Submitted:
04 November 2024
Posted:
05 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Oral Microbiome and CVD
2.1. The Interaction Among Periodontitis, Oral Microbiota, and CVD
2.2. Specific oral bacterial Taxa and CVD
2.2.1. Porphyromonas Gingivalis
2.2.2. Fusobacterium Nucleatum
2.2.3. Aggregatibacter Actinomycetemcomitans
2.2.4. Prevotella Intermedia
2.2.5. Treponema Denticola
3. Oral Microbiome and Gut Microbiome
4. Potential Mechanisms by Which the Oral Microbiota Affect CVD
4.1. Oral Microbial Translocation
4.2. Inflammation and Immune Responses
4.2.1. Lipopolysaccharide
4.2.2. Cytokines
4.3. Modulation of Platelet Aggregation
4.4. Oral Microbial Metabolites
4.4.1. Trimethylamine N-Oxide
4.4.2. Short-Chain Fatty Acids
4.4.3. Nitric Oxide
4.4.4. Hydrogen Sulfide
5. Research Gaps and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. J Am Coll Cardiol 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut Microbiota and Cardiovascular Disease. Circ Res 2020, 127, 553–570. [Google Scholar] [CrossRef]
- The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease. Cell Host Microbe 2014, 16, 276–289. [CrossRef] [PubMed]
- Honda, K.; Littman, D.R. The Microbiota in Adaptive Immune Homeostasis and Disease. Nature 2016, 535, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The Gut Microbiome in Health and in Disease. Curr Opin Gastroenterol 2015, 31, 69–75. [Google Scholar] [CrossRef]
- DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis 2016, 22, 1137–1150. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Kitai, T.; Hazen, S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ Res 2017, 120, 1183–1196. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut Microbiota in Human Metabolic Health and Disease. Nat Rev Microbiol 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Verma, D.; Garg, P.K.; Dubey, A.K. Insights into the Human Oral Microbiome. Arch Microbiol 2018, 200, 525–540. [Google Scholar] [CrossRef]
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The Oral Microbiota: Dynamic Communities and Host Interactions. Nat Rev Microbiol 2018, 16, 745–759. [Google Scholar] [CrossRef]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal Diseases. Nat Rev Dis Primers 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Bui, F.Q.; Almeida-da-Silva, C.L.C.; Huynh, B.; Trinh, A.; Liu, J.; Woodward, J.; Asadi, H.; Ojcius, D.M. Association between Periodontal Pathogens and Systemic Disease. Biomed J 2019, 42, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Nikitakis, N.G.; Papaioannou, W.; Sakkas, L.I.; Kousvelari, E. The Autoimmunity-Oral Microbiome Connection. Oral Dis 2017, 23, 828–839. [Google Scholar] [CrossRef] [PubMed]
- Kholy, K.E.; Genco, R.J.; Van Dyke, T.E. Oral Infections and Cardiovascular Disease. Trends Endocrinol Metab 2015, 26, 315–321. [Google Scholar] [CrossRef]
- Sanz, M.; Marco Del Castillo, A.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D'Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F.; et al. Periodontitis and Cardiovascular Diseases: Consensus Report. J Clin Periodontol 2020, 47, 268–288. [Google Scholar] [CrossRef]
- Tonelli, A.; Lumngwena, E.N.; Ntusi, N.A.B. The Oral Microbiome in the Pathophysiology of Cardiovascular Disease. Nat Rev Cardiol 2023, 20, 386. [Google Scholar] [CrossRef]
- Socransky, S.S.; Haffajee, A.D. Evidence of Bacterial Etiology: A Historical Perspective. Periodontol 2000 1994, 5, 7–25. [Google Scholar] [CrossRef]
- Socransky, S.S.; Haffajee, A.D.; Cugini, M.A.; Smith, C.; Kent, R.L. Microbial Complexes in Subgingival Plaque. J Clin Periodontol 1998, 25, 134–144. [Google Scholar] [CrossRef]
- Forner, L.; Larsen, T.; Kilian, M.; Holmstrup, P. Incidence of Bacteremia After Chewing, Tooth Brushing and Scaling in Individuals with Periodontal Inflammation. J Clin Periodontol 2006, 33, 401–407. [Google Scholar] [CrossRef]
