Submitted:
10 November 2024
Posted:
11 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Ecological Validity in XR-based Cognitive Assessment and Training
2.1. Definition and Importance of Ecological Validity in Cognitive Science
2.2. XR’s Potential to Enhance Ecological Validity
2.3. Examples of XR-based Cognitive Tasks with Real-World Relevance
3. Usability, Acceptability, and User Experience in XR
3.1. Usability of XR Devices and Systems for Cognitive Assessment
3.2. User Acceptability and Experience Across Various Populations
3.3. Barriers to XR Adoption: Hardware, Software, and Accessibility Challenges
3.4. Case Studies on User Experience in Cognitive Training
4. Multimodal Systems in XR Cognitive Applications
4.1. Overview of Multimodalities: GSR, EEG, Eye Tracking, Hand Tracking, Body Tracking
4.2. Integration of These Modalities in XR Environments
4.3. Applications of Multimodal Systems in Cognitive Assessment
4.4. Advantages and Limitations of Multimodal Systems
5. XR Applications in Cognitive Assessment
5.1. Review of Current XR-based Cognitive Assessment Tools
5.2. XR Assessments Compared to Traditional Methods
5.3. XR’s Potential for Real-time Data Collection and Analysis
5.4. Challenges in Implementing XR in Large-scale Cognitive Assessments
6. XR Applications in Cognitive Training
6.1. Review of Current XR-Based Cognitive Training Interventions
6.2. Population-Specific XR Training Programs
6.3. Long-term Effects and Retention of Cognitive Skills in XR Training
6.4. Future Directions in XR-based Cognitive Training
7. Clinical Utility of XR in Cognitive Assessment and Training
7.1. Benefits of XR-Based Cognitive Tools in Clinical Settings
7.2. Comparative Analysis of Traditional vs. XR-Based Cognitive Assessments and Training
7.3. Case Examples of Clinical Applications
7.4. Challenges for Clinical Adoption
7.5. Current Issues with Using XR for Cognitive Assessment and Training
7.5.1. Overview of Key Challenges Beyond Usability, UX, and Acceptability
7.5.2. Underutilization of XR Technologies
7.5.3. Impact on Different Populations
7.5.4. Hardware Limitations and Their Effect on the Immersive Experience
7.5.5. Strategies to Mitigate Issues and Improve the XR Experience
8. General Discussion
8.1. Key Limitation: Underutilization of Available Technology
8.2. Implications for Future XR-based Cognitive Tools
8.3. Potential for Enhancing Both Cognitive Assessment and Rehabilitation
8.4. Unresolved Issues: Usability in Specific Populations, Regulatory Hurdles
9. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pieri, L.; Tosi, G.; Romano, D. Virtual Reality Technology in Neuropsychological Testing: A Systematic Review. J. Neuropsychol. 2023, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Coyle, H.; Traynor, V.; Solowij, N. Computerized and Virtual Reality Cognitive Training for Individuals at High Risk of Cognitive Decline: Systematic Review of the Literature. Cogn. Ther. Older Adults 2015, 23, 335–359. [Google Scholar] [CrossRef] [PubMed]
- Cogné, M.; Auriacombe, S.; Vasa, L.; Tison, F.; Klinger, E.; Sauzéon, H.; Joseph, P.-A.; N’Kaoua, B. Are Visual Cues Helpful for Virtual Spatial Navigation and Spatial Memory in Patients with Mild Cognitive Impairment or Alzheimer’s Disease? Neuropsychology 2018, 32, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Validation of the Virtual Reality Everyday Assessment Lab (VR-EAL): An Immersive Virtual Reality Neuropsychological Battery with Enhanced Ecological Validity. J. Int. Neuropsychol. Soc. 2021, 27, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Kourtesis, P.; MacPherson, S.E. How Immersive Virtual Reality Methods May Meet the Criteria of the National Academy of Neuropsychology and American Academy of Clinical Neuropsychology: A Software Review of the Virtual Reality Everyday Assessment Lab (VR-EAL). Comput. Hum. Behav. Rep. 2021, 4, 100151. [Google Scholar] [CrossRef]
- Mancuso, V.; Sarcinella, E.D.; Bruni, F.; Arlati, S.; Di Santo, S.G.; Cavallo, M.; Cipresso, P.; Pedroli, E. Systematic Review of Memory Assessment in Virtual Reality: Evaluating Convergent and Divergent Validity with Traditional Neuropsychological Measures. Front. Hum. Neurosci. 2024, 18. [Google Scholar] [CrossRef]
- Borgnis, F.; Baglio, F.; Pedroli, E.; Rossetto, F.; Uccellatore, L.; Oliveira, J.A.G.; Riva, G.; Cipresso, P. Available Virtual Reality-Based Tools for Executive Functions: A Systematic Review. Front. Psychol. 2022, 13, 1–41. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, A.; Padmanabhan, P.; Gulyás, B. Neurophysiological Correlates of Cognition as Revealed by Virtual Reality: Delving the Brain with a Synergistic Approach. Brain Sci. 2021, 11, 51. [Google Scholar] [CrossRef]
- Baceviciute, S.; Lucas, G.; Terkildsen, T.; Makransky, G. Investigating the Redundancy Principle in Immersive Virtual Reality Environments: An Eye-Tracking and EEG Study. J. Comput. Assist. Learn. 2022, 38, 120–136. [Google Scholar] [CrossRef]
- Kalantari, S.; Rounds, J.D.; Kan, J.; Tripathi, V.; Cruz-Garza, J.G. Comparing Physiological Responses during Cognitive Tests in Virtual Environments vs. in Identical Real-World Environments. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef]
- Magosso, E.; De Crescenzio, F.; Ricci, G.; Piastra, S.; Ursino, M. EEG Alpha Power Is Modulated by Attentional Changes during Cognitive Tasks and Virtual Reality Immersion. Comput. Intell. Neurosci. 2019, 2019, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.M.; Davelaar, E.J. Frontal Alpha Oscillations and Attentional Control: A Virtual Reality Neurofeedback Study. Neuroscience 2018, 378, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Krohn, S.; Tromp, J.; Quinque, E.M.; Belger, J.; Klotzsche, F.; Rekers, S.; Chojecki, P.; de Mooij, J.; Akbal, M.; McCall, C.; et al. Multidimensional Evaluation of Virtual Reality Paradigms in Clinical Neuropsychology: Application of the VR-Check Framework. J. Med. Internet Res. 2020, 22, 16724. [Google Scholar] [CrossRef] [PubMed]
- Skurla, M.D.; Rahman, A.T.; Salcone, S.; Mathias, L.; Shah, B.; Forester, B.P.; Vahia, I.V. Virtual Reality and Mental Health in Older Adults: A Systematic Review. Int. Psychogeriatr. 2021, 34, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Mancuso, V.; Cavedoni, S.; Stramba-Badiale, C. Virtual Reality in Neurorehabilitation: A Review of Its Effects on Multiple Cognitive Domains. Expert Rev. Med. Devices 2020, 17, 1035–1061. [Google Scholar] [CrossRef]
- Souchet, A.D.; Philippe, S.; Lourdeaux, D.; Leroy, L. Measuring Visual Fatigue and Cognitive Load via Eye Tracking While Learning with Virtual Reality Head-Mounted Displays: A Review. Int. J. Human–Computer Interact. 2022, 38, 801–824. [Google Scholar] [CrossRef]
- Dey, A.; Chatburn, A.; Billinghurst, M. Exploration of an EEG-Based Cognitively Adaptive Training System in Virtual Reality. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR); IEEE: Osaka, Japan, 2019; pp. 220–226. [Google Scholar]
- Bekele, E.; Wade, J.; Bian, D.; Fan, J.; Swanson, A.; Warren, Z.; Sarkar, N. Multimodal Adaptive Social Interaction in Virtual Environment (MASI-VR) for Children with Autism Spectrum Disorders (ASD). In Proceedings of the 2016 IEEE Virtual Reality (VR); IEEE: Greenville, SC, USA, 2016; pp. 121–130. [Google Scholar]
- Cavedoni, S.; Cipresso, P.; Mancuso, V.; Bruni, F.; Pedroli, E. Virtual Reality for the Assessment and Rehabilitation of Neglect: Where Are We Now? A 6-Year Review Update. Virtual Real. 2022, 26, 1663–1704. [Google Scholar] [CrossRef]
- Shen, J.; Koterba, C.; Samora, J.; Leonard, J.; Li, R.; Shi, J.; Yeates, K.O.; Xiang, H.; Taylor, H.G. Usability and Validity of a Virtual Reality Cognitive Assessment Tool for Pediatric Traumatic Brain Injury. Rehabil. Psychol. 2022, 67, 587–596. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, W.; Chen, C.; Liu, C.; Yang, J.; Zhang, Y. A Review of the Application of Virtual Reality Technology in the Diagnosis and Treatment of Cognitive Impairment. Front. Aging Neurosci. 2019, 11, 1–5. [Google Scholar] [CrossRef]
