Submitted:
08 November 2024
Posted:
12 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Study Area and Data Preparation
3. Methods
3.1. Heat Wave Magnitude Index
- Annual number of days experiencing heatwaves, denoted as ANDH
- Annual average temperature of days experiencing heatwaves, denoted as AATW
- Annual intensity of heatwave days, denoted as AIHD
3.2. Trend Analysis
3.3. Sequential Mann-Kendall Test
4. Results
4.1. Trends in Tmin Heatwave Characteristics
4.2. Trends in Tmax Heatwave Characteristics
4.3. Temporal Evolution of Heatwave Characteristics
5. Discussion
5.1. Persistence of Heatwave Days
5.2. Intensity of Heatwave Events
5.3. Implications of Nighttime Temperature Trends
5.4. Statistical Significance and Climate Signals
5.5. Spatial Patterns of Temperature Trends Across Mainland Portugal
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marx, W.; Haunschild, R.; Bornmann, L. Heat waves: a hot topic in climate change research. Theoretical and applied climatology 2021, 146, 781–800. [Google Scholar] [CrossRef] [PubMed]
- Klingelhöfer, D.; Braun, M.; Brüggmann, D.; Groneberg, D.A. Heatwaves: does global research reflect the growing threat in the light of climate change? Globalization and Health 2023, 19, 56. [Google Scholar] [CrossRef] [PubMed]
- Parente, J.; Pereira, M.; Amraoui, M.; Fischer, E.M. Heat waves in Portugal: Current regime, changes in future climate and impacts on extreme wildfires. Science of the total environment 2018, 631, 534–549. [Google Scholar] [CrossRef]
- Espinosa, L.A.; Portela, M.M.; Moreira Freitas, L.M.; Gharbia, S. Addressing the Spatiotemporal Patterns of Heatwaves in Portugal with a Validated ERA5-Land Dataset (1980–2021). Water 2023, 15, 3102. [Google Scholar] [CrossRef]
- Andrade, C.; Fraga, H.; Santos, J. Climate change multi-model projections for temperature extremes in Portugal. Atmospheric Science Letters 2014, 15, 149–156. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; others. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth system science data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Andrade, H.; Nogueira, H. Climate change and heat-related mortality in six cities in Portugal: A warning to public health services. International Journal of Biometeorology 2014, 58, 1455–1460. [Google Scholar]
- Lee, V.; Zermoglio, F.; Ebi, K.; others. Heat waves and human health–emerging evidence and experience to inform risk management in a warming world; United States Agency for International Development, 2019. [Google Scholar]
- Kikstra, J.S.; Nicholls, Z.R.; Smith, C.J.; Lewis, J.; Lamboll, R.D.; Byers, E.; Sandstad, M.; Meinshausen, M.; Gidden, M.J.; Rogelj, J.; others. The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures. Geoscientific Model Development 2022, 15, 9075–9109. [Google Scholar] [CrossRef]
- IPCC. Annex II: Glossary [Möller, V., R. van Diemen, J.B.R. Matthews, C. Méndez, S. Semenov, J.S. Fuglestvedt, A. Reisinger (eds.)]. Climate Change 2022: Impacts, Adaptation and Vulnerability 2022.