- Lucchese, A. Streptococcus Mutans Antigen I/II and Autoimmunity in Cardiovascular Diseases. Autoimmun Rev 2017, 16, 456–460. [Google Scholar] [CrossRef]
- Xie, M.; Tang, Q.; Nie, J.; Zhang, C.; Zhou, X.; Yu, S.; Sun, J.; Cheng, X.; Dong, N.; Hu, Y.; et al. BMAL1-Downregulation Aggravates Porphyromonas Gingivalis-Induced Atherosclerosis by Encouraging Oxidative Stress. Circ Res 2020, 126, e15–e29. [Google Scholar] [CrossRef]
- Zeng, X.; Leng, W.; Lam, Y.; Yan, B.P.; Wei, X.; Weng, H.; Kwong, J.S.W. Periodontal Disease and Carotid Atherosclerosis: A Meta-Analysis of 17,330 Participants. Int J Cardiol 2016, 203, 1044–1051. [Google Scholar] [CrossRef]
- Wang, J.; Geng, X.; Sun, J.; Zhang, S.; Yu, W.; Zhang, X.; Liu, H. The Risk of Periodontitis for Peripheral Vascular Disease: A Systematic Review. Rev Cardiovasc Med 2019, 20, 81–89. [Google Scholar]
- Kaschwich, M.; Behrendt, C.; Heydecke, G.; Bayer, A.; Debus, E.S.; Seedorf, U.; Aarabi, G. The Association of Periodontitis and Peripheral Arterial Occlusive Disease-A Systematic Review. Int J Mol Sci 2019, 20, 2936. [Google Scholar] [CrossRef]
- DeStefano, F.; Anda, R.F.; Kahn, H.S.; Williamson, D.F.; Russell, C.M. Dental Disease and Risk of Coronary Heart Disease and Mortality. BMJ 1993, 306, 688–691. [Google Scholar] [CrossRef]
- Sen, S.; Giamberardino, L.D.; Moss, K.; Morelli, T.; Rosamond, W.D.; Gottesman, R.F.; Beck, J.; Offenbacher, S. Periodontal Disease, Regular Dental Care use, and Incident Ischemic Stroke. Stroke 2018, 49, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Conroy, R.M.; Pyörälä, K.; Fitzgerald, A.P.; Sans, S.; Menotti, A.; De Backer, G.; De Bacquer, D.; Ducimetière, P.; Jousilahti, P.; Keil, U.; et al. Estimation of Ten-Year Risk of Fatal Cardiovascular Disease in Europe: The SCORE Project. Eur Heart J 2003, 24, 987–1003. [Google Scholar] [CrossRef]
- Hollander, W. Role of Hypertension in Atherosclerosis and Cardiovascular Disease. Am J Cardiol 1976, 38, 786–800. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, M.; Liu, Y.; Luo, B.; Cui, J.; Huang, L.; Chen, K.; Liu, Y. The Oral Microbiota and Cardiometabolic Health: A Comprehensive Review and Emerging Insights. Front Immunol 2022, 13, 1010368. [Google Scholar] [CrossRef]
- Chhibber-Goel, J.; Singhal, V.; Bhowmik, D.; Vivek, R.; Parakh, N.; Bhargava, B.; Sharma, A. Linkages between Oral Commensal Bacteria and Atherosclerotic Plaques in Coronary Artery Disease Patients. npj Biofilms and Microbiomes 2016, 2. [Google Scholar] [CrossRef]
- Kozarov, E.V.; Dorn, B.R.; Shelburne, C.E.; Dunn, W.A.; Progulske-Fox, A. Human Atherosclerotic Plaque Contains Viable Invasive Actinobacillus Actinomycetemcomitans and Porphyromonas Gingivalis. Arterioscler Thromb Vasc Biol 2005, 25, 17. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, R.G.; Khan, M.B.; Genco, C.A. Invasion of Aortic and Heart Endothelial Cells by Porphyromonas Gingivalis. Infect Immun 1998, 66, 5337–5343. [Google Scholar] [CrossRef] [PubMed]
- Mysak, J.; Podzimek, S.; Sommerova, P.; Lyuya-Mi, Y.; Bartova, J.; Janatova, T.; Prochazkova, J.; Duskova, J. Porphyromonas Gingivalis: Major Periodontopathic Pathogen Overview. J Immunol Res 2014, 2014, 476068. [Google Scholar] [CrossRef] [PubMed]
- Serra e Silva Filho, Wagner; Casarin, R.C.V.; Nicolela, E.L.; Passos, H.M.; Sallum, A.W.; Gonçalves, R.B. Microbial Diversity Similarities in Periodontal Pockets and Atheromatous Plaques of Cardiovascular Disease Patients. PLoS One 2014, 9, e109761. [CrossRef] [PubMed]
- Mahalakshmi, K.; Krishnan, P.; Arumugam, S.B. "Association of Periodontopathic Anaerobic Bacterial Co-Occurrence to Atherosclerosis" - A Cross-Sectional Study. Anaerobe 2017, 44, 66–72. [Google Scholar] [CrossRef]
- Nikolaeva, E.N.; Tsarev, V.N.; Tsareva, T.V.; Ippolitov, E.V.; Arutyunov, S.D. Interrelation of Cardiovascular Diseases with Anaerobic Bacteria of Subgingival Biofilm. Contemp Clin Dent 2019, 10, 637–642. [Google Scholar]
