Submitted:
08 November 2024
Posted:
12 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analysis of Weather Conditions 30 and 14 days Before the Harvest of the Apple Cultivar ‘Sinap Orlovsky’
2.3. Research Objects
2.4. Regulations for the Use of Organomineral Fertilizers in the Experiment
2.5. Yield and Average Weight of Apple Fruits
2.6. Conditions for Long-Term Storage of Apple Fruits
2.7. Assessment of Damage by Physiological and Microbiological Diseases During Long-Term Storage
2.8. Statistical Analysis
3. Results
3.1. The Effect of Foliar Sprays with NPC "White Pearl" on the Yield of ‘Sinap Orlovsky’
3.2. The Effect of Foliar Sprays with NPC "White Pearl" Preparations on the Size of Fruits of the 'Sinap Orlovsky' Cultivar
3.3. The Effect of Foliar Sprays with NPC "White Pearl" Preparations on Scald Damage to Fruits of ‘Sinap Orlovsky’ During Prolonged Storage
3.4. The Effect of Foliar Sprays with Preparations of NPC "White Pearl" on the Bitter pit Damage of ‘Sinap Orlovsky’ Fruits During Prolonged Storage
3.5. Assessment of Damage to ‘Sinap Orlovsky’ Fruits by other Physiological and Microbiological Diseases During Long-Term Storage
3.6. The Effect of Foliar Sprays with NPC "White Pearl" on the Yield of Commercial Fruits of ‘Sinap Orlovsky’ After Prolonged Storage
3.7. Correlation Analysis
4. Discussion
5. Conclusions
- 14 days after flowering;
- Phenophase "fruit-hazel";
- Phenophase "fruit-walnut";
- 25-30 days before the apple harvest.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyer, J., Liu, R.H. Apple phytochemicals and their health benefits. Nutrition Journal 2004, 3, 5. [CrossRef]
- Oyenihi, A.B., Belay, Z.A., Mditshwa, A., Caleb, O.J. "An apple a day keeps the doctor away": The potentials of apple bioactive constituents for chronic disease prevention. Journal Food Science 2022, 87(6), 2291-2309. [CrossRef]
- Skinner, R.C., Gigliotti, J.C., Ku, K.M., Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutrition Reviews 2018, 76(12), 893–909. [CrossRef]
- Pal, R.S., Pal, Y., Wal, A., Wal, P. Herbal detoxifiers: An eminent need of today. Current Nutrition & Food Science 2020, 16(4), 424–432. [CrossRef]
- Ma, B., Chen, J., Zheng, H., Fang, T., Ogutu, C., Li, S., Han, Y., & Wu, B. Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chemistry 2015, 172, 86–91. [CrossRef]
- FaoStat. Food and Agricultural Organization of the United Nations. http://fao.org/faostat.
- Kalinowska, M., Bielawska, A., Lewandowska-Siwkiewicz, H., Priebe, W., Lewandowski, W. Apples: Content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiology and Biochemistry 2014, 84, 169–188. [CrossRef]
- Karakasova, L., Stefanoski, A., Rafajlovska, V., Klopceska, J. Technological characteristics of some apple cultivars. ISHS Acta Hort. (2009) 825 559–564. [CrossRef]
- Musacchi, S., Serra, S. Review: apple fruit quality: overview on pre-harvest factors. Journal of Horticultural Sciences 2018, 234, 409–430. [CrossRef]
- Mahajan, P.V., Caleb, O.J., Singh, Z., Watkins, C.B., Geyer, M. Postharvest treatments of fresh produce. Philosophical Transactions of the Royal Society A 2014, 372, 20130309. [CrossRef]
- Gudkovskii, V.A., Kozhina, L.V., Balakirev, A.E., Nazarov, Y.B., Kuzin, A.I. Promising technology to control bitter pit and other postharvest pathologic diseases. Acta Horticulturae. 2021, 1325, 151–158. [CrossRef]
- Mattheis J.P., Felicetti D.A., Rudell D.R. ‘d’Anjou’ pear metabolism during ultra-low O2, low CO2 controlled atmosphere storage reflects disorder outcome. Postharvest Biology and Technology 2022, 185, 111781. [CrossRef]
- de Freitas, S.T., Mitcham, E.I. 3 Factors Involved in Fruit Calcium Deficiency Disorders. Horticultural reviews 2012. 40. 107–146. [CrossRef]
- Moggia, C., Moya-León, M.A., Pereira, M., Yuri, J.A., Lobos, G.A. Effect of DPA [Diphenylamine] and 1-MCP [1-methylcyclopropene] on chemical compounds related to superficial scald of Granny Smith apples. Spanish Journal of Agricultural Research 2010, 8(1), 178–187. [CrossRef]
- Zanella, A. Control of apple superficial scald and ripeningsa comparison between 1-methylcyclopropene and diphenylamine postharvest treatments, initial low oxygen stress and ultra-low oxygen storage. Postharvest Biology and Technology 2003, 27, 69–78. [CrossRef]
- Gudkovsky, V.A., Kozhina, L.V. The influence of storage conditions on the incidence of sunburn and the quality of apple fruits in the middle zone of Russia. Fruits and vegetables - the basis of the structure of healthy human nutrition. Michurinsk, 2012. 105–136.