- Coughlan de Perez, E.; Arrighi, J.; Marunye, J. Challenging the universality of heatwave definitions: gridded temperature discrepancies across climate regions. Climatic Change 2023, 176, 167. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. Journal of Geophysical Research: Atmospheres 2014, 119, 12–500. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Agenda 2013, 6, 333. [Google Scholar]
- Perkins-Kirkpatrick, S.; Lewis, S. Increasing trends in regional heatwaves. Nature communications 2020, 11, 3357. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.E.; Alexander, L.; Nairn, J. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophysical Research Letters 2012, 39. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Gibson, P.B. Changes in regional heatwave characteristics as a function of increasing global temperature. Scientific Reports 2017, 7, 12256. [Google Scholar] [CrossRef] [PubMed]
- Waha, K.; Krummenauer, L.; Adams, S.; Aich, V.; Baarsch, F.; Coumou, D.; Fader, M.; Hoff, H.; Jobbins, G.; Marcus, R.; others. Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Regional Environmental Change 2017, 17, 1623–1638. [Google Scholar] [CrossRef]
- Ramos, A.M.; Trigo, R.M.; Santo, F.E. Evolution of extreme temperatures over Portugal: recent changes and future scenarios. Climate Research 2011, 48, 177–192. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Soares, P.M.; Lima, D.C.; Miranda, P.M. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal. Climate Dynamics 2019, 52, 129–157. [Google Scholar] [CrossRef]
- Medeiros, E.J.R. EU Funding to Promote Climate Change Adaptation and Risk Prevention and Management in Portugal: Potential Effects on Mitigating Health Hazards. In Climate Change and Health Hazards: Addressing Hazards to Human and Environmental Health from a Changing Climate; Springer, 2023; pp. 331–348. [Google Scholar]
- Change, I.P.O.C. Climate change 2007: The physical science basis. Agenda 2007, 6, 333. [Google Scholar]
- Gouveia, C.; Bastos, A.; Trigo, R.; DaCamara, C. Drought impacts on vegetation in the pre-and post-fire events over Iberian Peninsula. Natural Hazards and Earth System Sciences 2012, 12, 3123–3137. [Google Scholar] [CrossRef]
- Gaupp, F.; Hall, J.; Hochrainer-Stigler, S.; Dadson, S. Changing risks of simultaneous global breadbasket failure. Nature Climate Change 2020, 10, 54–57. [Google Scholar] [CrossRef]
- Pereira, M.G.; Others. The impact of heatwaves on extreme wildfire events in Portugal. Agricultural and Forest Meteorology 2020, 284, 107876. [Google Scholar] [CrossRef]
- IPMA. Instituto Português do Mar e da Atmosfera. Boletim Climático Portugal Continental Julho 2022, 2022. Available at: https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20221215/VshAWFnRwypDAtUBOCCn/cli_20220701_20220731_pcl_mm_co_pt.pdf.
- IPMA. Instituto Português do Mar e da Atmosfera. Relatório Sobre os Incêndios Rurais: Análise Meteorológica & Índices de Perigo e de Risco Julho 2022, 2022. Available at: https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20220920/aLPaHsIyJXBPjLidMnfC/met_20220701_20220731_fog_mm_co_pt.pdf.
- Viegas, D.X.; Pereira, M.G.; Ferreira, M.G.; Silva, I.; Dias, M.; Oliveira, T.; Moreira, J.; Tarantola, S. Climate change and the increasing risk of wildfires in Portugal. Environmental Research Letters 2022, 17, 044003. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Sterl, A. Country-level risk factors for the incidence of non-communicable diseases in rural India. Environmental Research Letters 2015, 10, 124003. [Google Scholar] [CrossRef]
- Nairn, J.; Fawcett, R. Establishing the Heat Wave Index in the NWS Grid in the United States; NOAA/National Weather Service, 2015. [Google Scholar]
- Coles, S. An introduction to statistical modeling of extreme values; Springer, 2001; Vol. 208. [Google Scholar]
- Soares, A.; Vieira, J. Climate variability and change in Portugal: A review. Climatic Change 2012, 112, 1–21. [Google Scholar]
- Mora, C.; Vieira, J. Climate change impacts on the Portuguese climate: A review. Atmosphere 2020, 11, 1281. [Google Scholar]
- Davy, R.; Esau, I. The role of reanalysis data in climate research: A review. Earth-Science Reviews 2019, 193, 1–15. [Google Scholar]
- Almeida, M.; Coelho, P. A first assessment of ERA5 and ERA5-Land reanalysis air temperature in Portugal. Climate Dynamics 2022, 59, 1234–1250. [Google Scholar] [CrossRef]
- Zittis, G.; Dandou, A. Evaluation of ERA5 reanalysis data for temperature extremes in the Mediterranean region. International Journal of Climatology 2020, 40, 1561–1574. [Google Scholar]
- European Centre for Medium-Range Weather Forecasts (ECMWF). ERA5-Land: A new dataset for land surface temperature and other variables. Technical Memorandum 877, ECMWF, 2021.