- Kannosh, I.; Staletovic, D.; Toljic, B.; Radunovic, M.; Pucar, A.; Matic Petrovic, S.; Grubisa, I.; Lazarevic, M.; Brkic, Z.; Knezevic Vukcevic, J.; et al. The Presence of Periopathogenic Bacteria in Subgingival and Atherosclerotic Plaques - an Age Related Comparative Analysis. J Infect Dev Ctries 2018, 12, 1088–1095. [Google Scholar] [CrossRef]
- Fåk, F.; Tremaroli, V.; Bergström, G.; Bäckhed, F. Oral Microbiota in Patients with Atherosclerosis. Atherosclerosis 2015, 243, 573–578. [Google Scholar] [CrossRef]
- Ziebolz, D.; Rost, C.; Schmidt, J.; Waldmann-Beushausen, R.; Schöndube, F.A.; Mausberg, R.F.; Danner, B.C. Periodontal Bacterial DNA and their Link to Human Cardiac Tissue: Findings of a Pilot Study. Thorac Cardiovasc Surg 2018, 66, 83–90. [Google Scholar] [CrossRef]
- Su, C.; Shigeishi, H.; Nishimura, R.; Ohta, K.; Sugiyama, M. Detection of Oral Bacteria on the Tongue Dorsum using PCR Amplification of 16S Ribosomal RNA and its Association with Systemic Disease in Middle-Aged and Elderly Patients. Biomed Rep 2019, 10, 70–76. [Google Scholar] [CrossRef]
- Schenkein, H.A.; Loos, B.G. Inflammatory Mechanisms Linking Periodontal Diseases to Cardiovascular Diseases. J Clin Periodontol 2013, 40 Suppl 14, 51. [Google Scholar]
- Koren, O.; Spor, A.; Felin, J.; Fåk, F.; Stombaugh, J.; Tremaroli, V.; Behre, C.J.; Knight, R.; Fagerberg, B.; Ley, R.E.; et al. Human Oral, Gut, and Plaque Microbiota in Patients with Atherosclerosis. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 4592–4598. [Google Scholar] [CrossRef]
- Huh, J.-. ; Roh, T.-. Opportunistic Detection of Fusobacterium Nucleatum as a Marker for the Early Gut Microbial Dysbiosis. BMC Microbiol. 2020, 20.
- Lund Håheim, A.L. Oral Anaerobe Bacteria-a Common Risk for Cardiovascular Disease and Mortality and some Forms of Cancer? Front Oral Health 2024, 5, 1348946. [Google Scholar] [CrossRef]
- Ziebolz, D.; Jahn, C.; Pegel, J.; Semper-Pinnecke, E.; Mausberg, R.F.; Waldmann-Beushausen, R.; Schöndube, F.A.; Danner, B.C. Periodontal Bacteria DNA Findings in Human Cardiac Tissue - is there a Link of Periodontitis to Heart Valve Disease? Int J Cardiol 2018, 251, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Figuero, E.; Sánchez-Beltrán, M.; Cuesta-Frechoso, S.; Tejerina, J.M.; Del Castro, J.A.; Gutiérrez, J.M.; Herrera, D.; Sanz, M. Detection of Periodontal Bacteria in Atheromatous Plaque by Nested Polymerase Chain Reaction. J. Periodontol. 2011, 82, 1469–1477. [Google Scholar] [CrossRef]
- Wang, Z.; Peters, B.A.; Usyk, M.; Xing, J.; Hanna, D.B.; Wang, T.; Post, W.S.; Landay, A.L.; Hodis, H.N.; Weber, K.; et al. Gut Microbiota, Plasma Metabolomic Profiles, and Carotid Artery Atherosclerosis in HIV Infection. Arterioscler. Thromb. Vasc. Biol. 2022, 101161ATVBAHA121317276. [Google Scholar] [CrossRef]
- Wang, Z.; Peters, B.A.; Bryant, M.; Hanna, D.B.; Schwartz, T.; Wang, T.; Sollecito, C.C.; Usyk, M.; Grassi, E.; Wiek, F.; et al. Gut Microbiota, Circulating Inflammatory Markers and Metabolites, and Carotid Artery Atherosclerosis in HIV Infection. Microbiome 2023, 11, 119. [Google Scholar] [CrossRef]
- Leskelä, J.; Pietiäinen, M.; Safer, A.; Lehto, M.; Metso, J.; Malle, E.; Buggle, F.; Becher, H.; Sundvall, J.; Grau, A.J.; et al. Serum Lipopolysaccharide Neutralizing Capacity in Ischemic Stroke. PLoS One 2020, 15, e0228806. [Google Scholar] [CrossRef] [PubMed]
- Liljestrand, J.M.; Paju, S.; Pietiäinen, M.; Buhlin, K.; Persson, G.R.; Nieminen, M.S.; Sinisalo, J.; Mäntylä, P.; Pussinen, P.J. Immunologic Burden Links Periodontitis to Acute Coronary Syndrome. Atherosclerosis 2018, 268, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.A.; Ganesan, S.M.; Meeks, B.; Farmer, N.; Kazmi, N.; Barb, J.J.; Joseph, P.V.; Wallen, G.R. The Role of the Oral Microbiome in Smoking-Related Cardiovascular Risk: A Review of the Literature Exploring Mechanisms and Pathways. J Transl Med 2022, 20, 584. [Google Scholar] [CrossRef]