- Hørlyck, L.D.; Obenhausen, K.; Jansari, A.; Ullum, H.; Miskowiak, K.W. Virtual Reality Assessment of Daily Life Executive Functions in Mood Disorders: Associations with Neuropsychological and Functional Measures. J. Affect. Disord. 2021, 280, 478–487. [Google Scholar] [CrossRef]
- Howard, M.C. A Meta-Analysis and Systematic Literature Review of Virtual Reality Rehabilitation Programs. Comput. Hum. Behav. 2017, 70, 317–327. [Google Scholar] [CrossRef]
- Wen, D.; Yuan, J.; Li, J.; Sun, Y.; Wang, X.; Shi, R.; Wan, X.; Zhou, Y.; Song, H.; Dong, X.; et al. Design and Test of Spatial Cognitive Training and Evaluation System Based on Virtual Reality Head-Mounted Display With EEG Recording. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 2705–2714. [Google Scholar] [CrossRef] [PubMed]
- Pons, P.; Navas-Medrano, S.; Soler-Dominguez, J.L. Extended Reality for Mental Health: Current Trends and Future Challenges. Front. Comput. Sci. 2022, 4, 1034307. [Google Scholar] [CrossRef]
- Kourtesis, P.; Argelaguet, F.; Vizcay, S.; Marchal, M.; Pacchierotti, C. Electrotactile Feedback Applications for Hand and Arm Interactions: A Systematic Review, Meta-Analysis, and Future Directions. IEEE Trans. Haptics 2022, 15, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Kourtesis, P.; Vizcay, S.; Marchal, M.; Pacchierotti, C.; Argelaguet, F. Action-Specific Perception & Performance on a Fitts’s Law Task in Virtual Reality: The Role of Haptic Feedback. IEEE Trans. Vis. Comput. Graph. 2022, 28, 3715–3726. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Q.; Sun, W.; Boulay, C.; Kim, K.; Barmaki, R.L. A Scoping Review of the Use of Lab Streaming Layer Framework in Virtual and Augmented Reality Research. Virtual Real. 2023, 27, 2195–2210. [Google Scholar] [CrossRef]
- Saredakis, D.; Szpak, A.; Birckhead, B.; Keage, H.A.D.; Rizzo, A.; Loetscher, T. Factors Associated with Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2020, 14. [Google Scholar] [CrossRef]
- Chang, E.; Kim, H.T.; Yoo, B. Virtual Reality Sickness: A Review of Causes and Measurements. Int. J. Human–Computer Interact. 2020, 36, 1658–1682. [Google Scholar] [CrossRef]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology. Front. Hum. Neurosci. 2019, 13, 1–13. [Google Scholar] [CrossRef]
- Jensen, L.; Konradsen, F. A Review of the Use of Virtual Reality Head-Mounted Displays in Education and Training. Educ. Inf. Technol. 2018, 23, 1515–1529. [Google Scholar] [CrossRef]
- Kourtesis, P.; Amir, R.; Linnell, J.; Argelaguet, F.; MacPherson, S.E. Cybersickness, Cognition, & Motor Skills: The Effects of Music, Gender, and Gaming Experience. IEEE Trans. Vis. Comput. Graph. 2023, 29, 2326–2336. [Google Scholar] [CrossRef]
- Kourtesis, P.; Papadopoulou, A.; Roussos, P. Cybersickness in Virtual Reality: The Role of Individual Differences, Its Effects on Cognitive Functions and Motor Skills, and Intensity Differences during and after Immersion. Virtual Worlds 2024, 3, 62–93. [Google Scholar] [CrossRef]
- Kourtesis, P.; Linnell, J.; Amir, R.; Argelaguet, F.; MacPherson, S.E. Cybersickness in Virtual Reality Questionnaire (CSQ-VR): A Validation and Comparison against SSQ and VRSQ. Virtual Worlds 2023, 2, 16–35. [Google Scholar] [CrossRef]
- Nesbitt, K.; Davis, S.; Blackmore, K.; Nalivaiko, E. Correlating Reaction Time and Nausea Measures with Traditional Measures of Cybersickness. Displays 2017, 48, 1–8. [Google Scholar] [CrossRef]
- Kirkham, R.; Kooijman, L.; Albertella, L.; Myles, D.; Yücel, M.; Rotaru, K. Immersive Virtual Reality–Based Methods for Assessing Executive Functioning: Systematic Review. JMIR Serious Games 2024, 12, e50282. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, K.; Tran, T.T.M.; Kocaballi, A.B.; Calvo, R.A.; Berkovsky, S.; Ahmadpour, N. Design Considerations for Immersive Virtual Reality Applications for Older Adults: A Scoping Review. Multimodal Technol. Interact. 2022, 6, 60. [Google Scholar] [CrossRef]
- Jin, R.; Pilozzi, A.; Huang, X. Current Cognition Tests, Potential Virtual Reality Applications, and Serious Games in Cognitive Assessment and Non-Pharmacological Therapy for Neurocognitive Disorders. J. Clin. Med. 2020, 9, 3287. [Google Scholar] [CrossRef]
- Alsbury-Nealy, K.; Wang, H.; Howarth, C.; Gordienko, A.; Schlichting, M.L.; Duncan, K.D. OpenMaze: An Open-Source Toolbox for Creating Virtual Navigation Experiments. Behav. Res. Methods 2021, 54, 1374–1387. [Google Scholar] [CrossRef]
- Brookes, J.; Warburton, M.; Alghadier, M.; Mon-Williams, M.; Mushtaq, F. Studying Human Behavior with Virtual Reality: The Unity Experiment Framework. Behav. Res. Methods 2020, 52, 455–463. [Google Scholar] [CrossRef]
- Starrett, M.J.; McAvan, A.S.; Huffman, D.J.; Stokes, J.D.; Kyle, C.T.; Smuda, D.N.; Kolarik, B.S.; Laczko, J.; Ekstrom, A.D. Landmarks: A Solution for Spatial Navigation and Memory Experiments in Virtual Reality. Behav. Res. Methods 2021, 53, 1046–1059. [Google Scholar] [CrossRef]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Technological Competence Is a Pre-Condition for Effective Implementation of Virtual Reality Head Mounted Displays in Human Neuroscience: A Technological Review and Meta-Analysis. Front. Hum. Neurosci. 2019, 13, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Selaskowski, B.; Wiebe, A.; Kannen, K.; Asché, L.; Pakos, J.; Philipsen, A.; Braun, N. Clinical Adoption of Virtual Reality in Mental Health Is Challenged by Lack of High-Quality Research. Npj Ment. Health Res. 2024, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Dawson, D.R.; Marcotte, T.D. Special Issue on Ecological Validity and Cognitive Assessment. Neuropsychol. Rehabil. 2017, 27, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.D.; Gaggioli, A.; Riva, G. Extended Reality for the Clinical, Affective, and Social Neurosciences. Brain Sci. 2020, 10, 922. [Google Scholar] [CrossRef] [PubMed]
- Chaytor, N.; Schmitter-Edgecombe, M. The Ecological Validity of Neuropsychological Tests: A Review of the Literature on Everyday Cognitive Skills. Neuropsychol. Rev. 2003, 13, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Kessels, R.P.C. Improving Precision in Neuropsychological Assessment: Bridging the Gap between Classic Paper-and-Pencil Tests and Paradigms from Cognitive Neuroscience. Clin. Neuropsychol. 2019, 33, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Burgess, P.W.; Alderman, N.; Forbes, C.; Costello, A.; Coates, L.M.A.; Dawson, D.R.; Anderson, N.D.; Gilbert, S.J.; Dumontheil, I.; Channon, S. The Case for the Development and Use of “Ecologically Valid” Measures of Executive Function in Experimental and Clinical Neuropsychology. J. Int. Neuropsychol. Soc. 2006, 12, 194–209. [Google Scholar] [CrossRef]
- Parsons, T.D.; Carlew, A.R.; Magtoto, J.; Stonecipher, K. The Potential of Function-Led Virtual Environments for Ecologically Valid Measures of Executive Function in Experimental and Clinical Neuropsychology. Neuropsychol. Rehabil. 2017, 27, 777–807. [Google Scholar] [CrossRef]
- Faria, A.L.; Andrade, A.; Soares, L.; I Badia, S.B. Benefits of Virtual Reality Based Cognitive Rehabilitation through Simulated Activities of Daily Living: A Randomized Controlled Trial with Stroke Patients. J. NeuroEngineering Rehabil. 2016, 13, 96. [Google Scholar] [CrossRef]
- Tieri, G.; Morone, G.; Paolucci, S.; Iosa, M. Virtual Reality in Cognitive and Motor Rehabilitation: Facts, Fiction and Fallacies. Expert Rev. Med. Devices 2018, 15, 107–117. [Google Scholar] [CrossRef]