- Espinosa, L.A.; Portela, M.M.; Matos, J.P. ERA5-Land Reanalysis Temperature Data Addressing Heatwaves in Portugal. International Congress on Engineering and Sustainability in the XXI Century; Springer, 2023; pp. 81–94. [Google Scholar]
- Belo-Pereira, M.; Dutra, E.; Viterbo, P. Climate in Portugal during the 20th century: A brief overview. Revista Portuguesa de Meteorologia e Geofísica 2009, 5, 1–17. [Google Scholar]
- Santos, F.D.; Forbes, K.; Moita, R. Climate change in Portugal. Scenarios, impacts and adaptation measures - SIAM Project; Gradiva: Lisbon, Portugal, 2002. [Google Scholar]
- Miranda, P.M.A.; Coelho, F.E.S.; Tomé, A.R.; Valente, M.A. Climate change in Portugal: Scenarios, impacts, and adaptation measures. Project SIAM: Gradiva, Lisbon, 2002. [Google Scholar]
- Santos, J.A.; Malheiro, A.C.; Pinto, J.G.; Jones, G.V. Homogenization of Portuguese long-term temperature data series: Lisbon, Coimbra and Porto. Earth System Science Data 2012, 4, 187–213. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P.; Zhou, B.; Zeng, Z.; Jiang, T. Local mechanisms for global daytime, nighttime, and compound heatwaves. npj Climate and Atmospheric Science 2023, 6, 26. [Google Scholar] [CrossRef]
- Copernicus European Drought Observatory. Heat and Cold Wave Index (HCWI). Edo indicator factsheet, European Commission, 2018.
- Mann, H.B. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society 1945, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- R Core Team. Mann-Kendall trend test and the Sen slope; R Foundation for Statistical Computing, 2024. [Google Scholar]
- Sneyers, R. On the statistical analysis of series of observations; Number 143 in WMO Technical Note,; World Meteorological Organization: Geneva, Switzerland, 1990. [Google Scholar]
- Chen, X.; Wang, H.; Lyu, W.; Xu, R. The Mann-Kendall-Sneyers test to identify the change points of COVID-19 time series in the United States. BMC Medical Research Methodology 2022, 22, 233. [Google Scholar] [CrossRef]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. Journal of the American statistical association 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Garc’ıa-Herrera, R.; Hern’andez, E.; Barriopedro, D.; Paredes, D.; Trigo, R.M.; Trigo, I.F.; Mendes, M.A. The impact of the 2003 heat wave and the 2005 drought on electricity consumption in Spain. Energy Policy 2010, 38, 6855–6865. [Google Scholar]
- Diffenbaugh, N.S.; Giorgi, F.; Pal, J.S. Mediterranean climate change during the Holocene: Evidence from global and regional climate modelling. The Holocene 2007, 17, 1167–1179. [Google Scholar]
- Miralles, D.G.; Teuling, A.J.; van Heerwaarden, C.C.; de Arellano, J.V.G. Mega-heatwaves in the future: projections for Southern Europe. Environmental Research Letters 2014, 9, 034009. [Google Scholar]
- Sousa, P.M.; Ramos, A.M.; Trigo, R.M.; Liberato, M.L.; Nieto, R. Projected changes in atmospheric rivers affecting Europe in CMIP5 models. Geophysical Research Letters 2018, 45, 12–255. [Google Scholar]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters 2015, 10, 124003. [Google Scholar] [CrossRef]
- Russo, E.; Domeisen, D.I. Increasing intensity of extreme heatwaves: the crucial role of metrics. Geophysical Research Letters 2023, 50, e2023GL103540. [Google Scholar] [CrossRef]
- Roy’e, D.; Codesido, R.; Tobías, A.; Taracido, M. Increasing temperatures, increasing risks: Nighttime temperature and the risk of cardiovascular mortality in Spain. Environmental Research 2021, 195, 110793. [Google Scholar]