- Nieminen, M.T.; Listyarifah, D.; Hagström, J.; Haglund, C.; Grenier, D.; Nordström, D.; Uitto, V.; Hernandez, M.; Yucel-Lindberg, T.; Tervahartiala, T.; et al. Treponema Denticola Chymotrypsin-Like Proteinase may Contribute to Orodigestive Carcinogenesis through Immunomodulation. Br J Cancer 2018, 118, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Chukkapalli, S.S.; Rivera, M.F.; Velsko, I.M.; Lee, J.; Chen, H.; Zheng, D.; Bhattacharyya, I.; Gangula, P.R.; Lucas, A.R.; Kesavalu, L. Invasion of Oral and Aortic Tissues by Oral Spirochete Treponema Denticola in ApoE(-/-) Mice Causally Links Periodontal Disease and Atherosclerosis. Infect Immun 2014, 82, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zeng, T.; Deligios, M.; Milanesi, L.; Langille, M.G.I.; Zinellu, A.; Rubino, S.; Carru, C.; Kelvin, D.J. Age-Related Variation of Bacterial and Fungal Communities in Different Body Habitats Across the Young, Elderly, and Centenarians in Sardinia. mSphere 2020, 5, 558. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Fan, Y.; Li, Y.; Dong, J.; Zhang, S.; Wang, B.; Liu, J.; Liu, X.; Fan, S.; Guan, J.; et al. Oral Microbiota Transplantation Fights Against Head and Neck Radiotherapy-Induced Oral Mucositis in Mice. Comput Struct Biotechnol J 2021, 19, 5898–5910. [Google Scholar] [CrossRef]
- Donia, M.S.; Cimermancic, P.; Schulze, C.J.; Wieland Brown, L.C.; Martin, J.; Mitreva, M.; Clardy, J.; Linington, R.G.; Fischbach, M.A. A Systematic Analysis of Biosynthetic Gene Clusters in the Human Microbiome Reveals a Common Family of Antibiotics. Cell 2014, 158, 1402–1414. [Google Scholar] [CrossRef]
- Segata, N.; Haake, S.K.; Mannon, P.; Lemon, K.P.; Waldron, L.; Gevers, D.; Huttenhower, C.; Izard, J. Composition of the Adult Digestive Tract Bacterial Microbiome Based on Seven Mouth Surfaces, Tonsils, Throat and Stool Samples. Genome Biol 2012, 13, R42. [Google Scholar] [CrossRef]
- Cheung, M.K.; Chan, J.Y.K.; Wong, M.C.S.; Wong, P.Y.; Lei, P.; Cai, L.; Lan, L.; Ho, W.C.S.; Yeung, A.C.M.; Chan, P.K.S.; et al. Determinants and Interactions of Oral Bacterial and Fungal Microbiota in Healthy Chinese Adults. Microbiol Spectr 2022, 10, e0241021. [Google Scholar] [CrossRef]
- Nearing, J.T.; DeClercq, V.; Van Limbergen, J.; Langille, M.G.I. Assessing the Variation within the Oral Microbiome of Healthy Adults. mSphere 2020, 5, 451. [Google Scholar] [CrossRef]
- Murugesan, S.; Al Ahmad, S.F.; Singh, P.; Saadaoui, M.; Kumar, M.; Al Khodor, S. Profiling the Salivary Microbiome of the Qatari Population. J Transl Med 2020, 18, 127. [Google Scholar] [CrossRef]
- Schmidt, T.S.; Hayward, M.R.; Coelho, L.P.; Li, S.S.; Costea, P.I.; Voigt, A.Y.; Wirbel, J.; Maistrenko, O.M.; Alves, R.J.; Bergsten, E.; et al. Extensive Transmission of Microbes Along the Gastrointestinal Tract. Elife 2019, 8, e42693. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Li, Y.; Xiao, H.; Zhang, S.; Wang, B.; Wang, H.; Li, Y.; Fan, S.; Cui, M. Oral Microbiota Affects the Efficacy and Prognosis of Radiotherapy for Colorectal Cancer in Mouse Models. Cell Rep 2021, 37, 109886. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; et al. Gut Dysbiosis is Linked to Hypertension. Hypertension 2015, 65, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.; Tsai, W.; Hung, W.; Hung, W.; Chang, C.; Dai, C.; Tsai, Y. Gut Microbiota and Subclinical Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus. Nutrients 2021, 13, 2679. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Yamazaki, K.; Nakajima, M.; Date, Y.; Kikuchi, J.; Hase, K.; Ohno, H.; Yamazaki, K. Oral Administration of Porphyromonas Gingivalis Alters the Gut Microbiome and Serum Metabolome. mSphere 2018, 3, 460. [Google Scholar] [CrossRef]
- Nakajima, M.; Arimatsu, K.; Kato, T.; Matsuda, Y.; Minagawa, T.; Takahashi, N.; Ohno, H.; Yamazaki, K. Oral Administration of P. Gingivalis Induces Dysbiosis of Gut Microbiota and Impaired Barrier Function Leading to Dissemination of Enterobacteria to the Liver. PLoS One 2015, 10, e0134234. [Google Scholar]