- Gudkovsky, V.A., Kozhina, L.V., Nazarov, Yu.B. Existing and gutting-edge technologies of storage gas injury fruit protection. Vestnik of the Russian agricultural science 2017, 2, 28–31.
- Lurie S., Watkins C. B. Superficial scald, its etiology and control. Postharvest Biology and Technology 2012. 65. 44–60. [CrossRef]
- Ju, Z., Bramlage, W. J. Cuticular Phenolics and Scald Development in Delicious’ Apples. Journal of the American Society for Horticultural Science 2000. 125(40), 498–504. [CrossRef]
- Frioni, T., Sabbatini, P., Tombesi, S., Norrie, J., Poni, S., Gatti, M., Palliotti, A. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Scientia Horticulturae 2018; 232, 97–106. [CrossRef]
- Doroshenko, TN, Petrik, GF, Chumakov, SS, Krivorotov, SB, Maksimenko, AP. Specific aspects of creating a sustainably functioning ecosystem of an organic apple garden in the South of Russia. Journal of Pharmaceutical Sciences and Research 2018, 10(7), 1652–1655.
- Prichko, T.G., Smelik, T.L. Assessment of efficiency of new preparations contained calcium in the fight against of apple bitter pits. Scientific works of the North Caucasus Federal Scientific Center for Horticulture, Viticulture, and Winemaking 2015. 7. 143–146.
- Mushinsky, A.A., Aminova, E.V., Avdeeva, Z.A., Borisova, A.A., Tumaeva, T.A. The effect of organic fertilizer on the productivity and quality of strawberries. Pomiculture and small fruits culture in Russia 2019, 59, 335–342. [CrossRef]
- Doroshenko, T, Ryazanova, L, Petrik, G, Gorbunov, I, Chumakov, S. Features of the economical yield formation of apple plants under non-root nutrition in the Southern Russia organic plantings. BIO Web of Conferences BIOLOGIZATION. 2021; 34, 05004. [CrossRef]
- Ozherelieva, Z., Prudnikov, P., Nikitin, A., Androsova, A., Bolgova A., Stupina A., Vetrova O. Adaptogenic Preparations Enhance the Tolerance to Spring Frosts, Yield and Quality of Apple Fruits. Horticulturae 2023, 9, 591. [CrossRef]
- Ozherelieva, ZE, Prudnikov, PS, Nikitin, AL, Vetrova, OA. Leonicheva, Е.V. Yield and quality of Malus domestica Borkh. As influenced by novel organomineral fertilizers. Agricultural Biology. 2023, 58(5), 902–914. [CrossRef]
- Ozherelieva, Z.E., Prudnikov, P.S.. Impact of the B-Plus White Pearl (Belyi Zhemchug) reparation on the spring frost tolerance, yield and quality of apple cross. Horticulture and Viticulture 2022; 6, 24–32. [CrossRef]
- Ozherelieva, ZE, Nikitin, AL, Prudnikov, PS. Vetrova, OA. Beliy Zhemchug Activated Complex: Effect on Quality and Yield of Commercial Apples after Long-Term Storage. Food Processing: Techniques and Technology 2024, 54(2), 358–368. [CrossRef]
- Ruzzi, M., Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae 2015, 196, 124–134. [CrossRef]
- Hodges, D.M. Postharvest Oxidative Stress in Horticultural Crops. York, USA. 2023. [CrossRef]
- Sedov, E.N., Sedysheva, G.А., Krasova, N.G., Serova, Z.М., Gorbacheva, N.G., Galasheva, А.М., Yanchuk, Т.V., Pikunova, А.V., Van de Veg, E. Origin, economical and cytoembryological characteristics of triploid apple cultivar ‘Sinap Orlovsky’. Russian Agricultural Science 2017, 1, 14–18. [CrossRef]
- Program and methodology of fruit, berry and nut variety study: Eds.: Sedov Е. N. & Ogoltsova T.P. Orel: VNIISPK, 1999.