- Romero-Ayuso, D.; Castillero-Perea, Á.; González, P.; Navarro, E.; Molina-Massó, J.P.; Funes, M.J.; Ariza-Vega, P.; Toledano-González, A.; Triviño-Juárez, J.M. Assessment of Cognitive Instrumental Activities of Daily Living: A Systematic Review. Disabil. Rehabil. 2021, 43, 1342–1358. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Orueta, U.; Rogers, B.M.; Blanco-Campal, A.; Burke, T. The Challenge of Neuropsychological Assessment of Visual/Visuo-Spatial Memory: A Critical, Historical Review, and Lessons for the Present and Future. Front. Psychol. 2022, 13, 962025. [Google Scholar] [CrossRef] [PubMed]
- Jansari, A.S.; Devlin, A.; Agnew, R.; Akesson, K.; Murphy, L.; Leadbetter, T. Ecological Assessment of Executive Functions: A New Virtual Reality Paradigm. Brain Impair. 2014, 15, 71–87. [Google Scholar] [CrossRef]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. An Ecologically Valid Examination of Event-Based and Time-Based Prospective Memory Using Immersive Virtual Reality: The Effects of Delay and Task Type on Everyday Prospective Memory. Memory 2021, 29, 486–506. [Google Scholar] [CrossRef] [PubMed]
- Kourtesis, P.; MacPherson, S.E. An Ecologically Valid Examination of Event-Based and Time-Based Prospective Memory Using Immersive Virtual Reality: The Influence of Attention, Memory, and Executive Function Processes on Real-World Prospective Memory. Neuropsychol. Rehabil. 2023, 33, 255–280. [Google Scholar] [CrossRef] [PubMed]
- Kisker, J.; Gruber, T.; Schöne, B. Virtual Reality Experiences Promote Autobiographical Retrieval Mechanisms: Electrophysiological Correlates of Laboratory and Virtual Experiences. Psychol. Res. 2021, 85, 2485–2501. [Google Scholar] [CrossRef]
- Sauzéon, H.; N’Kaoua, B.; Pala, P.A.; Taillade, M.; Auriacombe, S.; Guitton, P. Everyday-like Memory for Objects in Ageing and Alzheimer’s Disease Assessed in a Visually Complex Environment: The Role of Executive Functioning and Episodic Memory. J. Neuropsychol. 2016, 10, 33–58. [Google Scholar] [CrossRef]
- Knight, R.G.; Titov, N. Use of Virtual Reality Tasks to Assess Prospective Memory: Applicability and Evidence. Brain Impair. 2009, 10, 3–13. [Google Scholar] [CrossRef]
- Blondelle, G.; Hainselin, M.; Gounden, Y.; Quaglino, V. Instruments Measuring Prospective Memory: A Systematic and Meta-Analytic Review. Arch. Clin. Neuropsychol. 2020, 35, 576–596. [Google Scholar] [CrossRef]
- Canty, A.L.; Fleming, J.; Patterson, F.; Green, H.J.; Man, D.; Shum, D.H.K. Evaluation of a Virtual Reality Prospective Memory Task for Use with Individuals with Severe Traumatic Brain Injury. Neuropsychol. Rehabil. 2014, 24, 238–265. [Google Scholar] [CrossRef]
- Lecouvey, G.; Morand, A.; Gonneaud, J.; Piolino, P.; Orriols, E.; Pélerin, A.; Ferreira Da Silva, L.; De La Sayette, V.; Eustache, F.; Desgranges, B. An Impairment of Prospective Memory in Mild Alzheimer’s Disease: A Ride in a Virtual Town. Front. Psychol. 2019, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Peeters, D. Virtual Reality: A Game-Changing Method for the Language Sciences. Psychon. Bull. Rev. 2019, 26, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.; Peeters, D.; Meyer, A.S.; Hagoort, P. The Combined Use of Virtual Reality and EEG to Study Language Processing in Naturalistic Environments. Behav. Res. Methods 2018, 50, 862–869. [Google Scholar] [CrossRef]
- Huizeling, E.; Alday, P.M.; Peeters, D.; Hagoort, P. Combining EEG and 3D-Eye-Tracking to Study the Prediction of Upcoming Speech in Naturalistic Virtual Environments: A Proof of Principle. Neuropsychologia 2023, 191, 108730. [Google Scholar] [CrossRef] [PubMed]
- Camara Lopez, M.; Deliens, G.; Cleeremans, A. Ecological Assessment of Divided Attention: What about the Current Tools and the Relevancy of Virtual Reality. Rev. Neurol. (Paris) 2016, 172, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, M.; Ufodiama, C.E.; Bateson, A.D.; Martin, S.; Asghar, A.U.R. A Comparative Experimental Study of Visual Brain Event-Related Potentials to a Working Memory Task: Virtual Reality Head-Mounted Display versus a Desktop Computer Screen. Exp. Brain Res. 2021, 239, 3007–3022. [Google Scholar] [CrossRef]
- Bowman, D.A.; Gabbard, J.L.; Hix, D. A Survey of Usability Evaluation in Virtual Environments: Classification and Comparison of Methods. Presence Teleoperators Virtual Environ. 2002, 11, 404–424. [Google Scholar] [CrossRef]
- Ijaz, K.; Ahmadpour, N.; Naismith, S.L.; Calvo, R.A. An Immersive Virtual Reality Platform for Assessing Spatial Navigation Memory in Predementia Screening: Feasibility and Usability Study. JMIR Ment. Health 2019, 6, e13887. [Google Scholar] [CrossRef]
- Tada, K.; Sorimachi, Y.; Kutsuzawa, K.; Owaki, D.; Hayashibe, M. Integrated Quantitative Evaluation of Spatial Cognition and Motor Function with HoloLens Mixed Reality. Sensors 2024, 24, 528. [Google Scholar] [CrossRef]
- Varela-Aldás, J.; Buele, J.; Amariglio, R.; García-Magariño, I.; Palacios-Navarro, G. The Cupboard Task: An Immersive Virtual Reality-Based System for Everyday Memory Assessment. Int. J. Hum.-Comput. Stud. 2022, 167, 102885. [Google Scholar] [CrossRef]
- Wilf, M.; Korakin, A.; Bahat, Y.; Koren, O.; Galor, N.; Dagan, O.; Wright, W.G.; Friedman, J.; Plotnik, M. Using Virtual Reality-Based Neurocognitive Testing and Eye Tracking to Study Naturalistic Cognitive-Motor Performance. Neuropsychologia 2024, 194, 108744. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lee, C.-H.; Feng, S.; Trappey, A.; Gilani, F. Prospective on Eye-Tracking-Based Studies in Immersive Virtual Reality. In Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD); IEEE: Dalian, China, 2021; pp. 861–866. [Google Scholar]
- Küntzer, L.; Schwab, S.; Spaderna, H.; Rock, G. Measuring User Experience of Older Adults during Virtual Reality Exergaming. In Proceedings of the 2024 16th International Conference on Quality of Multimedia Experience (QoMEX); IEEE: Karlshamn, Sweden, 2024; pp. 153–159. [Google Scholar]
- Coldham, G.; Cook, D.M. VR Usability from Elderly Cohorts: Preparatory Challenges in Overcoming Technology Rejection. In Proceedings of the 2017 National Information Technology Conference (NITC); IEEE: Colombo, 2017; pp. 131–135. [Google Scholar]
- Clay, F.; Howett, D.; Fitzgerald, J.; Fletcher, P.; Chan, D.; House, D. Use of Immersive Virtual Reality in the Assessment and Treatment of Alzheimer’s Disease: A Systematic Review. J. Alzheimers Dis. 2020, 75, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Pardini, S.; Gabrielli, S.; Gios, L.; Dianti, M.; Mayora-Ibarra, O.; Appel, L.; Olivetto, S.; Torres, A.; Rigatti, P.; Trentini, E.; et al. Customized Virtual Reality Naturalistic Scenarios Promoting Engagement and Relaxation in Patients with Cognitive Impairment: A Proof-of-Concept Mixed-Methods Study. Sci. Rep. 2023, 13, 20516. [Google Scholar] [CrossRef] [PubMed]
- Arlati, S.; Di Santo, S.G.; Franchini, F.; Mondellini, M.; Filiputti, B.; Luchi, M.; Ratto, F.; Ferrigno, G.; Sacco, M.; Greci, L. Acceptance and Usability of Immersive Virtual Reality in Older Adults with Objective and Subjective Cognitive Decline. J. Alzheimers Dis. 2021, 80, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Morán, A.L.; Ramírez-Fernández, C.; Meza-Kubo, V.; Orihuela-Espina, F.; García-Canseco, E.; Grimaldo, A.I.; Sucar, E. On the Effect of Previous Technological Experience on the Usability of a Virtual Rehabilitation Tool for the Physical Activation and Cognitive Stimulation of Elders. J. Med. Syst. 2015, 39, 104. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.-P.; Zhang, B.; Qin, J. Unlocking Potential: The Development and User-Friendly Evaluation of a Virtual Reality Intervention for Attention-Deficit/Hyperactivity Disorder. Appl. Syst. Innov. 2023, 6, 110. [Google Scholar] [CrossRef]
- Doniger, G.M.; Beeri, M.S.; Bahar-Fuchs, A.; Gottlieb, A.; Tkachov, A.; Kenan, H.; Livny, A.; Bahat, Y.; Sharon, H.; Ben-Gal, O.; et al. Virtual Reality-based Cognitive-motor Training for Middle-aged Adults at High Alzheimer’s Disease Risk: A Randomized Controlled Trial. Alzheimers Dement. Transl. Res. Clin. Interv. 2018, 4, 118–129. [Google Scholar] [CrossRef]