- Haraszthy, V.I.; Hariharan, G.; Tinoco, E.M.; Cortelli, J.R.; Lally, E.T.; Davis, E.; Zambon, J.J. Evidence for the Role of Highly Leukotoxic Actinobacillus Actinomycetemcomitans in the Pathogenesis of Localized Juvenile and Other Forms of Early-Onset Periodontitis. J Periodontol 2000, 71, 912–922. [Google Scholar] [CrossRef]
- Koren, O.; Spor, A.; Felin, J.; Fåk, F.; Stombaugh, J.; Tremaroli, V.; Behre, C.J.; Knight, R.; Fagerberg, B.; Ley, R.E.; et al. Human Oral, Gut, and Plaque Microbiota in Patients with Atherosclerosis. Proc Natl Acad Sci U S A 2011, 108 Suppl 1, 4592–4598. [Google Scholar] [CrossRef]
- Amar, S.; Wu, S.; Madan, M. Is Porphyromonas Gingivalis Cell Invasion Required for Atherogenesis? Pharmacotherapeutic Implications. J Immunol 2009, 182, 1584–1592. [Google Scholar] [CrossRef] [PubMed]
- Francisqueti-Ferron, F.V.; Nakandakare-Maia, E.T.; Siqueira, J.S.; Ferron, A.J.T.; Vieira, T.A.; Bazan, S.G.Z.; Corrêa, C.R. The Role of Gut Dysbiosis-Associated Inflammation in Heart Failure. Rev Assoc Med Bras (1992) 2022, 68, 1120–1124. [Google Scholar] [CrossRef]
- Pietiäinen, M.; Liljestrand, J.M.; Kopra, E.; Pussinen, P.J. Mediators between Oral Dysbiosis and Cardiovascular Diseases. Eur J Oral Sci 2018, 126 Suppl 1, 26–36. [Google Scholar] [CrossRef]
- Abusleme, L.; Dupuy, A.K.; Dutzan, N.; Silva, N.; Burleson, J.A.; Strausbaugh, L.D.; Gamonal, J.; Diaz, P.I. The Subgingival Microbiome in Health and Periodontitis and its Relationship with Community Biomass and Inflammation. ISME J 2013, 7, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Buhlin, K.; Hultin, M.; Norderyd, O.; Persson, L.; Pockley, A.G.; Rabe, P.; Klinge, B.; Gustafsson, A. Risk Factors for Atherosclerosis in Cases with Severe Periodontitis. J Clin Periodontol 2009, 36, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.P.; Prendergast, M.M.; Appelmelk, B.J. Molecular Mimicry of Host Structures by Bacterial Lipopolysaccharides and its Contribution to Disease. FEMS Immunol Med Microbiol 1996, 16, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.A.; Kagan, J.C. Toll-Like Receptors and the Control of Immunity. Cell 2020, 180, 1044–1066. [Google Scholar] [CrossRef] [PubMed]
- Edfeldt, K.; Swedenborg, J.; Hansson, G.K.; Yan, Z. Expression of Toll-Like Receptors in Human Atherosclerotic Lesions: A Possible Pathway for Plaque Activation. Circulation 2002, 105, 1158–1161. [Google Scholar] [CrossRef] [PubMed]
- Michelsen, K.S.; Wong, M.H.; Shah, P.K.; Zhang, W.; Yano, J.; Doherty, T.M.; Akira, S.; Rajavashisth, T.B.; Arditi, M. Lack of Toll-Like Receptor 4 Or Myeloid Differentiation Factor 88 Reduces Atherosclerosis and Alters Plaque Phenotype in Mice Deficient in Apolipoprotein E. Proc Natl Acad Sci U S A 2004, 101, 10679–10684. [Google Scholar] [CrossRef]
- Asada, M.; Oishi, E.; Sakata, S.; Hata, J.; Yoshida, D.; Honda, T.; Furuta, Y.; Shibata, M.; Suzuki, K.; Watanabe, H.; et al. Serum Lipopolysaccharide-Binding Protein Levels and the Incidence of Cardiovascular Disease in a General Japanese Population: The Hisayama Study. J Am Heart Assoc 2019, 8, e013628. [Google Scholar] [CrossRef]
- Pastori, D.; Carnevale, R.; Nocella, C.; Novo, M.; Santulli, M.; Cammisotto, V.; Menichelli, D.; Pignatelli, P.; Violi, F. Gut-Derived Serum Lipopolysaccharide is Associated with Enhanced Risk of Major Adverse Cardiovascular Events in Atrial Fibrillation: Effect of Adherence to Mediterranean Diet. J Am Heart Assoc 2017, 6, e005784. [Google Scholar] [CrossRef]
- Darveau, R.P. Periodontitis: A Polymicrobial Disruption of Host Homeostasis. Nat Rev Microbiol 2010, 8, 481–490. [Google Scholar] [CrossRef]
- Hajishengallis, E.; Hajishengallis, G. Neutrophil Homeostasis and Periodontal Health in Children and Adults. J Dent Res 2014, 93, 231–237. [Google Scholar] [CrossRef]
