Submitted:
12 November 2024
Posted:
13 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Determination of the Potential of Snowmelt Erosion
Study Area Větřkovice

3. Results
3.1. Overview of Climatological Characteristics of the Větřkovice Area Regard to Snowmelt Erosion and Its Trend
| trends – period 1961-2020 | year | winter | spring | summer | autumn | X.-III. | IV.-IX. |
|---|---|---|---|---|---|---|---|
| mean temperature °C | 7.60 | -1.70 | 7.40 | 16.70 | 7.90 | 1.30 | 13.80 |
| maximum temperature °C | 12.00 | 1.20 | 12.30 | 22.30 | 12.00 | 4.70 | 19.20 |
| minimum temperature °C | 3.30 | -4.70 | 2.60 | 11.20 | 4.20 | -1.90 | 8.50 |
| number of days with minimum temperature below 0 °C | 119.00 | 72.60 | 27.50 | 0.00 | 18.60 | 110.70 | 8.70 |
| number of days with total snow depth above 1 cm | 70.80 | 53.30 | 11.90 | 0.00 | 5.70 | 68.90 | 1.90 |
| depth of new snow (cm) | 119.20 | 80.90 | 22.60 | 0.00 | 15.00 | 113.50 | 6.40 |
| precipitation total (mm) | 679.70 | 105.30 | 170.20 | 254.10 | 149.70 | 233.80 | 445.10 |
| trends – period 1961-2020 | year | winter | spring | summer | autumn | X.-III. | IV.-IX. |
|---|---|---|---|---|---|---|---|
| mean temperature °C | 0.380 | 0.390 | 0.350 | 0.500 | 0.230 | 0.360 | 0.400 |
| maximum temperature °C | 0.400 | 0.350 | 0.410 | 0.580 | 0.230 | 0.360 | 0.460 |
| minimum temperature °C | 0.370 | 0.430 | 0.250 | 0.470 | 0.300 | 0.400 | 0.350 |
| number of days with minimum temperature below 0 °C | -5.100 | -0.010 | -1.250 | 0.00 | -1.310 | -4.590 | -0.610 |
| number of days with total snow depth above 1 cm | -6.405 | -3.370 | -1.699 | -0.016 | -0.784 | -5.606 | -0.134 |
| depth of new snow (cm) | -14.005 | -6.896 | -2.097 | -0.016 | -3.341 | -13.609 | -1.013 |
| precipitation total (mm) | -18.017 | -5.606 | -10.130 | -5.678 | 4.186 | -12.030 | -7.936 |
3.2. Regionalization of the Potential of Snowmelt Erosion in the Czech Republic
3.3. Analysis of Erosion Risk in the Větřkovice Area Using Erosion Potential Maps
5. Conclusions
- i.
- There is an increase in average, maximum, and minimum air temperatures, and accordingly, a decrease in the number of days with temperatures below 0 °C. The warming of the area is also associated with a decrease in the total depth of new snow cover by 3.3 cm per 10 years and a decrease in the number of days with snow cover height above 1 cm by 6.4 days per 10 years.
- ii.
- The total decrease in precipitation amounts is 12 mm per 10 years in the cold half of the year, and for annual totals, it is 18 mm per 10 years.
- iii.
- From the CHMI database, the erosion potential of snow was calculated at 235 climatic stations. The erosion potential values for individual stations were interpolated across the area of the Czech Republic using the method of regression kriging into an erosion potential map for two referential periods. The results show a change in the spatial distribution of erosion potential values. High EP values, occurring in foothill and mountainous areas, mostly grassed, are decreasing in area. The spatial share of lower EP values, located mainly in lower altitudes, predominantly arable, is increasing. In these areas, more significant erosion events associated with snowmelt on arable land may occur.
- iv.
