Submitted:
06 November 2024
Posted:
07 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Peptides Synthesis and Characterization
2.2.1. Synthesis of Temporin-SHa Retro-Analogs and Their Levofloxacin Conjugates
2.2.2. Mass and NMR Spectroscopic Analysis of Peptides
2.2.2.1. Synthesis of NST-2 Peptide (1)
2.2.2.2. Synthesis of RNST-2 Peptide (2)
2.2.2.3. Synthesis of RSP-1 Peptide (3)
2.2.2.4. Synthesis of RLFP-1 (4)
2.2.2.5. Synthesis of RLFP-2 Peptide (5)
2.2.2.6. Synthesis of RLFP-3 (6)
2.2.2.7. Synthesis of RSP-4 Peptide (7)
2.2.2.8. Synthesis of RLFP-4 Peptide (8)
2.2.3. Circular Dichroism (CD) and Secondary Structure Analysis
2.3. Biological Studies
2.3.1. Antibacterial Assay
2.3.2. Antifungal Assay
2.3.3. Antiproliferative Assay
2.3.4. Hemolytic Assay
2.3.5. Atomic Force Microscopy (AFM) Imaging
3. Results
3.1. Circular Dichroism (CD) and Secondary Structure Analysis
3.2. Antimicrobial Assay
3.3. Anticancer Activity and Hemolytic Effect of the Analogs
3.4. Selectivity Indexes of the Analogs
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao X, Lu H, Zhu W, Zhang Y, Huo X, Yang C, Xiao S, Zhang Y, Su J. A novel antimicrobial peptide derived from bony fish IFN1 exerts potent antimicrobial and anti-inflammatory activity in mammals. Microbiology Spectrum 2022, 10(2), e02013-21. [CrossRef] [PubMed]
- Buommino E, Carotenuto A, Antignano I, Bellavita R, Casciaro B, Loffredo MR, Merlino F, Novellino E, Mangoni ML, Nocera FP, Brancaccio D, Punzi P, Roversi D, Ingenito R, Bianchi E, Grieco P. The Outcomes of Decorated Prolines in the Discovery of Antimicrobial Peptides from Temporin-L. ChemMedChem 2019, 14(13), 1283–1290. [CrossRef] [PubMed]
- Bellavita R, Casciaro B, Di-Maro S, Brancaccio D, Carotenuto A, Falanga A, Cappiello F, Buommino E, Galdiero S, Novellino E, Grossmann TN, Mangoni ML, Merlino F, Grieco P. First-in-class cyclic Temporin L analogue: Design, synthesis, and antimicrobial assessment. Journal of Medicinal Chemistry 2021, 64(15), 11675–11694. [CrossRef] [PubMed]
- Manteghi R, Pallagi E, Olajos G, Csoka I. Pegylation and formulation strategy of Anti-Microbial Peptide (AMP) according to the quality by design approach. European Journal of Pharmaceutical Sciences 2020, 144, 105197. [CrossRef] [PubMed]
- Moreira Brito JC, Carvalho LR, De-Souza AN, Carneiro G, Magalhaes PP, Farias LM, Guimaraes NR, Verly RM, Resende Jm, De-Lima ME. PEGylation of the antimicrobial peptide LyeTx Ib maintains structure-related biological properties and improves selectivity. Frontiers in Molecular Biosciences 2022, 9, 1001508. [CrossRef]
- Bednarska NG, Wren BW, Willcocks SJ. The importance of the glycosylation of antimicrobial peptides: Natural and synthetic approaches. Drug Discovery Today 2017, 22(6), 919–926. [CrossRef]
- Jiang H, Zhang X, Chen X, Aramsantienchai P, Tong Z, Lin H. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chemical Reviews 2018, 118(3), 919–988. [CrossRef]
- Rai J. Peptide and protein mimetics by retro and retroinverso analogs. Chemical Biology and Drug Design 2019, 93(5), 724–736. [CrossRef]
- Nair DT, Kaur KJ, Singh K, Mukherjee P, Rajagopal D, George A, Bal V, Rath S, Rao KVS, Salunke DM. Mimicry of native peptide antigens by the corresponding retro-inverso analogs is dependent on their intrinsic structure and interaction propensities. The Journal of Immunology 2003, 170(3), 1362–1373. [CrossRef]
- Chorev M. The partial retro–inverso modification: a road traveled together. Peptide Science 2005, 80(2-3), 67–84. [CrossRef]
- Fletcher M.D. and Campbell M.M. Partially modified retro-inverso peptides: development, synthesis, and conformational behavior. Chemical Reviews 1998, 98(2), 763–796. [CrossRef] [PubMed]