- Amin, M.N.; Siddiqui, S.A.; Ibrahim, M.; Hakim, M.L.; Ahammed, M.S.; Kabir, A.; Sultana, F. Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease and Cancer. SAGE Open Med 2020, 8, 2050312120965752. [Google Scholar] [CrossRef]
- Kaptoge, S.; Seshasai, S.R.K.; Gao, P.; Freitag, D.F.; Butterworth, A.S.; Borglykke, A.; Di Angelantonio, E.; Gudnason, V.; Rumley, A.; Lowe, G.D.O.; et al. Inflammatory Cytokines and Risk of Coronary Heart Disease: New Prospective Study and Updated Meta-Analysis. Eur Heart J 2014, 35, 578–589. [Google Scholar] [CrossRef]
- Pushalkar, S.; Paul, B.; Li, Q.; Yang, J.; Vasconcelos, R.; Makwana, S.; González, J.M.; Shah, S.; Xie, C.; Janal, M.N.; et al. Electronic Cigarette Aerosol Modulates the Oral Microbiome and Increases Risk of Infection. iScience 2020, 23, 100884. [Google Scholar] [CrossRef]
- Joshi, V.; Matthews, C.; Aspiras, M.; de Jager, M.; Ward, M.; Kumar, P. Smoking Decreases Structural and Functional Resilience in the Subgingival Ecosystem. J Clin Periodontol 2014, 41, 1037–1047. [Google Scholar] [CrossRef]
- Yee, M.; Kim, S.; Sethi, P.; Düzgüneş, N.; Konopka, K. Porphyromonas Gingivalis Stimulates IL-6 and IL-8 Secretion in GMSM-K, HSC-3 and H413 Oral Epithelial Cells. Anaerobe 2014, 28, 62–67. [Google Scholar] [CrossRef]
- Roth, G.A.; Moser, B.; Roth-Walter, F.; Giacona, M.B.; Harja, E.; Papapanou, P.N.; Schmidt, A.M.; Lalla, E. Infection with a Periodontal Pathogen Increases Mononuclear Cell Adhesion to Human Aortic Endothelial Cells. Atherosclerosis 2007, 190, 271–281. [Google Scholar] [CrossRef]
- Roth, G.A.; Moser, B.; Huang, S.J.; Brandt, J.S.; Huang, Y.; Papapanou, P.N.; Schmidt, A.M.; Lalla, E. Infection with a Periodontal Pathogen Induces Procoagulant Effects in Human Aortic Endothelial Cells. J Thromb Haemost 2006, 4, 2256–2261. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, C.; Madrigal, A.G.; Liu, X.; Ukai, T.; Goswami, S.; Gudino, C.V.; Gibson, F.C.; Genco, C.A. Pathogen-Mediated Inflammatory Atherosclerosis is Mediated in Part Via Toll-Like Receptor 2-Induced Inflammatory Responses. J Innate Immun 2010, 2, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Ramos, H.C.; Rumbo, M.; Sirard, J. Bacterial Flagellins: Mediators of Pathogenicity and Host Immune Responses in Mucosa. Trends Microbiol 2004, 12, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Zindel, J.; Kubes, P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu Rev Pathol 2020, 15, 493–518. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Polizzi, A.; Ronsivalle, V.; Alibrandi, A.; Palazzo, G.; Lo Giudice, A. Impact of Matrix Metalloproteinase-9 during Periodontitis and Cardiovascular Diseases. Molecules 2021, 26, 1777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Li, H.; Ni, C.; Du, Z.; Yan, F. Human Oral Microbiota and its Modulation for Oral Health. Biomed Pharmacother 2018, 99, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Abe, T.; Maekawa, T.; Hajishengallis, E.; Lambris, J.D. Role of Complement in Host-Microbe Homeostasis of the Periodontium. Semin Immunol 2013, 25, 65–72. [Google Scholar] [CrossRef]
- Kerrigan, S.W.; Cox, D. Platelet-Bacterial Interactions. Cell Mol Life Sci 2010, 67, 513–523. [Google Scholar] [CrossRef]
- Kerrigan, S.W.; Jakubovics, N.S.; Keane, C.; Maguire, P.; Wynne, K.; Jenkinson, H.F.; Cox, D. Role of Streptococcus Gordonii Surface Proteins SspA/SspB and Hsa in Platelet Function. Infect Immun 2007, 75, 5740–5747. [Google Scholar] [CrossRef]
- Plummer, C.; Wu, H.; Kerrigan, S.W.; Meade, G.; Cox, D.; Ian Douglas, C.W. A Serine-Rich Glycoprotein of Streptococcus Sanguis Mediates Adhesion to Platelets Via GPIb. Br J Haematol 2005, 129, 101–109. [Google Scholar] [CrossRef]
- Taniguchi, N.; Nakano, K.; Nomura, R.; Naka, S.; Kojima, A.; Matsumoto, M.; Ooshima, T. Defect of Glucosyltransferases Reduces Platelet Aggregation Activity of Streptococcus Mutans: Analysis of Clinical Strains Isolated from Oral Cavities. Arch Oral Biol 2010, 55, 410–416. [Google Scholar] [CrossRef]