- Wojciechowski, A.; Wiśniewska, A.; Pyszora, A.; Liberacka-Dwojak, M.; Juszczyk, K. Virtual Reality Immersive Environments for Motor and Cognitive Training of Elderly People – a Scoping Review. Hum. Technol. 2021, 17, 145–163. [Google Scholar] [CrossRef]
- Bauer, A.C.M.; Andringa, G. The Potential of Immersive Virtual Reality for Cognitive Training in Elderly. Gerontology 2020, 66, 614–623. [Google Scholar] [CrossRef]
- Brassel, S.; Power, E.; Campbell, A.; Brunner, M.; Togher, L. Recommendations for the Design and Implementation of Virtual Reality for Acquired Brain Injury Rehabilitation: Systematic Review. J. Med. Internet Res. 2021, 23, e26344. [Google Scholar] [CrossRef] [PubMed]
- Margrett, J.A.; Ouverson, K.M.; Gilbert, S.B.; Phillips, L.A.; Charness, N. Older Adults’ Use of Extended Reality: A Systematic Review. Front. Virtual Real. 2022, 2, 760064. [Google Scholar] [CrossRef]
- Pei, S.; Chen, A.; Chen, C.; Li, F.M.; Fozzard, M.; Chi, H.-Y.; Weibel, N.; Carrington, P.; Zhang, Y. Embodied Exploration: Facilitating Remote Accessibility Assessment for Wheelchair Users with Virtual Reality. In Proceedings of the The 25th International ACM SIGACCESS Conference on Computers and Accessibility; ACM: New York, NY, USA, 2023; pp. 1–17. [Google Scholar]
- Appel, L.; Appel, E.; Bogler, O.; Wiseman, M.; Cohen, L.; Ein, N.; Abrams, H.B.; Campos, J.L. Older Adults With Cognitive and/or Physical Impairments Can Benefit From Immersive Virtual Reality Experiences: A Feasibility Study. Front. Med. 2020, 6. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M.; Kan, P.; Kaufmann, H. Multi-Modal Spatial Object Localization in Virtual Reality for Deaf and Hard-of-Hearing People. In Proceedings of the 2021 IEEE Virtual Reality and 3D User Interfaces (VR); IEEE: Lisboa, Portugal, 2021; pp. 588–596. [Google Scholar]
- Dudley, J.; Yin, L.; Garaj, V.; Kristensson, P.O. Inclusive Immersion: A Review of Efforts to Improve Accessibility in Virtual Reality, Augmented Reality and the Metaverse. Virtual Real. 2023, 27, 2989–3020. [Google Scholar] [CrossRef]
- Gamito, P.; Oliveira, J.; Alves, C.; Santos, N.; Coelho, C.; Brito, R. Virtual Reality-Based Cognitive Stimulation to Improve Cognitive Functioning in Community Elderly: A Controlled Study. Cyberpsychology Behav. Soc. Netw. 2020, 23, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Maeng, S.; Hong, J.P.; Kim, W.-H.; Kim, H.; Cho, S.-E.; Kang, J.M.; Na, K.-S.; Oh, S.-H.; Park, J.W.; Bae, J.N.; et al. Effects of Virtual Reality-Based Cognitive Training in the Elderly with and without Mild Cognitive Impairment. Psychiatry Investig. 2021, 18, 619–627. [Google Scholar] [CrossRef]
- Ip, H.H.S.; Wong, S.W.L.; Chan, D.F.Y.; Byrne, J.; Li, C.; Yuan, V.S.N.; Lau, K.S.Y.; Wong, J.Y.W. Enhance Emotional and Social Adaptation Skills for Children with Autism Spectrum Disorder: A Virtual Reality Enabled Approach. Comput. Educ. 2018, 117, 1–15. [Google Scholar] [CrossRef]
- Kourtesis, P.; Kouklari, E.-C.; Roussos, P.; Mantas, V.; Papanikolaou, K.; Skaloumbakas, C.; Pehlivanidis, A. Virtual Reality Training of Social Skills in Adults with Autism Spectrum Disorder: An Examination of Acceptability, Usability, User Experience, Social Skills, and Executive Functions. Behav. Sci. 2023, 13. [Google Scholar] [CrossRef]
- Dehn, L.B.; Piefke, M.; Toepper, M.; Kohsik, A.; Rogalewski, A.; Dyck, E.; Botsch, M.; Schäbitz, W.-R. Cognitive Training in an Everyday-like Virtual Reality Enhances Visual-Spatial Memory Capacities in Stroke Survivors with Visual Field Defects. Top. Stroke Rehabil. 2020, 27, 442–452. [Google Scholar] [CrossRef]
- Faria, A.L.; Latorre, J.; Silva Cameirão, M.; Bermúdez I Badia, S.; Llorens, R. Ecologically Valid Virtual Reality-Based Technologies for Assessment and Rehabilitation of Acquired Brain Injury: A Systematic Review. Front. Psychol. 2023, 14, 1233346. [Google Scholar] [CrossRef]
- Lorentz, L.; Simone, M.; Zimmermann, M.; Studer, B.; Suchan, B.; Althausen, A.; Estocinova, J.; Müller, K.; Lendt, M. Evaluation of a VR Prototype for Neuropsychological Rehabilitation of Attentional Functions. Virtual Real. 2023, 27, 187–199. [Google Scholar] [CrossRef]
- Sakhare, A.R.; Yang, V.; Stradford, J.; Tsang, I.; Ravichandran, R.; Pa, J. Cycling and Spatial Navigation in an Enriched, Immersive 3D Virtual Park Environment: A Feasibility Study in Younger and Older Adults. Front. Aging Neurosci. 2019, 11, 218. [Google Scholar] [CrossRef] [PubMed]
- Halbig, A.; Latoschik, M.E. A Systematic Review of Physiological Measurements, Factors, Methods, and Applications in Virtual Reality. Front. Virtual Real. 2021, 2, 694567. [Google Scholar] [CrossRef]
- Long, X.; Mayer, S.; Chiossi, F. Multimodal Detection of External and Internal Attention in Virtual Reality Using EEG and Eye Tracking Features. In Proceedings of the Proceedings of Mensch und Computer 2024; ACM: Karlsruhe Germany, 2024; pp. 29–43. [Google Scholar]
- Saffaryazdi, N.; Wasim, S.T.; Dileep, K.; Nia, A.F.; Nanayakkara, S.; Broadbent, E.; Billinghurst, M. Using Facial Micro-Expressions in Combination With EEG and Physiological Signals for Emotion Recognition. Front. Psychol. 2022, 13, 864047. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Kim, J. kwan; Oh, D.H.; Ryu, H.; Choi, H. Virtual Daily Living Test to Screen for Mild Cognitive Impairment Using Kinematic Movement Analysis. PLoS ONE 2017, 12, 1–11. [Google Scholar] [CrossRef]
- Dammen, L.V.; Finseth, T.T.; McCurdy, B.H.; Barnett, N.P.; Conrady, R.A.; Leach, A.G.; Deick, A.F.; Van Steenis, A.L.; Gardner, R.; Smith, B.L.; et al. Evoking Stress Reactivity in Virtual Reality: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2022, 138, 104709. [Google Scholar] [CrossRef]
- Picard, R.W.; Fedor, S.; Ayzenberg, Y. Multiple Arousal Theory and Daily-Life Electrodermal Activity Asymmetry. Emot. Rev. 2016, 8, 62–75. [Google Scholar] [CrossRef]
- Biasiucci, A.; Franceschiello, B.; Murray, M.M. Electroencephalography. Curr. Biol. 2019, 29, R80–R85. [Google Scholar] [CrossRef]
- Lustig, A.; Wilf, M.; Dudkiewicz, I.; Plotnik, M. Higher Cognitive Load Interferes with Head-Hand Coordination: Virtual Reality-Based Study. Sci. Rep. 2023, 13, 17632. [Google Scholar] [CrossRef]
- Larsen, O.F.P.; Tresselt, W.G.; Lorenz, E.A.; Holt, T.; Sandstrak, G.; Hansen, T.I.; Su, X.; Holt, A. A Method for Synchronized Use of EEG and Eye Tracking in Fully Immersive VR. Front. Hum. Neurosci. 2024, 18, 1347974. [Google Scholar] [CrossRef]
- Wascher, E.; Alyan, E.; Karthaus, M.; Getzmann, S.; Arnau, S.; Reiser, J.E. Tracking Drivers’ Minds: Continuous Evaluation of Mental Load and Cognitive Processing in a Realistic Driving Simulator Scenario by Means of the EEG. Heliyon 2023, 9, e17904. [Google Scholar] [CrossRef] [PubMed]
- Chicchi Giglioli, I.A.; Bermejo Vidal, C.; Alcañiz Raya, M. A Virtual Versus an Augmented Reality Cooking Task Based-Tools: A Behavioral and Physiological Study on the Assessment of Executive Functions. Front. Psychol. 2019, 10, 2529. [Google Scholar] [CrossRef] [PubMed]
- Chiossi, F.; Turgut, Y.; Welsch, R.; Mayer, S. Adapting Visual Complexity Based on Electrodermal Activity Improves Working Memory Performance in Virtual Reality. Proc. ACM Hum.-Comput. Interact. 2023, 7, 1–26. [Google Scholar] [CrossRef]
- Lapborisuth, P.; Koorathota, S.; Sajda, P. Pupil-Linked Arousal Modulates Network-Level EEG Signatures of Attention Reorienting during Immersive Multitasking. J. Neural Eng. 2023, 20, 046043. [Google Scholar] [CrossRef] [PubMed]
- Poupard, M.; Larrue, F.; Sauzéon, H.; Tricot, A. A Systematic Review of Immersive Technologies for Education: Learning Performance, Cognitive Load and Intrinsic Motivation. Br. J. Educ. Technol. 2024. [Google Scholar] [CrossRef]