- Khan FA, Yaqoob S, Qasim MW, Ali S, Wang Y, Jiang ZH. A Robust, Gram-Scale and High-Yield Synthesis of MDP Congeners for Activation of the NOD2 Receptor and Vaccine Adjuvantation. Synthesis 2024, 56(04), 539–548. [CrossRef]
- Guzelj S, Weiss M, Slutter B, Frkanec R, Jakopin Z. Covalently conjugated NOD2/TLR7 agonists are potent and versatile immune potentiators. Journal of Medicinal Chemistry 2022, 65(22), 15085–15101. [CrossRef] [PubMed]
- Khan FA, Khanam R, Wasim Qasim M, Wang Y, Jiang ZH. Improved Synthesis of D-Isoglutamine: Rapid Access to Desmuramyl Analogues of Muramyl Dipeptide for the Activation of Intracellular NOD2 Receptor and Vaccine Adjuvant Applications. European Journal of Organic Chemistry 2021, (48), 6688–6699. [CrossRef]
- Aamra H, Khan FA, Jahan H, Zafar M, Ali H, Shaheen F. Synthesis of novel benzimidazole containing antimicrobial peptides (AMPs) with significant inhibitory effect on multidrug resistant strain of Salmonella typhimurium. Synthetic Communications 2021, 51(23), 3620–3628. [CrossRef]
- Gattu R, Ramesh SS, Nadigar S, Ramesh S. Conjugation as a tool in therapeutics: Role of amino acids/peptides-bioactive (including Heterocycles) hybrid molecules in treating infectious diseases. Antibiotics 2023, 12(3), 532. [CrossRef]
- Khan FA, Nasim N, Wang Y, Alhazmi A, Sanam M, Ul-Haq Z, Yalamti D, Ulanova M, Jiang ZH. Amphiphilic desmuramyl peptides for the rational design of new vaccine adjuvants: synthesis, in vitro modulation of inflammatory response and molecular docking studies. European Journal of Medicinal Chemistry 2021, 209, 112863. [CrossRef]
- Khan FA, Ulanova M, Bai B, Yalamati D, Jiang ZH. Design, synthesis and immunological evaluation of novel amphiphilic desmuramyl peptides. European Journal of Medicinal Chemistry 2017, 141, 26–36. [CrossRef]
- Gobec M, Tomašič T, Štimac A, Frkanec R, Trontelj J, Anderluh M, Mlinaric-Rascn I, Jakopin Z. Discovery of nanomolar desmuramylpeptide agonists of the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (NOD2) possessing immunostimulatory properties. Journal of Medicinal Chemistry 2018, 61(7), 2707–2724. [CrossRef]
- Guzelj S, Nabergoj S, Gobec M, Pajk S, Klančič V, Slütter B, Frkanec R, Stimac A, Sket P, Plavec J, Mlinaric-Rascan I, Jakopin Z. Structural fine-tuning of desmuramylpeptide NOD2 agonists defines their in vivo adjuvant activity. Journal of Medicinal Chemistry 2021, 64(11), 7809–7838. [CrossRef]
- Reinhardt A, Neundorf I. Design and application of antimicrobial peptide conjugates. International Journal of Molecular Sciences 2016, 17(5), 701. [CrossRef]
- Ceccherini F, Falciani C, Onori M, Scali S, Rossolini GM, Bracci L, Pini A. Antimicrobial activity of levofloxacin–M33 peptide conjugation or combination. MedChemComm 2016, 7(2), 258–262. [CrossRef]
- Riahifard N, Tavakoli K, Yamaki J, Parang K, Tiwari R. Synthesis and evaluation of antimicrobial activity of [R4W4K]-Levofloxacin and [R4W4K]-Levofloxacin-Q conjugates. Molecules 2017, 22(6), 957. [CrossRef] [PubMed]
- Sajid MI, Lohan S, Kato S, Tiwari RK. Combination of Amphiphilic Cyclic Peptide [R4W4] and Levofloxacin against Multidrug-Resistant Bacteria. Antibiotics 2022, 11(3), 416. [CrossRef] [PubMed]
- Atzori A, Baker AE, Chiu M, Bryce RA, Bonnet P. Effect of sequence and stereochemistry reversal on p53 peptide mimicry. PLoS One 2013, 8(7), e68723. [CrossRef]
- Zerze GH, Stillinger FH, Debenedetti PG. Computational investigation of retro-isomer equilibrium structures: Intrinsically disordered, foldable, and cyclic peptides. FEBS Letters, 2020; 594, 1, 104–113.