- Fitzgerald, J.R.; Foster, T.J.; Cox, D. The Interaction of Bacterial Pathogens with Platelets. Nat Rev Microbiol 2006, 4, 445–457. [Google Scholar] [CrossRef]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal Microbiota Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef]
- Skye, S.M.; Zhu, W.; Romano, K.A.; Guo, C.; Wang, Z.; Jia, X.; Kirsop, J.; Haag, B.; Lang, J.M.; DiDonato, J.A.; et al. Microbial Transplantation with Human Gut Commensals Containing CutC is Sufficient to Transmit Enhanced Platelet Reactivity and Thrombosis Potential. Circ Res 2018, 123, 1164–1176. [Google Scholar] [CrossRef]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef]
- Seldin, M.M.; Meng, Y.; Qi, H.; Zhu, W.; Wang, Z.; Hazen, S.L.; Lusis, A.J.; Shih, D.M. Trimethylamine N-Oxide Promotes Vascular Inflammation through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB. J Am Heart Assoc 2016, 5, e002767. [Google Scholar] [CrossRef]
- Janeiro, M.H.; Ramírez, M.J.; Milagro, F.I.; Martínez, J.A.; Solas, M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker Or New Therapeutic Target. Nutrients 2018, 10, 1398. [Google Scholar] [CrossRef]
- Hernández-Ruiz, P.; Escalona Montaño, A.R.; Amezcua-Guerra, L.M.; González-Pacheco, H.; Niccolai, E.; Amedei, A.; Aguirre-García, M.M. Potential Association of the Oral Microbiome with Trimethylamine N-Oxide Quantification in Mexican Patients with Myocardial Infarction. Mediators Inflamm 2024, 2024, 3985731. [Google Scholar] [CrossRef]
- Zhuang, P.; Li, H.; Jia, W.; Shou, Q.; Zhu, Y.; Mao, L.; Wang, W.; Wu, F.; Chen, X.; Wan, X.; et al. Eicosapentaenoic and Docosahexaenoic Acids Attenuate Hyperglycemia through the Microbiome-Gut-Organs Axis in Db/Db Mice. Microbiome 2021, 9, 185. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nat Rev Gastroenterol Hepatol 2019, 16, 605–616. [Google Scholar] [CrossRef]
- Inui, T.; Walker, L.C.; Dodds, M.W.J.; Hanley, A.B. Extracellular Glycoside Hydrolase Activities in the Human Oral Cavity. Appl Environ Microbiol 2015, 81, 5471–5476. [Google Scholar] [CrossRef]
- Nyvad, B.; Takahashi, N. Integrated Hypothesis of Dental Caries and Periodontal Diseases. J Oral Microbiol 2020, 12, 1710953. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A Double-Edged Sword for Health? Advances in Nutrition 2018, 9, 21–29. [Google Scholar] [CrossRef]
- Magrin, G.L.; Strauss, F.J.; Benfatti, C.A.M.; Maia, L.C.; Gruber, R. Effects of Short-Chain Fatty Acids on Human Oral Epithelial Cells and the Potential Impact on Periodontal Disease: A Systematic Review of in Vitro Studies. Int J Mol Sci 2020, 21, 4895. [Google Scholar] [CrossRef] [PubMed]
- Cosby, K.; Partovi, K.S.; Crawford, J.H.; Patel, R.P.; Reiter, C.D.; Martyr, S.; Yang, B.K.; Waclawiw, M.A.; Zalos, G.; Xu, X.; et al. Nitrite Reduction to Nitric Oxide by Deoxyhemoglobin Vasodilates the Human Circulation. Nat Med 2003, 9, 1498–1505. [Google Scholar] [CrossRef]
- Bondonno, C.P.; Croft, K.D.; Hodgson, J.M. Dietary Nitrate, Nitric Oxide, and Cardiovascular Health. Crit Rev Food Sci Nutr 2016, 56, 2036–2052. [Google Scholar] [CrossRef]
- Koch, C.D.; Gladwin, M.T.; Freeman, B.A.; Lundberg, J.O.; Weitzberg, E.; Morris, A. Enterosalivary Nitrate Metabolism and the Microbiome: Intersection of Microbial Metabolism, Nitric Oxide and Diet in Cardiac and Pulmonary Vascular Health. Free Radic Biol Med 2017, 105, 48–67. [Google Scholar] [CrossRef]
- Gangula, P.; Ravella, K.; Chukkapalli, S.; Rivera, M.; Srinivasan, S.; Hale, A.; Channon, K.; Southerland, J.; Kesavalu, L. Polybacterial Periodontal Pathogens Alter Vascular and Gut BH4/nNOS/NRF2-Phase II Enzyme Expression. PLoS One 2015, 10, e0129885. [Google Scholar] [CrossRef]
- Hampelska, K.; Jaworska, M.M.; Babalska, Z.Ł; Karpiński, T.M. The Role of Oral Microbiota in Intra-Oral Halitosis. J Clin Med 2020, 9, 2484.