- Volmer, B.; Baumeister, J.; Von Itzstein, S.; Schlesewsky, M.; Bornkessel-Schlesewsky, I.; Thomas, B.H. Event Related Brain Responses Reveal the Impact of Spatial Augmented Reality Predictive Cues on Mental Effort. IEEE Trans. Vis. Comput. Graph. 2023, 29, 4990–5007. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D. Virtual Reality and Spatial Cognition: Bridging the Epistemic Gap Between Laboratory and Real-World Insights. Sci. Educ. 2024. [Google Scholar] [CrossRef]
- Voinescu, A.; Sui, J.; Stanton Fraser, D. Virtual Reality in Neurorehabilitation: An Umbrella Review of Meta-Analyses. J. Clin. Med. 2021, 10, 1478. [Google Scholar] [CrossRef]
- Salminen, M.; Jarvela, S.; Ruonala, A.; Harjunen, V.J.; Hamari, J.; Jacucci, G.; Ravaja, N. Evoking Physiological Synchrony and Empathy Using Social VR With Biofeedback. IEEE Trans. Affect. Comput. 2022, 13, 746–755. [Google Scholar] [CrossRef]
- Parisi, A.; Bellinzona, F.; Di Lernia, D.; Repetto, C.; De Gaspari, S.; Brizzi, G.; Riva, G.; Tuena, C. Efficacy of Multisensory Technology in Post-Stroke Cognitive Rehabilitation: A Systematic Review. J. Clin. Med. 2022, 11, 6324. [Google Scholar] [CrossRef]
- Correia, P.H.B. Adaptive Virtual Reality Solutions: A Literature Review. In Proceedings of the Symposium on Virtual and Augmented Reality; ACM: Manaus, Brazil, 2024; pp. 1–10. [Google Scholar]
- Melo, M.; Goncalves, G.; Monteiro, P.; Coelho, H.; Vasconcelos-Raposo, J.; Bessa, M. Do Multisensory Stimuli Benefit the Virtual Reality Experience? A Systematic Review. IEEE Trans. Vis. Comput. Graph. 2022, 28, 1428–1442. [Google Scholar] [CrossRef]
- Nilsson, N.C.; Serafin, S.; Steinicke, F.; Nordahl, R. Natural Walking in Virtual Reality: A Review. Comput. Entertain. 2018, 16, 1–22. [Google Scholar] [CrossRef]
- Blackmore, K.L.; Smith, S.P.; Bailey, J.D.; Krynski, B. Integrating Biofeedback and Artificial Intelligence into eXtended Reality Training Scenarios: A Systematic Literature Review. Simul. Gaming 2024, 55, 445–478. [Google Scholar] [CrossRef]
- Lopez-Nava, I.H.; Munoz-Melendez, A. Wearable Inertial Sensors for Human Motion Analysis: A Review. IEEE Sens. J. 2016, 16, 7821–7834. [Google Scholar] [CrossRef]
- Chiossi, F.; Ou, C.; Mayer, S. Optimizing Visual Complexity for Physiologically-Adaptive VR Systems: Evaluating a Multimodal Dataset Using EDA, ECG and EEG Features. In Proceedings of the Proceedings of the 2024 International Conference on Advanced Visual Interfaces; ACM: Genoa, Italy, 2024; pp. 1–9. [Google Scholar]
- Gramouseni, F.; Tzimourta, K.D.; Angelidis, P.; Giannakeas, N.; Tsipouras, M.G. Cognitive Assessment Based on Electroencephalography Analysis in Virtual and Augmented Reality Environments, Using Head Mounted Displays: A Systematic Review. Big Data Cogn. Comput. 2023, 7. [Google Scholar] [CrossRef]
- Tuena, C.; Serino, S.; Dutriaux, L.; Riva, G.; Piolino, P. Virtual Enactment Effect on Memory in Young and Aged Populations: A Systematic Review. J. Clin. Med. 2019, 8, 620. [Google Scholar] [CrossRef]
- Parsons, T.D.; Carlew, A.R. Bimodal Virtual Reality Stroop for Assessing Distractor Inhibition in Autism Spectrum Disorders. J. Autism Dev. Disord. 2016, 46, 1255–1267. [Google Scholar] [CrossRef]
- Parsons, T.D.; Bowerly, T.; Buckwalter, J.G.; Rizzo, A.A. A Controlled Clinical Comparison of Attention Performance in Children with ADHD in a Virtual Reality Classroom Compared to Standard Neuropsychological Methods. Child Neuropsychol. 2007, 13, 363–381. [Google Scholar] [CrossRef]
- Iriarte, Y.; Diaz-Orueta, U.; Cueto, E.; Irazustabarrena, P.; Banterla, F.; Climent, G. AULA—Advanced Virtual Reality Tool for the Assessment of Attention: Normative Study in Spain. J. Atten. Disord. 2016, 20, 542–568. [Google Scholar] [CrossRef]
- Davis, R.; Ohman, J. Wayfinding in Ageing and Alzheimer’s Disease within a Virtual Senior Residence: Study Protocol. J. Adv. Nurs. 2016, 72, 1677–1688. [Google Scholar] [CrossRef]
- Grübel, J.; Thrash, T.; Hölscher, C.; Schinazi, V.R. Evaluation of a Conceptual Framework for Predicting Navigation Performance in Virtual Reality. PLOS ONE 2017, 12, e0184682. [Google Scholar] [CrossRef]
- Tuena, C.; Mancuso, V.; Stramba-Badiale, C.; Pedroli, E.; Stramba-Badiale, M.; Riva, G.; Repetto, C. Egocentric and Allocentric Spatial Memory in Mild Cognitive Impairment with Real-World and Virtual Navigation Tasks: A Systematic Review. J. Alzheimers Dis. 2021, 79, 95–116. [Google Scholar] [CrossRef] [PubMed]
- Howett, D.; Castegnaro, A.; Krzywicka, K.; Hagman, J.; Marchment, D.; Henson, R.; Rio, M.; King, J.A.; Burgess, N.; Chan, D. Differentiation of Mild Cognitive Impairment Using an Entorhinal Cortex-Based Test of Virtual Reality Navigation. Brain 2019, 142, 1751–1766. [Google Scholar] [CrossRef] [PubMed]
- Pflueger, M.O.; Mager, R.; Graf, M.; Stieglitz, R.-D. Encoding of Everyday Objects in Older Adults: Episodic Memory Assessment in Virtual Reality. Front. Aging Neurosci. 2023, 15, 1100057. [Google Scholar] [CrossRef] [PubMed]
- Coleman, B.; Marion, S.; Rizzo, A.; Turnbull, J.; Nolty, A. Virtual Reality Assessment of Classroom – Related Attention: An Ecologically Relevant Approach to Evaluating the Effectiveness of Working Memory Training. Front. Psychol. 2019, 10, 1851. [Google Scholar] [CrossRef] [PubMed]
- Pooja, R.; Ghosh, P.; Sreekumar, V. Towards an Ecologically Valid Naturalistic Cognitive Neuroscience of Memory and Event Cognition. Neuropsychologia 2024, 203, 108970. [Google Scholar] [CrossRef] [PubMed]
- Howieson, D. Current Limitations of Neuropsychological Tests and Assessment Procedures. Clin. Neuropsychol. 2019, 33, 200–208. [Google Scholar] [CrossRef]
- Gazova, I.; Laczó, J.; Rubinova, E.; Mokrisova, I.; Hyncicova, E.; Andel, R.; Vyhnalek, M.; Sheardova, K.; Coulson, E.J.; Hort, J. Spatial Navigation in Young versus Older Adults. Front. Aging Neurosci. 2013, 5. [Google Scholar] [CrossRef]
- Cerasuolo, M.; De Marco, S.; Nappo, R.; Simeoli, R.; Rega, A. The Potential of Virtual Reality to Improve Diagnostic Assessment by Boosting Autism Spectrum Disorder Traits: A Systematic Review. Adv. Neurodev. Disord. 2024. [Google Scholar] [CrossRef]
- Zhao, H.; Cao, J.; Xie, J.; Liao, W.-H.; Lei, Y.; Cao, H.; Qu, Q.; Bowen, C. Wearable Sensors and Features for Diagnosis of Neurodegenerative Diseases: A Systematic Review. Digit. Health 2023, 9, 20552076231173569. [Google Scholar] [CrossRef]
- Lucas-Pérez, G.; Ramírez-Sanz, J.M.; Serrano-Mamolar, A.; Arnaiz-González, Á.; Bustillo, A. Personalising the Training Process with Adaptive Virtual Reality: A Proposed Framework, Challenges, and Opportunities. In Extended Reality; De Paolis, L.T., Arpaia, P., Sacco, M., Eds.; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2024; Volume 15027, pp. 376–384. ISBN 978-3-031-71706-2. [Google Scholar]
- Gregory, S.E.A.; Wang, H.; Kessler, K. EEG Alpha and Theta Signatures of Socially and Non-Socially Cued Working Memory in Virtual Reality. Soc. Cogn. Affect. Neurosci. 2022, 17, 531–540. [Google Scholar] [CrossRef]
- Wimmer, M.; Weidinger, N.; ElSayed, N.; Müller-Putz, G.R.; Veas, E. EEG-Based Error Detection Can Challenge Human Reaction Time in a VR Navigation Task. In Proceedings of the 2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR); IEEE: Sydney, Australia, 2023; pp. 970–979. [Google Scholar]
- Jo, W.; Wang, R.; Cha, G.-E.; Sun, S.; Senthilkumaran, R.K.; Foti, D.; Min, B.-C. MOCAS: A Multimodal Dataset for Objective Cognitive Workload Assessment on Simultaneous Tasks. IEEE Trans. Affect. Comput. 2024, 1–17. [Google Scholar] [CrossRef]
- Healy, D.; Flynn, A.; Conlan, O.; McSharry, J.; Walsh, J. Older Adults’ Experiences and Perceptions of Immersive Virtual Reality: Systematic Review and Thematic Synthesis. JMIR Serious Games 2022, 10, e35802. [Google Scholar] [CrossRef] [PubMed]