- Khan AI, Nazir S, Haque MNU, Maharjan R, Khan FA, Olleik H, Courvoisier-Dezord E, Maresca M, Shaheen F. Synthesis of Second-Generation Analogs of Temporin-SHa Peptide Having Broad-Spectrum Antibacterial and Anticancer Effects. Antibiotics 2024, 13(8), 758. [CrossRef]
- Olleik H, Baydoun E, Perrier J, Hijazi A, Raymond J, Manzoni M, Dupuis L, Pauleau G, Goudard Y, de La Villéon B, Goin G, Sockeel P, Choudhary MI, Pasquale ED, Haque MNU, Ali H, Khan AI, Shaheen F, Maresca M. Temporin-SHa and its analogs as potential candidates for the treatment of helicobacter pylori. Biomolecules 2019, 9(10), 598. [CrossRef]
- Maharjan R, Khan AI, Haque MNU, Maresca M, Choudhary MI, Shaheen F, Simjee SUA. Serum stable and low hemolytic temporin-SHa peptide analogs disrupt cell membrane of methicillin-resistant Staphylococcus aureus (MRSA). Probiotics Antimicrob. 2022, 14(2), 391–405. [CrossRef]
- Khan, A.I.; Nazir, S.; Ullah, A.; Haque, M.N.u.; Maharjan, R.; Simjee, S.U.; Olleik, H.; Dezord, E.C.; Maresca, M.; Shaheen, F. Design, synthesis and characterization of [G10a]-Temporin SHa dendrimers as dual inhibitors of cancer and pathogenic microbes. Biomolecules 2022, 12(6), 770. [Google Scholar] [CrossRef]
- Lucana MC, Arruga Y, Petrachi E, Roig A, Lucchi R, Oller-Salvia B. Protease-resistant peptides for targeting and intracellular delivery of Therapeutics. Pharmaceutics 2021, 13(12), 2065. [CrossRef]
- Shaheen F, Nadeem-ul-Haque M, Ahmed A, Simjee SU, Ganesan A, Jabeen A, Shah Z.A. Choudhary, M.I. Synthesis of breast cancer targeting conjugate of temporin-SHa analog and its effect on pro-and anti-apoptotic protein expression in MCF-7 cells. Peptides 2018, 106, 68–82. [CrossRef] [PubMed]
- Lancaster M.V, Fields R.D. Antibiotic and cytotoxic drug susceptibility assays using resazurin and poising agents. Biotechnology Advances 1997, 15(1), 193–193.