- Dement’eva, M.I., Vygonskiy, M.I. Diseases of fruit, vegetables, and potatoes during storage. Moscow: Agropromizdat; 1988.
- Mosa, W.F.A., Sas-Paszt, L., Głuszek, S., Górnik, K., Anjum, M.A., Saleh, A.A., Abada, H.S., Awad, R.M. Effect of some biostimulants on the vegetative growth, yield, fruit quality attributes and nutritional status of apple. Horticulturae 2023, 9, 32. [CrossRef]
- Yaroshenko, O.V., Sergeyeva, N.N., Gaponenko, A.V. Organo-mineral foliar feeding in the technology of growing apple trees in the south of Russia. Subtropical and ornamental horticulture 2019, 70, 133–142. [CrossRef]
- Toivonen, P.M.A. Effects of Storage Conditions and Postharvest Procedures on Oxidative Stress in Fruits and Vegetables. In: Postharvest Oxidative Stress in Horticultural Crops, D.M. Hodges (Ed.). York: Food Products Press, 2003a. 69–90.
- Toivonen, P.M.A. Postharvest Treatments to Control Oxidative Stress in Fruits and Vegetables. In: Postharvest Oxidative Stress in Horticultural Crops, D.M. Hodges (Ed.). York: Food Products Press, 2003b. 225–246.
- Toivonen, P.M.A., Hodges, D.M. Abiotic Stress in Harvested Fruits and Vegetables. InTech. 2011. [CrossRef]
- Saure, M. C. Why calcium deficiency is not the cause of blossom-end rot in tomato and pepper fruit – a reappraisal. Scientia Horticulturae 2014, 174, 151–154. [CrossRef]
- Bramlage W. J. Weis S. A. Effects of Temperature, Light and Rainfall on Superficial Scald Susceptibility in Apples. Scientia Horticulturae 1997, 32, 5, 808–811. [CrossRef]
- Torres, E, Kalcsits, L. Nieto, L.G. Is calcium deficiency the real cause of bitter pit? A review. Front. Plant Scince 2024, 15, 1383645. [CrossRef]







| Harvest date | Average daily temperatures sum ≥ 10 °С | Precipitation amount, mm | HTC | Average daily temperatures sum ≥ 10 °С | Precipitation amount, mm | HTC |
|---|---|---|---|---|---|---|
| 30 days before harvest | 14 days before harvest | |||||
| 13.09.2021 | 458,5 | 33,7 | 0,74 | 146,0 | 16,2 | 1,11 |
| 08.09.2022 | 473,1 | 19,3 | 0,41 | 147,7 | 10,7 | 0,72 |
| 11.09.2023 | 506,6 | 28,1 | 0,55 | 232,4 | 18,0 | 0,77 |
| Factor А, year | Factor В, experiment options | Average by Factor A LSD А05 = 5,1 |
||
|---|---|---|---|---|
| Control (without treatment) | Foliar sprays | |||
| 1% «WPU Antifreeze» + 1% «WP Drip Са + Mg» | 3% «WPU Antifreeze» + 3% «WP Drip Са + Mg» | |||
| 2021 | 7,3 | 13,4* | 8,6 | 9,8 |