- Mittelstaedt, J.M.; Wacker, J.; Stelling, D. VR Aftereffect and the Relation of Cybersickness and Cognitive Performance. Virtual Real. 2019, 23, 143–154. [Google Scholar] [CrossRef]
- Hampstead, B.M.; Gillis, M.M.; Stringer, A.Y. Cognitive Rehabilitation of Memory for Mild Cognitive Impairment: A Methodological Review and Model for Future Research. J. Int. Neuropsychol. Soc. 2014, 20, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Jonson, M.; Avramescu, S.; Chen, D.; Alam, F. The Role of Virtual Reality in Screening, Diagnosing, and Rehabilitating Spatial Memory Deficits. Front. Hum. Neurosci. 2021, 15, 628818. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Paul, S.; Mourya, G.K.; Kumar, N.; Hussain, M. Recent Trends and Practices Toward Assessment and Rehabilitation of Neurodegenerative Disorders: Insights From Human Gait. Front. Neurosci. 2022, 16, 859298. [Google Scholar] [CrossRef] [PubMed]
- Mondellini, M.; Arlati, S.; Pizzagalli, S.; Greci, L.; Sacco, M.; Arlati, S.; Ferrigno, G. Assessment of the Usability of an Immersive Virtual Supermarket for the Cognitive Rehabilitation of Elderly Patients: A Pilot Study on Young Adults. In Proceedings of the 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH); IEEE: Vienna, Austria, 2018; pp. 1–8. [Google Scholar]
- Huygelier, H.; Schraepen, B.; Lafosse, C.; Vaes, N.; Schillebeeckx, F.; Michiels, K.; Note, E.; Vanden Abeele, V.; Van Ee, R.; Gillebert, C.R. An Immersive Virtual Reality Game to Train Spatial Attention Orientation after Stroke: A Feasibility Study. Appl. Neuropsychol. Adult 2022, 29, 915–935. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Hou, Z.-G. Toward Improving Engagement in Neural Rehabilitation: Attention Enhancement Based on Brain–Computer Interface and Audiovisual Feedback. IEEE Trans. Cogn. Dev. Syst. 2020, 12, 787–796. [Google Scholar] [CrossRef]
- Rizzo, A.A.; Buckwalter, J.G.; Bowerly, T.; Van Der Zaag, C.; Humphrey, L.; Neumann, U.; Chua, C.; Kyriakakis, C.; Van Rooyen, A.; Sisemore, D. The Virtual Classroom: A Virtual Reality Environment for the Assessment and Rehabilitation of Attention Deficits. Cyberpsychol. Behav. 2000, 3, 483–499. [Google Scholar] [CrossRef]
- Selaskowski, B.; Asché, L.M.; Wiebe, A.; Kannen, K.; Aslan, B.; Gerding, T.M.; Sanchez, D.; Ettinger, U.; Kölle, M.; Lux, S.; et al. Gaze-Based Attention Refocusing Training in Virtual Reality for Adult Attention-Deficit/Hyperactivity Disorder. BMC Psychiatry 2023, 23, 74. [Google Scholar] [CrossRef]
- Alashram, A.R.; Annino, G.; Padua, E.; Romagnoli, C.; Mercuri, N.B. Cognitive Rehabilitation Post Traumatic Brain Injury: A Systematic Review for Emerging Use of Virtual Reality Technology. J. Clin. Neurosci. 2019, 66, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Junquera, A.; Garcia-Zamora, E.; Olazaran, J.; Parra, M.A.; Fernandez-Guinea, S. Role of Executive Functions in the Conversion from Mild Cognitive Impairment to Dementia. J. Alzheimers Dis. 2020, 77, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, A.R.; Levin, H.S. Cognitive Sequelae of Traumatic Brain Injury. Psychiatr. Clin. North Am. 2014, 37, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-Y.; Chen, I.-H.; Lin, Y.-J.; Chen, Y.; Hsu, W.-C. Effects of Virtual Reality-Based Physical and Cognitive Training on Executive Function and Dual-Task Gait Performance in Older Adults With Mild Cognitive Impairment: A Randomized Control Trial. Front. Aging Neurosci. 2019, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Moulaei, K.; Sharifi, H.; Bahaadinbeigy, K.; Dinari, F. Efficacy of Virtual Reality-Based Training Programs and Games on the Improvement of Cognitive Disorders in Patients: A Systematic Review and Meta-Analysis. BMC Psychiatry 2024, 24, 116. [Google Scholar] [CrossRef]
- Masoumzadeh, S.; Moussavi, Z. Does Practicing with a Virtual Reality Driving Simulator Improve Spatial Cognition in Older Adults? A Pilot Study. Neurosci. Insights 2020, 15. [Google Scholar] [CrossRef]
- Araiza-Alba, P.; Keane, T.; Chen, W.S.; Kaufman, J. Immersive Virtual Reality as a Tool to Learn Problem-Solving Skills. Comput. Educ. 2021, 164, 104121. [Google Scholar] [CrossRef]
- Ou, Y.-K.; Wang, Y.-L.; Chang, H.-C.; Yen, S.-Y.; Zheng, Y.-H.; Lee, B.-O. Development of Virtual Reality Rehabilitation Games for Children with Attention-Deficit Hyperactivity Disorder. J. Ambient Intell. Humaniz. Comput. 2020, 11, 5713–5720. [Google Scholar] [CrossRef]
- Ren, X.; Wu, Q.; Cui, N.; Zhao, J.; Bi, H.-Y. Effectiveness of Digital Game-Based Trainings in Children with Neurodevelopmental Disorders: A Meta-Analysis. Res. Dev. Disabil. 2023, 133, 104418. [Google Scholar] [CrossRef]
- Torra Moreno, M.; Canals Sans, J.; Colomina Fosch, M.T. Behavioral and Cognitive Interventions With Digital Devices in Subjects With Intellectual Disability: A Systematic Review. Front. Psychiatry 2021, 12, 647399. [Google Scholar] [CrossRef]
- Buckley, R.F.; Maruff, P.; Ames, D.; Bourgeat, P.; Martins, R.N.; Masters, C.L.; Rainey-Smith, S.; Lautenschlager, N.; Rowe, C.C.; Savage, G.; et al. Subjective Memory Decline Predicts Greater Rates of Clinical Progression in Preclinical Alzheimer’s Disease. Alzheimers Dement. 2016, 12, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Buele, J.; Varela-Aldás, J.L.; Palacios-Navarro, G. Virtual Reality Applications Based on Instrumental Activities of Daily Living (iADLs) for Cognitive Intervention in Older Adults: A Systematic Review. J. NeuroEngineering Rehabil. 2023, 20, 168. [Google Scholar] [CrossRef] [PubMed]
- Tortora, C.; Di Crosta, A.; La Malva, P.; Prete, G.; Ceccato, I.; Mammarella, N.; Di Domenico, A.; Palumbo, R. Virtual Reality and Cognitive Rehabilitation for Older Adults with Mild Cognitive Impairment: A Systematic Review. Ageing Res. Rev. 2024, 93, 102146. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-Y.; Tseng, H.-Y.; Lin, Y.-J.; Wang, C.-J.; Hsu, W.-C. Using Virtual Reality-Based Training to Improve Cognitive Function, Instrumental Activities of Daily Living and Neural Efficiency in Older Adults with Mild Cognitive Impairment. Eur. J. Phys. Rehabil. Med. 2020, 56. [Google Scholar] [CrossRef] [PubMed]
- Baragash, R.S.; Aldowah, H.; Ghazal, S. Virtual and Augmented Reality Applications to Improve Older Adults’ Quality of Life: A Systematic Mapping Review and Future Directions. Digit. Health 2022, 8, 205520762211320. [Google Scholar] [CrossRef]
- To’mah, V.; Du Toit, S.H.J. Potential of Virtual Reality to Meaningfully Engage Adults Living with Dementia in Care Settings: A Scoping Review. Aust. Occup. Ther. J. 2024, 71, 313–339. [Google Scholar] [CrossRef]
- Pichierri, G.; Wolf, P.; Murer, K.; De Bruin, E.D. Cognitive and Cognitive-Motor Interventions Affecting Physical Functioning: A Systematic Review. BMC Geriatr. 2011, 11, 29. [Google Scholar] [CrossRef]
- Montana, J.I.; Tuena, C.; Serino, S.; Cipresso, P.; Riva, G. Neurorehabilitation of Spatial Memory Using Virtual Environments: A Systematic Review. J. Clin. Med. 2019, 8, 1516. [Google Scholar] [CrossRef]
- Jeffay, E.; Ponsford, J.; Harnett, A.; Janzen, S.; Patsakos, E.; Douglas, J.; Kennedy, M.; Kua, A.; Teasell, R.; Welch-West, P.; et al. INCOG 2.0 Guidelines for Cognitive Rehabilitation Following Traumatic Brain Injury, Part III: Executive Functions. J. Head Trauma Rehabil. 2023, 38, 52–64. [Google Scholar] [CrossRef]
- Teo, W.-P.; Muthalib, M.; Yamin, S.; Hendy, A.M.; Bramstedt, K.; Kotsopoulos, E.; Perrey, S.; Ayaz, H. Does a Combination of Virtual Reality, Neuromodulation and Neuroimaging Provide a Comprehensive Platform for Neurorehabilitation? – A Narrative Review of the Literature. Front. Hum. Neurosci. 2016, 10. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, L.; He, X.; Yin, S.; Zhou, Y.; Marquez-Chin, C.; Yang, W.; Rao, J.; Xiang, W.; Liu, B.; et al. Psychodynamic-Based Virtual Reality Cognitive Training System with Personalized Emotional Arousal Elements for Mild Cognitive Impairment Patients. Comput. Methods Programs Biomed. 2023, 241, 107779. [Google Scholar] [CrossRef] [PubMed]