- The comparison of erosion potential calculated for two referential periods (1981-2010 and 1991-2020) in the Větřkovice case area showed a slight decrease in erosion potential value in the referential period 1991-2020, which corresponds with the analyses of changes in climatic characteristics in the studied area. However, the soil loss due to snowmelt erosion, calculated for selected localities, still exceeds the values set by current legislation by 0.9 t·ha-1·y-1.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doesken, N.J.; Robinson, D.A. The Challenge of Snow Measurements. Historical Climate Variability and Impacts in North America. Springer: Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Øygarden, L. Rill and gully development during an extreme winter runoff event in Norway. Catena 2003, 50, 217–242. [Google Scholar] [CrossRef]
- Quinton, J.N.; Fiener, P. Soil erosion on arable land: An unresolved global environmental threat. Progress in Physical Geography: Earth and Environment 2024, 48(1), 136–161. [Google Scholar] [CrossRef]
- Wu, Y.; Ouyang, W.; Hao, Z.; Yang, B.; Wang, L. Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed. J. Hydrol. 2018, 556, 438–448. [Google Scholar] [CrossRef]
- Lana-Renault, N.; Alvera, B.; García-Ruiz, J.M. Runoff and Sediment Transport during the Snowmelt Period in a Mediterranean. High-Mountain Catchment. Arct. Antarct. Alp. Res. 2018, 43, 213–222. [Google Scholar] [CrossRef]
- Gusarov, A.V. The impact of contemporary changes in climate and land use/cover on tendencies in water flow, suspended sediment yield and erosion intensity in the northeastern part of the Don River basin, SW European Russia. Environ. Res. 2019, 175, 468–488. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, F.P.; Li, H.; Cheng, D.B.; Sun, B.Y. The Influence Mechanism of Freeze-Thaw on Soil Erosion: A Review. Water 2021, 13, 1010. [Google Scholar] [CrossRef]
- Lu, Y.F.; Liu, C.; Ge, Y.; Hu, Y.L.; Wen, Q.; Fu, Z.L.; Wang, S.B.; Liu, Y. Spatiotemporal Characteristics of Freeze-Thawing Erosion in the Source Regions of the Chin-Sha, Ya-Lung and Lantsang Rivers on the Basis of GIS. Remote Sens. 2021, 13, 309. [Google Scholar] [CrossRef]
- Liu, B.; Fan, H.; Jiang, Y.; Ma, R. Linking pore structure characteristics to soil strength and their relationships with detachment rate of disturbed Mollisol by concentrated flow under freeze–thaw effects. Journal of Hydrology 2023, 617, 129052. [Google Scholar] [CrossRef]
- Wu, Z.; Fang, H. Snowmelt erosion: A review. Earth-Science Reviews 2024, 250. [Google Scholar] [CrossRef]
- Li, S.; Liu, M.; Adam, J.C.; Pi, H.; Su, F.; Li, D.; Liu, Z.; Yao, Z. Contribution of snow-melt water to the streamflow over the Three-River Headwater region, China. Remote Sens. 2021, 13(8), 1585. [Google Scholar] [CrossRef]
- Hu, W.; Fan, H.; Li, H.; Zhai, X.Y.; Zhang, X.Y. Snowmelt erosion characteristics of controlled gully in black soil region. J. Soil Water Conserv. 2018, 32(5), 84–90. [Google Scholar] [CrossRef]
- Aygün, O.; Kinnard, C.; Campeau, S. Responses of soil erosion to warming and wetting in a cold Canadian agricultural catchment. Catena 2021, 201, 105184. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Xie, Y.; Dun, X.; Wang, D.; Zhang, S. Ephemeral gullies caused by snowmelt: A ten-year study in northeastern China. Soil Tillage Res. 2021, 212, 105048. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, F.; Liu, G.; Zhang, X.; Wilson, G.; Shi, H.; Liu, X. Seasonal changes of soil erosion and its spatial distribution on a long gentle hillslope in the Chinese Mollisol region. Int. Soil Water Conservation Res. 2021, 9(3), 394–404. [Google Scholar] [CrossRef]
- Demidov, V.; Ostroumov, V.; Nikitishena, I.; Lichko, V. Seasonal freezing and soil erosion during snowmelt. Eurasian Soil Science 1995, 28, 78–87. [Google Scholar]
- Edwards, L.; Richter, G.; Bernsdorf, B.; Schmidt, R.-G.; Burney, J. Measurement of rill erosion by snowmelt on potato fields under rotation in Prince Edward Island (Canada). Can. J. Soil Sci. 1998, 78, 449–458. [Google Scholar] [CrossRef]
- Lundekvam, H.E.; Romstad, E.; Øygarden, L. Agricultural policies in Norway and effects on soil erosion. Environmental Science & Policy 2003, 6, 57–67. [Google Scholar] [CrossRef]
- Ban, Y.; Lei, T.; Liu, Z.; Chen, C. Comparison of rill flow velocity over frozen and thawed slopes with electrolyte tracer method. Journal of Hydrology 2016, 534, 630–637. [Google Scholar] [CrossRef]