| 2022 | 35,0 | 52,5* | 39,4 | 42,3* |
| 2023 | 22,1 | 47,7* | 22,7 | 30,8* |
| Average by Factor В LSD В05 = 5,1 |
21,5 | 37,9* | 23,5 | |
| LSD АВ05 = 8,7 | ||||
| Factor А, year | Factor В, experiment options | Average by Factor A LSD А05 = 1,5 |
||
|---|---|---|---|---|
| Control (without treatment) | Foliar sprays | |||
| 1% «WPU Antifreeze» + 1% «WP Drip Са + Mg» | 3% «WPU Antifreeze» + 3% «WP Drip Са + Mg» | |||
| 2021 | 182,3 | 210,0* | 209,1* | 200,5 |
| 2022 | 205,7 | 215,6* | 211,7* | 210,9* |
| 2023 | 207,0 | 232,0* | 219,5* | 219,5* |
| Average by Factor В LSD В05 = 1,5 |
198,3 | 219,1* | 213,4* | |
| АВ Ff < Ft | ||||
| Factor А, year | Factor В, experiment options | Average by Factor A LSD В05 = 7,4 |
||
|---|---|---|---|---|
| Control without treatment) | Foliar sprays | |||
| 1% «WPU Antifreeze» + 1% «WP Drip Са + Mg» | 3% «WPU Antifreeze» + 3% «WP Drip Са + Mg» | |||
| 2021 | 11,8 | 4,7 | 2,0* | 6,2 |
| 2022 | 55,2 | 31,4* | 29,1* | 38,5* |
| 2023 | 20,1 | 7,3* | 0,7* | 9,4 |
| Average by Factor B LSD В05 = 7,4 |
29,0 | 14,5* | 10,6* | |
| АВ Ff < Ft | ||||
| Factor А, year | Factor В, experiment options | Average by Factor А LSD В05 = 3,8 |
||
|---|---|---|---|---|
| Control (without treatment) | Foliar sprays | |||
| 1% «WPU Antifreeze» + 1% «WP Drip Са + Mg» | 3% «WPU Antifreeze» + 3% «WP Drip Са + Mg» | |||
| 2021 | 5,0 | 2,5 | 4,9 | 4,1 |
| 2022 | 4,9 | 1,2 | 2,1 | 2,7 |
| 2023 | 14,1* | 7,0* | 7,4* | 9,5* |
| Average by Factor В Ff < Ft |
8,0 | 3,6 | 4,8 | |
| АВ Ff < Ft | ||||
| Experiment option | Overripe | Browning | Partial rotting | Absolute rotting |
|---|---|---|---|---|
| Control (without treatment) | 0,4 | 1,5 | 0,7 | 0,4 |
| 1% "WPU Antifreeze" + 1% "WP Drip Ca + Mg" | 0,0 | 0,5 | 0,2 | 0,2 |
| 3% "WPU Antifreeze" + 3% "WP Drip Ca + Mg" | 0,0 | 5,3* | 0,9 | 3,1* |
| LSD05 | Ff < Ft | 1,7 | Ff < Ft | 0,4 |
| Factor А, year | Factor В, experiment options | Average by Factor А LSD В05 = 7,7 |
||
|---|---|---|---|---|
| Control (without treatment) | Foliar sprays | |||
| 1% «WPU Antifreeze» + 1% «WP Drip Са + Mg» | 3% «WPU Antifreeze» + 3% «WP Drip Са + Mg» | |||
| 2021 | 78,0 | 92,8 | 83,0 | 84,6 |
| 2022 | 38,7* | 66,8* | 60,0* | 55,2* |
| 2023 | 63,5* | 83,7* | 81,9 | 76,4* |
| Average by Factor В LSD В05 = 7,7 |
60,1 | 81,1* | 75,0* | |
| АВ Ff < Ft | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