- Wiradharma N, Khoe U, Hauser CA, Seow SV, Zhang S, Yang YY. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents. Biomaterials 2011, 32(8), 2204–2212. [CrossRef] [PubMed]
- Amirkhanov NV, Bardasheva AV, Tikunova NV, Pyshnyi DV. Synthetic antimicrobial peptides: III—Effect of cationic groups of lysine, arginine, and histidine on antimicrobial activity of peptides with a linear type of amphipathicity. Russian Journal of Bioorganic Chemistry 2021, 47(3), 681–690. [CrossRef]
- Sato, H, Feix JB. Lysine-enriched cecropin-mellitin antimicrobial peptides with enhanced selectivity. Antimicrobial Agents and Chemotherapy 2008, 52(12), 4463–4465. [CrossRef]
- Taheri B, Mohammadi M, Momenzadeh N, Farshadzadeh Z, Roozbehani M, Dehghani P. Substitution of lysine for isoleucine at the center of the nonpolar face of the antimicrobial peptide, piscidin-1, leads to an increase in the rapidity of bactericidal activity and a reduction in toxicity. Infection and Drug Resistance 2019, 1629, 1647. [CrossRef] [PubMed]
- Wang X, Zhang W, Wu W, Wu S, Young A, Yan Z. Candida albicans a contributor to cancer? A critical review based on the current evidence. Microbiological Research 2023, 127370. [CrossRef]
- Raja Z, Andre S, Abbasi F, Humblot V, Lequin O, Bouceba T, Correia I, Casale S, Foulon T, Sereno D, Oury B, Ladram A. Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent. PLoS One 2017, 12(3), e0174024. [CrossRef]
- D’Andrea L.D, Romanelli A. Temporins: multifunctional peptides from frog skin. International Journal of Molecular Sciences 2023, 24(6), 5426. [CrossRef]






| Peptide name | Systematic name | Sequence |
|---|---|---|
| NST-2 (1) | [G4a]-SHa | H-Phe1-Leu2-Ser3-D-Ala4-Ile5-Val6-Gly7-Met8-Leu9-Gly10-Lys11-Leu12-Phe13-NH2 |
| RNST-2 (2) | R[G4a]-SHa | H-Phe1-Leu2-Lys3-Gly4-Leu5-Met6-Gly7-Val8-Ile9-D-Ala10-Ser11-Leu12-Phe13-NH2 |
| RSP-1 (3) | RNST-2-14K | H-Phe1-Leu2-Lys3- Gly4-Leu5-Met6-Gly7-Val8-Ile9-D-Ala10-Ser11-Leu12-Phe13-Lys14-NH2 |
| RLFP-1 (4) | RRNST-2-14K-14LF | H-Phe1-Leu2-Lys3- Gly4-Leu5-Met6-Gly7-Val8-Ile9-D-Ala10-Ser11-Leu12-Phe13-Lys14(LF)-NH2 |
| RLFP-2 (5) | RNST-2-14K-3LF | H-Phe1-Leu2-Lys3(LF)-Gly4-Leu5-Met6-Gly7-Val8-Ile9-D-Ala10-Ser11-Leu12-Phe13-Lys14-NH2 |
| RLFP-3 (6) | RNST-2-14K-1LF | LF-β-Ala-Phe1-Leu2-Lys3- Gly4-Leu5-Met6-Gly7-Val8-Ile9-D-Ala10-Ser11-Leu12-Phe13-Lys14-NH2 |
| RSP-4 (7) | RNST-2-G4K | H-Phe1-Leu2-Lys3-Lys4-Leu5-Met6-Gly7-Val8-Ile9-D-Ala10-Ser11-Leu12-Phe13-NH2 |
| RLFP-4 (8) | RNST-2-G4K-1LF | LF-β-Ala-Phe1-Leu2-Lys3- Lys4-Leu5-Met6-Gly7-Val8-Ile9-D-Ala10-Ser11-Leu12-Phe13-NH2 |
| Peptide Name | Chemical Formula | Exact Mass | Observed Mass * | Time(R) ** | Yield § | |