- Zhai, J.B.; Zhang, Z.; Melnikov, A.; Zhang, M.Y.; Yang, L.Z.; Jin, D.D. Experimental Study on the Effect of Freeze-Thaw Cycles on the Mineral Particle Fragmentation and Aggregation with Different Soil Types. Minerals 2021, 11, 913. [Google Scholar] [CrossRef]
- Zachar, D. Soil erosion; Elsevier Scientific Publishing Company: Amsterdam, 1982; ISBN 0-444-99725-3. [Google Scholar]
- Bai, Q.; Zhou, L.; Fan, H.; Huang, D.; Yang, D.; Liu, H. Effects of frozen layer on composite erosion of snowmelt and rainfall in a typical black soil of northeast China. Water 2023, 16(15), 2131. [Google Scholar] [CrossRef]
- Sui, J.; Koehler, G. Rain-on-snow induced flood events in Southern Germany. Journal of Hydrology 2001, 252, 205–220. [Google Scholar] [CrossRef]
- Watanabe, K.; Kito, T.; Dun, S.; Wu, J.Q.; Greer, R.C.; Flury, M. Water infiltration into a frozen soil with simultaneous melting of the frozen layer. Vadose Zone Journal 2013, 12(1), vzj2011-0188. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; DiGirolamo, N.E. Comparison of the NASA Standard MODerate-Resolution Imaging Spectroradiometer and Visible Infrared Imaging Radiometer Suite Snow-Cover Products for Creation of a Climate Data Record: A Case Study in the Great Basin of the Western United States. Remote Sensing 2024, 16, 3029. [Google Scholar] [CrossRef]
- Nester, T.; Kirnbauer, R.; Parajka, J.; Bloschl, G. Evaluating the snow component of a flood forecasting model. Hydrology Research 2012, 43(6), 762–779. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; Miller, J.R.; Ning, L.; Ohmura, A.; Palazzi, E.; Rangwala, I.; Schöner, W.; Severskiy, I.; Shahgedanova, M.; Wang, M.B.; Williamson, S.N.; Yang, D.Q. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Ollesch, G.; Sukhanovski, Y.; Kistner, I.; Rode, M.; Meissner, R. Characterization and modelling of the spatial heterogeneity of snowmelt erosion. Earth Surface Processes and Landforms 2005, 30, 197–211. [Google Scholar] [CrossRef]
- Rekolainen, S. Effect of snow and soil frost melting on the concentrations of suspended solids and phosphorus in two rural watersheds in Western Finland. Aquatic Science 1989, 51(3), 211–223. [Google Scholar] [CrossRef]
- Henn, B.; Musselman, K.N.; Lestak, L.; Ralph, F.M.; Molotch, N.P. Extreme runoff generation from atmospheric river driven snowmelt during the 2017 Oroville Dam spillways incident. Geophys. Res. Lett. 2020, 47(14). [Google Scholar] [CrossRef]
- Zhu, G.; Xiao, C.; Chen, B.; Zhao, Y. Spring snowmelt flood estimate in the upper Heihe River under climate change. Clim. Chang. Res. 2020, 16(6), 667–678. [Google Scholar] [CrossRef]
- Huang, D.; Su, L.; Zhou, L. Gully is the dominant sediment source of snowmelt erosion in the black soil region—A case study. Soil & Tillage Research 2022, 215. [Google Scholar] [CrossRef]
- Presnijakova, G. Soil erosion caused by the unregulated runoff from melting snow and its control. Symposium of Bari 1–8 October 1962—Commision of land erosion. Publication no 59, 1962, Gentbrugge, 450p.
- Zahradníček, P.; Brázdil, R.; Štěpánek, P.; Trnka, M. Reflection of global warming in trends of temperature characteristics in the Czech Republic, 1961–2019. Int. J. Climatol. 2020, 41, 1211–1229. [Google Scholar] [CrossRef]
- Potopová, V.; Boroneat, C.; Možný, M.; Soukup, J. Driving role of snowcover on soil moisture and drought developing during the growing season in the Czech Republic. International Journal of Climatology 2016, 36(11), 3741–3758. [Google Scholar] [CrossRef]
- Jeníček, M.; Beitlerová, H.; Hasa, M.; Kučerová, D.; Pevná, H.; Podzimek, S. Modelling Snow Accumulation and Snowmelt Runoff—Present Approaches and Results AUC. Geographica 2012, 47(2), 15–24. [Google Scholar] [CrossRef]
- Zhou, G.; Cui, M.; Wan, J.; Zhang, S. A review on snowmelt models: progress and models prospect. Sustainability 2021, 13(20), 11485. [Google Scholar] [CrossRef]
- Brychta, J. Calculation of average annual soil loss in nongrowing period for South-Moravian region using GIS.In. Mendelnet 2019, Brno, pp. 293–298. ISBN 978-80-7509-688-3.
- Středová, H.; Středa, T.; Rožnovský, J. Snow as a Cause of Soil Erosion—Methodological Approach of Determination. In: Šiška, B. et al.: Snow an ecological phenomenon Smolenice, Slovakia, 19th–21st September 2017. ISBN 978-80-89703-47-0.