- Fenner, D.; Meier, F.; Bechtel, B.; Otto, M.; Scherer, D. Intra and inter ’local climate zone’variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany. Meteorologische Zeitschrift 2017, 26, 525–547. [Google Scholar] [CrossRef]
- Stahel, W.A. New relevance and significance measures to replace p-values. PLoS One 2021, 16, e0252991. [Google Scholar] [CrossRef] [PubMed]
- Portela, M.M.; Espinosa, L.A.; Zelenakova, M. Long-term rainfall trends and their variability in mainland Portugal in the last 106 years. Climate 2020, 8, 146. [Google Scholar] [CrossRef]
- Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings 2020, 207, 109482. [Google Scholar] [CrossRef]










| Grid-point | ANDH Tmin | AATW Tmin | AIHD Tmin | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 43-year avg | Trend | 43-year avg | Trend | 43-year avg | Trend | ||||
| (days) | (days/decade) | (°C) | (°C/decade) | (°C) | (°C/decade) | ||||
| BGCA | 16.2 | 2.1 | 0.102 | 12.05 | 0.14 | 0.786 | 17.24 | 0.14 | 0.746 |
| BRGA | 15.6 | 1.9 | 0.139 | 14.72 | 0.44 | 0.147 | 19.07 | 0.71 | 0.183 |
| PRTO | 16.3 | 1.9 | 0.145 | 15.80 | 0.36 | 0.387 | 20.17 | 0.51 | 0.113 |
| AVRO | 17.2 | 2.3 | 0.068 | 16.75 | -0.02 | 0.972 | 21.64 | 0.18 | 0.666 |
| GRDA | 17.0 | 2.4 | 0.066 | 13.54 | 0.35 | 0.368 | 18.84 | 0.52 | 0.245 |
| CMBR | 17.4 | 1.2 | 0.390 | 15.28 | 0.15 | 0.580 | 20.39 | 0.08 | 0.801 |
| CABO | 16.2 | 2.1 | 0.183 | 16.41 | 0.46 | 0.448 | 21.39 | 0.48 | 0.186 |
| NZRE | 15.5 | 0.8 | 0.432 | 15.72 | 0.19 | 0.408 | 19.49 | 0.02 | 0.898 |
| PTLG | 16.9 | 2.7 | 0.024 | 16.55 | 0.51 | 0.328 | 21.34 | 0.75 | 0.072 |
| STRM | 16.2 | 1.8 | 0.109 | 17.18 | 0.17 | 0.616 | 21.78 | 0.19 | 0.633 |
| LISB | 18.0 | 1.9 | 0.201 | 17.55 | 0.31 | 0.374 | 21.65 | 0.14 | 0.737 |
| EVRA | 17.9 | 2.0 | 0.080 | 17.27 | 0.44 | 0.288 | 22.46 | 0.55 | 0.186 |
| BEJA | 17.2 | 2.9 | 0.006 | 17.20 | 0.72 | 0.090 | 21.53 | 0.90 | 0.010 |
| LGOS | 16.7 | 2.3 | 0.013 | 17.71 | 0.03 | 0.900 | 21.62 | 0.25 | 0.379 |
| FARO | 16.7 | 4.2 | 0.002 | 18.63 | 0.10 | 0.862 | 22.82 | 0.77 | 0.030 |
| Grid-point | ANDH Tmax | AATW Tmax | AIHD Tmax | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 43-year avg | Trend | 43-year avg | Trend | 43-year avg | Trend | ||||
| (days) | (days/decade) | (°C) | (°C/decade) | (°C) | (°C/decade) | ||||
| BGCA | 20.0 | 3.0 | 0.024 | 24.06 | 0.46 | 0.402 | 30.83 | 0.90 | 0.026 |
| BRGA | 20.9 | 3.3 | 0.020 | 25.61 | -0.27 | 0.665 | 32.17 | 0.26 | 0.603 |
| PRTO | 20.8 | 2.9 | 0.054 | 25.82 | -0.11 | 0.879 | 33.04 | 0.34 | 0.392 |
| AVRO | 21.2 | 3.6 | 0.013 | 26.74 | 0.21 | 0.745 | 33.88 | 0.74 | 0.047 |
| GRDA | 20.8 | 3.6 | 0.005 | 23.97 | 0.19 | 0.665 | 32.03 | 1.03 | 0.037 |
| CMBR | 21.3 | 3.1 | 0.056 | 27.36 | 0.07 | 0.914 | 35.20 | 0.33 | 0.474 |
| CABO | 20.6 | 3.8 | 0.016 | 28.61 | 0.79 | 0.172 | 36.60 | 1.14 | 0.008 |
| NZRE | 22.4 | 2.2 | 0.104 | 25.57 | -0.07 | 0.802 | 33.06 | 0.23 | 0.572 |
| PTLG | 21.1 | 3.0 | 0.082 | 27.45 | 0.68 | 0.179 | 36.02 | 0.80 | 0.106 |
| STRM | 22.5 | 3.6 | 0.022 | 29.35 | -0.08 | 0.851 | 37.93 | 0.38 | 0.420 |
| LISB | 20.0 | 4.2 | 0.019 | 26.56 | -0.15 | 0.884 | 34.07 | 0.46 | 0.185 |
| EVRA | 20.3 | 3.3 | 0.025 | 29.22 | 0.81 | 0.049 | 37.99 | 1.23 | 0.014 |
| BEJA | 19.4 | 3.5 | 0.040 | 30.12 | 0.96 | 0.059 | 37.68 | 1.19 | 0.006 |
| LGOS | 17.9 | 4.4 | 0.001 | 27.31 | 0.34 | 0.603 | 33.44 | 0.98 | 0.013 |
| FARO | 18.2 | 4.2 | 0.002 | 25.58 | 0.64 | 0.233 | 30.79 | 1.18 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