|---|---|---|---|---|---|---|
| RNST-2 (2) | C68H111N15O14S | 1393.8 | 1395.8 [M+H]+ | 3.1 | -202 | 25 |
| RSP-1 (3) | C74H123N17O15S | 1521.9 | 1523.9 [M+H]+ | 2.9 | -15 | 8 |
| RLFP-1 (4) | C92H141FN20O18S | 1865.0 | 1863.5 [M+H]+ | 3.3 | +120 | 22 |
| RLFP-2 (5) | C92H141FN20O18S | 1865.0 | 1912.3 [M+2Na]2+ | 3.7 | +5 | 17 |
| RLFP-3 (6) | C95H146FN21O19S | 1936.0 | 1936.9 [M+H]+ | 3.6 | -45 | 26 |
| RSP-4 (7) | C72H120N16O14S | 1464.9 | 1467.0 [M+H]+ | 3.1 | +88 | 28 |
| RLFP-4 (8) | C93H143FN20O18S | 1879.1 | 941.7 [M+2H]2+ | 3.0 | +131 | 31 |
| *via ESI-MS; **Retention time in minutes; ‡recorded in MeOH; §Overall % yield | ||||||
| Peptide | Helix (%) | Antiparallel (%) | Parallel (%) | Turn (%) | Others (%) |
|---|---|---|---|---|---|
| NST-2 (1) | 81.5 | 18.5 | 0.00 | 0.00 | 0.00 |
| RNST (2) | 62.0 | 17.9 | 20.1 | 0.00 | 0.00 |
| RSP-1 (3) | 81.8 | 18.2 | 0.00 | 0.00 | 0.00 |
| RLFP-1 (4) | 80.1 | 19.9 | 0.00 | 0.00 | 0.00 |
| RLFP-2 (5) | 80.4 | 19.6 | 0.00 | 0.00 | 0.00 |
| RLFP-3 (6) | 82.2 | 17.8 | 0.00 | 0.00 | 0.00 |
| RSP-4 (7) | 56.8 | 22.1 | 0.00 | 7.6 | 13.6 |
| RLFP-4 (8) | 75.0 | 0.00 | 14.1 | 0.00 | 11.0 |
| Peptide |
S. aureus (NCTC 13277) |
B. subtilis (ATCC 23857) |
S. typhi (ATCC 14028) |
E. coli (ATCC 25922) |
P. aeruginosa (ATCC 10145) |
C. albicans (ATCC 36082) |
|---|---|---|---|---|---|---|
| NST-2 (1) | 14.34 | 6.25 | 250 | 125 | >250 | 20 |
| RNST-2 (2) | 3.12 | 1.56 | 50 | 50 | 200 | 15.6 |
| RSP-1 (3) | 6.25 | 1.56 | 50 | 25 | 50 | 15.6 |
| RLFP-1 (4) | 50 | 50 | 25 | >200 | >200 | >250 |
| RLFP-2 (5) | 100 | 50 | 200 | >200 | >200 | >250 |
| RLFP-3 (6) | 12.5 | 1.56 | 3.12 | 25 | 12.5 | 3.12 |
| RSP-4 (7) | 50 | 12.5 | 100 | 50 | 200 | 100 |
| RLFP-4 (8) | 6.25 | 1.56 | 50 | 25 | 12.5 | >200 |
| Peptide | Breast Cancer (MCF-7) |
Cervical Cancer (HeLa) |
Hemolysis (HC50) |
|---|---|---|---|
| NST-2 (1) | 17.9 | >100 | 90.0 |
| RNST-2 (2) | 53.0 | 60.0 | 13.8 |
| RSP-1 (3) | 42.7 | 33.5 | 51.0 |
| RLFP-1 (4) | >100 | >100 | 98.9 |
| RLFP-2 (5) | >100 | >100 | 25.0 |
| RLFP-3 (6) | 13.3 | >100 | 6.6 |
| RSP-4 (7) | 39.9 | 56.9 | >100 |
| RLFP-4 (8) | 23.8 | 15.5 | 4.5 |
| Peptide | Lower MIC | Lower IC50 | Hemolysis (HC50) |
SI based on MIC | SI based on IC50 |
|---|---|---|---|---|---|
| NST-2 (1) | 6.25 | 17.9 | 90.0 | 14.4 | 5.0 |
| RNST-2 (2) | 1.56 | 53.0 | 13.8 | 8.8 | 0.2 |
| RSP-1 (3) | 1.56 | 33.5 | 51.0 | 32.6 | 1.5 |
| RLFP-1 (4) | 25 | >100 | 98.9 | 3.9 | <0.9 |
| RLFP-2 (5) | 50 | >100 | 25.0 | 0.5 | <0.2 |
| RLFP-3 (6) | 1.56 | 13.3 | 6.6 | 4.2 | 0.4 |
| RSP-4 (7) | 12.5 | 39.9 | >100 | >8.0 | >2.5 |
| RLFP-4 (8) | 1.56 | 15.5 | 4.5 | 2.8 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