- Valenza, G.; Alcaniz, M.; Alfeo, A.L.; Bianchi, M.; Carli, V.; Catrambone, V.; Cimino, M.C.; Dudnik, G.; Duggento, A.; Ferrante, M.; et al. The EXPERIENCE Project: Unveiling Extended-Personal Reality Through Automated VR Environments and Explainable Artificial Intelligence. In Proceedings of the 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE); IEEE: Milano, Italy, 2023; pp. 757–762. [Google Scholar]
- Miller, M.R.; Jun, H.; Herrera, F.; Yu Villa, J.; Welch, G.; Bailenson, J.N. Social Interaction in Augmented Reality. PLOS ONE 2019, 14, e0216290. [Google Scholar] [CrossRef] [PubMed]
- Navas-Medrano, S.; Soler-Dominguez, J.L.; Pons, P. Mixed Reality for a Collective and Adaptive Mental Health Metaverse. Front. Psychiatry 2024, 14, 1272783. [Google Scholar] [CrossRef] [PubMed]
- Hadley, W.; Houck, C.; Brown, L.K.; Spitalnick, J.S.; Ferrer, M.; Barker, D. Moving Beyond Role-Play: Evaluating the Use of Virtual Reality to Teach Emotion Regulation for the Prevention of Adolescent Risk Behavior Within a Randomized Pilot Trial. J. Pediatr. Psychol. 2019, 44, 425–435. [Google Scholar] [CrossRef] [PubMed]
- De Leon-Martinez, S.; Ruiz, M.; Parra-Vargas, E.; Chicchi-Giglioli, I.; Courtet, P.; Lopez-Castroman, J.; Artes, A.; Baca-Garcia, E.; Porras-Segovia, A.A.; Barrigon, M.L. Virtual Reality and Speech Analysis for the Assessment of Impulsivity and Decision-Making: Protocol for a Comparison with Neuropsychological Tasks and Self-Administered Questionnaires. BMJ Open 2022, 12, e058486. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Lundine, J.P.; Koterba, C.; Udaipuria, S.; Busch, T.; Rausch, J.; Yeates, K.O.; Crawfis, R.; Xiang, H.; Taylor, H.G. VR-Based Cognitive Rehabilitation for Children with Traumatic Brain Injuries: Feasibility and Safety. Rehabil. Psychol. 2022, 67, 474–483. [Google Scholar] [CrossRef]
- Parsons, T.D.; Barnett, M. Validity of a Newly Developed Measure of Memory: Feasibility Study of the Virtual Environment Grocery Store. J. Alzheimers Dis. 2017, 59, 1227–1235. [Google Scholar] [CrossRef]
- Liu, Q.; Song, H.; Yan, M.; Ding, Y.; Wang, Y.; Chen, L.; Yin, H. Virtual Reality Technology in the Detection of Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Ageing Res. Rev. 2023, 87, 101889. [Google Scholar] [CrossRef]
- Oliveira, E.; Pereira, N.A.A.; Alves, J.; Henriques, P.R.; Rodrigues, N.F. Validating Structural Cognitive Training Using Immersive Virtual Reality. In Proceedings of the 2023 IEEE 11th International Conference on Serious Games and Applications for Health (SeGAH); IEEE: Athens, Greece, 2023; pp. 1–8. [Google Scholar]
- Cushnan, J.; McCafferty, P.; Best, P. Clinicians’ Perspectives of Immersive Tools in Clinical Mental Health Settings: A Systematic Scoping Review. BMC Health Serv. Res. 2024, 24, 1091. [Google Scholar] [CrossRef]
- Kellmeyer, P. Neurophilosophical and Ethical Aspects of Virtual Reality Therapy in Neurology and Psychiatry. Camb. Q. Healthc. Ethics 2018, 27, 610–627. [Google Scholar] [CrossRef]
- Rakkolainen, I.; Farooq, A.; Kangas, J.; Hakulinen, J.; Rantala, J.; Turunen, M.; Raisamo, R. Technologies for Multimodal Interaction in Extended Reality—A Scoping Review. Multimodal Technol. Interact. 2021, 5, 81. [Google Scholar] [CrossRef]
- Buttussi, F.; Chittaro, L. Effects of Different Types of Virtual Reality Display on Presence and Learning in a Safety Training Scenario. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1063–1076. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.S.; Feiner, S.K. Combating VR Sickness through Subtle Dynamic Field-of-View Modification. In Proceedings of the 2016 IEEE Symposium on 3D User Interfaces (3DUI); IEEE: Greenville, SC, USA, 2016; pp. 201–210. [Google Scholar]
- Teixeira, J.; Palmisano, S. Effects of Dynamic Field-of-View Restriction on Cybersickness and Presence in HMD-Based Virtual Reality. Virtual Real. 2021, 25, 433–445. [Google Scholar] [CrossRef]
- Cao, Z.; Jerald, J.; Kopper, R. Visually-Induced Motion Sickness Reduction via Static and Dynamic Rest Frames. In Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR); IEEE: Reutlingen, Germany, 2018; pp. 105–112. [Google Scholar]
- Bastida, L.; Sillaurren, S.; Loizaga, E.; Tomé, E.; Moya, A. Exploring Human Emotions: A Virtual Reality-Based Experimental Approach Integrating Physiological and Facial Analysis. Multimodal Technol. Interact. 2024, 8, 47. [Google Scholar] [CrossRef]
- Yeh, S.-C.; Lee, S.-H.; Chan, R.-C.; Wu, Y.; Zheng, L.-R.; Flynn, S. The Efficacy of a Haptic-Enhanced Virtual Reality System for Precision Grasp Acquisition in Stroke Rehabilitation. J. Healthc. Eng. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Bini, F.; Franzò, M.; Maccaro, A.; Piaggio, D.; Pecchia, L.; Marinozzi, F. Is Medical Device Regulatory Compliance Growing as Fast as Extended Reality to Avoid Misunderstandings in the Future? Health Technol. 2023, 13, 831–842. [Google Scholar] [CrossRef]
| Modality | Description | Key Applications in XR |
|---|---|---|
| GSR (Galvanic Skin Response) | Measures the skin's electrical conductivity, which changes with levels of physiological arousal. It is a direct indicator of emotional states such as stress, excitement, or calmness. | Used to track and analyze emotional responses during immersive experiences, such as stress levels during virtual simulations or training exercises. |
| EEG (Electroencephalography) | Records the brain's electrical activity using non-invasive sensors placed on the scalp. It provides real-time data on neural processes related to attention, cognitive workload, and emotional regulation. | Applied in monitoring cognitive load, attention, and engagement levels, especially during tasks requiring high mental effort, such as virtual learning environments or problem-solving scenarios. |
| Eye Tracking | Monitors and records eye movements, including where and how long a person focuses on specific elements. It helps understand visual attention and perception in XR environments. | Used for evaluating user attention, navigation patterns, and visual processing. Commonly implemented in user interface testing, training simulations, and studies on how users interact with complex visual scenes. |
| Hand Tracking | Detects and interprets hand movements and gestures, allowing for natural and intuitive interaction with virtual objects without the need for handheld controllers. | Enables realistic manipulation of virtual objects, essential for training simulations, virtual prototyping, and enhancing user immersion through gesture-based controls. |
| Body Tracking | Captures full-body movements and postures, providing comprehensive data on physical behavior and motor coordination. It is crucial for assessing how users move and interact within the virtual space. | Utilized in applications that require accurate assessment of motor skills, spatial awareness, or physical training. It’s particularly valuable in rehabilitation, sports training, and virtual reality experiences that simulate physical activities. |
| Cognitive Domain | XR-based Assessment Tool and Study | Description of Method | Key Findings & Implications |
|---|---|---|---|
| Memory | VR-EAL (Kourtesis et al., 2021a) [4] | Participants engage in tasks like remembering a shopping list or recalling sequences in a realistic virtual environment. | Enhanced ecological validity compared to traditional tests, accurately reflecting real-world memory usage. |
| Spatial Recall Task (Sauzéon et al., 2016) [59] | Participants memorize and recall spatial information in a virtual environment. | Increased realism leads to better memory performance measurements, compared to static tests. | |
