Ho’oleilana: An individual baryon acoustic oscillation? Astrophys. J. 954, 169 (2023). [CrossRef]
- List of most massive black holes. https://www.wikipedia.org/wiki/List_of_most_massive_black_holes.
- V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 19, 525-573 (1970). [CrossRef]
- M. A. Scheel, and K. S. Thorne, Geometrodynamics: the nonlinear dynamics of curved spacetime. Physics-Uspekhi 57, 342-351 (2014). [CrossRef]
- R. Penrose, Singularities and Time-Asymmetry. In S. W. Hawking, and W. Israel, General Relativity: An Einstein Centenary Survey (Cambridge University Press, Cambridge, 581-638, 1979).
- Ya. B. Zel’dovich, Creation of particles in cosmology. In M. S. Longair, Confrontation of cosmological theories with observational data (D. Reidel Pub., Dordrecht, 329-333, 1974).
- P. Ramond, Gauge theories and their unification. Ann. Rev. Nucl. Part. Sci. 33, 31-66 (1983). [CrossRef]
- D. Perkins, Particle Astrophysics. 2nd edn. (Oxford Univ. Press, New York, 2003).
- N. Prakash, Dark matter, neutrinos, and our solar system (World Sci., Singapore, 2013).
- J. A. Formaggio, and G. P. Zeller, From eV to EeV: neutrino cross sections across energy scales. Rev. Mod. Phys. 84, 1307-1341 (2012). [CrossRef]
- IceCube Collab., Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption. Nature, 551, 596-600 (2017). [CrossRef]
- R. Barbieri et al., Baryogenesis through leptogenesis. Nucl. Phys. B 575, 61-77 (2000). [CrossRef]
- A. Abada et al., Flavour matters in leptogenesis. J. High Eng. Phys. 09, 010 (2006). [CrossRef]










![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