- Středová, H.; Toman, F. Erosion potential of snow cover in the Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 2012, 15(1), 117–124. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting the Rainfall Erosion Losses—A Guide to Conservation Planning. Agricultural Handbook No. 537, 1978, US Department of Agriculture.
- Janeček, M.; et al. Ochrana zemědělské půdy před erozí, metodika. Česká zemědělská univerzita, 2012, Praha. ISBN 978-80-87415-42-9. (In Czech).
- Pradhan, P.; Seydewitz, T.; Zhou, B.; et al. Climate Extremes are Becoming More Frequent, Co-occurring, and Persistent in Europe. Anthr. Sci. 2022, 1, 264–277. [Google Scholar] [CrossRef]
- Czech Hydrometeorological Institute. Update of the 2015 Comprehensive Study of Impacts, Vulnerability and Sources of Climate Change Risks in the Czech Republic, 2019 (In Czech).
- Svetlitchnyi, O.A. Long-term forecast of changes in soil erosion losses during springsnowmelt caused by climate within the plain part of Ukraine. Journ. Geol. Geograph. Geoecology 2020, 29(3), 591–605. [Google Scholar] [CrossRef]
- Starkloff, T.; Stolte, J.; Hessel, R.; Ritsema, C.; Jetten, V. Integrated, spatial distributed modelling of surface runoff and soil erosion during winter and spring. Catena 2018, 166, 147–157. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Yang, S. The classification and assessment of freeze-thaw erosion in Tibet. Journal of Geographical Sciences 2007, 17, 165–174. [Google Scholar] [CrossRef]
- Pokladníková, H.; Toman, F.; Středa, T. Negative impacts of snowmelting on the soil. Acta universitatis agriculturae et silviculturae Mendelianae Brunensis 2008, 56(1), 143–148. [Google Scholar] [CrossRef]
- Podhrázská, J.; Kučera, J.; Karásek, P.; Křížek, P.; Sobotková, V.; Dumbrovský, M. Postupy hodnocení intenzity eroze v mimovegetačním období a návrhy opatření na zemědělské půdě.2022. Brno: Výzkumný ústav meliorací a ochrany půdy, 2022. ISBN 978-80-88323-76-1. (In Czech).
- Decree No. 240/2021 Coll. Decree on the protection of agricultural land against erosion (In Czech).
- Maltsev, K.; Yermolaev, O. Assessment of soil loss by water erosion in small river basins in Russia. Catena 2020, 195, 104726. [Google Scholar] [CrossRef]





| Erosion potential | 1981-2010 | 1991-2020 |
|---|---|---|
| 0-6 | 17.5 | 18.8 |
| 6.1-26 | 20.0 | 22.9 |
| 26.1-49 | 19.4 | 20.8 |
| 49.1-85 | 19.8 | 19.9 |
| >85.1 | 23.2 | 17.6 |
| The percentage share of the G value interval [t·ha-1·y-1] | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EHP | Area [ha] | < 4 | 4.01-8 | 8.01-12 | 12.01-16 | 16.01-20 | >20 | G (⌀) | GP (permissible) | |||
| EP pres 50.40 (1991-2020) | ||||||||||||
| 1 | 138.70 | 34.80 | 16.00 | 13.30 | 10.90 | 7.90 | 17.10 | 11.45 | 9.00 | |||
| 2 | 81.93 | 42.80 | 15.80 | 9.70 | 8.30 | 8.30 | 15.00 | 9.78 | 9.00 | |||
| 3 | 58.43 | 48.20 | 11.30 | 6.80 | 6.10 | 5.30 | 22.20 | 10.31 | 9.00 | |||
| 4 | 16.65 | 41.20 | 20.30 | 13.20 | 9.30 | 7.10 | 9.00 | 8.06 | 9.00 | |||
| 295.70 | ⌀ 9.90 | 9.00 | ||||||||||
| EP past 54.40 (1981-2010) | ||||||||||||
| 1 | 168.70 | 33.50 | 15.40 | 12.60 | 10.40 | 8.70 | 19.50 | 12.36 | 9.00 | |||
| 2 | 81.93 | 41.10 | 15.60 | 10.00 | 7.10 | 8.30 | 17.90 | 10.56 | 9.00 | |||
| 3 | 58.43 | 46.80 | 11.20 | 7.40 | 5.30 | 5.20 | 24.10 | 11.13 | 9.00 | |||
| 4 | 16.65 | 38.90 | 20.50 | 12.60 | 9.50 | 7.20 | 11.20 | 8.70 | 9.00 | |||
| 295.70 | ⌀ 10.69 | 9.00 | ||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