| Context-rich Memory Tasks (Pflueger et al., 2023) [134] |
Memory tasks incorporate environmental and situational cues in VR settings. | Contextual elements enhance memory assessment and provide a more realistic understanding of memory function. | |
| VR-EAL (Kourtesis et al., 2021b) [56] | Simulates realistic scenarios that require recalling tasks based on time or event cues, such as remembering to take virtual medication at a specific time or following a meal. | Strong ecological validity, effectively mimicking everyday memory tasks and responsibilities. | |
| VR-EAL (Kourtesis & MacPherson, 2023) [57] | Mimics everyday situations that demand prospective memory, where users must remember tasks triggered by specific times or events, like taking virtual medication after breakfast or at scheduled intervals. | XR methods outperform traditional approaches in capturing prospective memory in real-life situations. | |
| Executive Functions | Virtual Office Simulation (Jansari et al., 2014) [55] | Participants manage tasks, handle unexpected events, and make strategic decisions in a virtual office setting. | Effectively assesses planning, adaptability, and decision-making, mirroring real-world complexities. |
| Inhibitory Control in ASD (Parsons & Carlew, 2016) [127] | VR classroom simulation to measure inhibitory control in adults with ASD. | Captures real-world executive dysfunction in a way that traditional tests cannot. | |
| VR-EAL (Kourtesis & MacPherson, 2021) [5] | Tasks simulate planning and adaptability challenges, like running errands in a virtual city. Also, there is a cooking task which requires multitasking skills. | Provides insights into strategic planning and adaptability under realistic conditions. | |
| Attention | High-Stimulation Attention Task (Coleman et al., 2019) [135] | Participants focus on instructions amid distractions in a virtual classroom. | More accurate assessment of attention control compared to lab-based tests. |
| Sustained Attention Task (Parsons et al., 2007) [128] | XR tasks require continuous focus in high-stimulation environments. | Provides valuable insights into how attention is maintained in complex, realistic settings. | |
| Naturalistic Attention (Iriarte et al., 2016 [129] | Participants filter out distractions in an immersive VR class. | XR tasks mimic real-world attentional demands, offering more applicable results. | |
| VR-EAL (Kourtesis et al., 2021) [4] | Detecting visual/auditory cues amid distractions while on the road. | Comprehensive assessment of attentional processes, enhancing real-world applicability. | |
| Visuospatial Skills | Virtual City Navigation (Grübel et al., 2017) [131] | Participants plan routes and remember landmarks in a virtual city. | Detailed data on spatial memory and reasoning that traditional 2D tests cannot offer. |
| Spatial Deficit Assessment (Howett et al., 2019) [133] | XR tasks assess navigation skills in individuals with mild cognitive impairment or brain injuries. | Valuable for clinical applications, as XR provides a realistic measure of spatial impairments. | |
| VR-EAL (Kourtesis & MacPherson, 2021) [5] | Route planning and landmark recall in immersive VR settings. | Offers an ecologically valid measure of spatial reasoning, closely reflecting real-world challenges. | |
| 3D Interaction Tasks (Cogné et al., 2018) [3] | Participants interact with 3D objects in virtual environments to test coordination and movement patterns. | XR captures coordination skills in a dynamic setting, revealing nuances not measurable by traditional tests. | |
| Object Manipulation (Wen et al., 2023b) [24] | Tasks involving manipulation of objects and solving spatial puzzles. | Provides a comprehensive understanding of visuomotor skills in realistic, engaging scenarios. |
| Training Focus | Population (Study) | Method Description | Key Findings and Implications |
|---|---|---|---|
| Memory Training |
Older Adults (Varela-Aldás et al., 2022) [73] |
Real-life simulated memory tasks, like recalling sequences of actions in a virtual kitchen. | Enhanced user engagement and better real-world applicability compared to static recall exercises. |
| Individuals with Cognitive Decline (Mondellini et al., 2018) [150] | Context-rich scenarios replicating everyday memory challenges. | Memory performance showed marked improvements, especially in older adults and those with mild cognitive impairment. | |
| Attention Training |
General Population & Stroke Patients (Huygelier et al., 2022) [151] | Dynamic tasks in XR requiring sustained attention in realistic, immersive settings. | Improved attentional control, better reflecting real-world demands compared to simple reaction-time exercises. |
| General Population, Children (J. Wang et al., 2020) [152] | Tasks designed with adaptive difficulty and real-time feedback to sustain attention. | Participants maintained engagement and showed greater attentional improvements that generalized to daily activities. | |
| Older Adults (Lorentz et al., 2023) [98] | Immersive attention training tasks set in complex environments, like virtual markets. | Enhanced focus and attentional resource management in high-stimulation scenarios. | |
| General Population & Adults with ADHD (Selaskowski et al., 2023) [44] | XR-based interventions with personalized difficulty adjustments. | Greater effectiveness in training attention skills compared to non-adaptive methods. | |
| Executive Functions Training |
General Population and MCI Liao et al., 2019) [158] | Participants navigate a virtual city or manage tasks in a simulated workplace, engaging executive functions. | XR tasks provided a more realistic training experience, leading to better problem-solving and adaptability. |
| Social Cognition Training |
Adults with ASD (Kourtesis et al., 2023) [95] | Simulations of daily life tasks, like job interviews and shopping, for real-world social skill practice. | XR provided a safe space to learn and adapt, enhancing social interactions and everyday functioning. |
| Children with ASD (Bekele et al., 2016) [18] | XR scenarios focusing on social interactions, like making eye contact and understanding social cues. | Effective at reducing social anxiety and improving communication skills in a safe, controlled environment. | |
| Children with ASD (Ip et al., 2018) [94] | Virtual practice of social tasks, tailored to individual needs, with repeated exposure. | Personalized training showed significant improvements in social cognition and adaptive behavior. | |
| Multiple Cognitive Domains Training |
TBI Patients (Masoumzadeh & Moussavi, 2020) [160] | Gradually increasing task complexity in XR settings to support cognitive skill recovery. | Effective in enhancing spatial memory and task-switching, critical for neurological recovery. |
| Children with Attention or Learning Challenges (Coleman et al., 2019) [135] | Game-like XR scenarios for working memory, problem-solving, and attention training. | High engagement and sustained interest, resulting in cognitive gains and improved academic skills. | |
| Children (Araiza-Alba et al., 2021) [161] | Interactive missions and virtual puzzles that require strategic thinking and memory use. | Enhanced cognitive skill development and positive behavioral outcomes in young learners. | |
| Children with ADHD (Ou et al., 2020) [162] | XR-based training that focuses on attention and strategic thinking through playful scenarios. | XR tasks promoted adaptability, patience, and academic success. | |
| Children with ADHD (Wong et al., 2023) [82] | Engaging XR tasks for attention, social cognition, and executive function, with adaptable challenges. | Increased focus, better task management, and improved social skills, proving XR to be a highly effective therapeutic tool. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