- Donnarumma, E.; Trivedi, R.K.; Lefer, D.J. Protective Actions of H2S in Acute Myocardial Infarction and Heart Failure. Compr Physiol 2017, 7, 583–602. [Google Scholar]
- Hsu, C.; Hou, C.; Chang-Chien, G.; Lin, S.; Tain, Y. Maternal Garlic Oil Supplementation Prevents High-Fat Diet-Induced Hypertension in Adult Rat Offspring: Implications of H2S-Generating Pathway in the Gut and Kidneys. Mol Nutr Food Res 2021, 65, e2001116. [Google Scholar] [CrossRef]
- Tian, D.; Dong, J.; Jin, S.; Teng, X.; Wu, Y. Endogenous Hydrogen Sulfide-Mediated MAPK Inhibition Preserves Endothelial Function through TXNIP Signaling. Free Radic Biol Med 2017, 110, 291–299. [Google Scholar] [CrossRef]
- Basic, A.; Serino, G.; Leonhardt, Å; Dahlén, G. H2S Mediates Increased Interleukin (IL)-1β and IL-18 Production in Leukocytes from Patients with Periodontitis. J Oral Microbiol 2019, 11, 1617015. [CrossRef]
- Dilek, N.; Papapetropoulos, A.; Toliver-Kinsky, T.; Szabo, C. Hydrogen Sulfide: An Endogenous Regulator of the Immune System. Pharmacol Res 2020, 161, 105119. [Google Scholar] [CrossRef]
- Xie, L.; Gu, Y.; Wen, M.; Zhao, S.; Wang, W.; Ma, Y.; Meng, G.; Han, Y.; Wang, Y.; Liu, G.; et al. Hydrogen Sulfide Induces Keap1 S-Sulfhydration and Suppresses Diabetes-Accelerated Atherosclerosis Via Nrf2 Activation. Diabetes 2016, 65, 3171–3184. [Google Scholar] [CrossRef]
- Rao, A.; Lokesh, J.; D'Souza, C.; Prithvisagar, K.S.; Subramanyam, K.; Karunasagar, I.; Kumar, B.K. Metagenomic Analysis to Uncover the Subgingival and Atherosclerotic Plaque Microbiota in Patients with Coronary Artery Disease. Indian J Microbiol 2023, 63, 281–290. [Google Scholar] [CrossRef]
- Schulz, S.; Reichert, S.; Grollmitz, J.; Friebe, L.; Kohnert, M.; Hofmann, B.; Schaller, H.; Klawonn, F.; Shi, R. The Role of Saccharibacteria (TM7) in the Subginival Microbiome as a Predictor for Secondary Cardiovascular Events. Int J Cardiol 2021, 331, 255–261. [Google Scholar] [CrossRef]
- Perry, S.E.; Huckabee, M.; Tompkins, G.; Milne, T. The Association between Oral Bacteria, the Cough Reflex and Pneumonia in Patients with Acute Stroke and Suspected Dysphagia. J Oral Rehabil 2020, 47, 386–394. [Google Scholar] [CrossRef]
- Boaden, E.; Lyons, M.; Singhrao, S.K.; Dickinson, H.; Leathley, M.; Lightbody, C.E.; McLoughlin, A.; Khan, Z.; Crean, S.; Smith, C.; et al. Oral Flora in Acute Stroke Patients: A Prospective Exploratory Observational Study. Gerodontology 2017, 34, 343–356. [Google Scholar] [CrossRef]
- Mougeot, J.-.C.; Stevens, C.B.; Paster, B.J.; Brennan, M.T.; Lockhart, P.B.; Mougeot, F.K.B. Porphyromonas Gingivalis is the most Abundant Species Detected in Coronary and Femoral Arteries. J Oral Microbiol 2017, 9, 1281562.
| Author, year | Location | Sample size | Oral sample site | Methods | Findings | Specific Quality features | |
|---|---|---|---|---|---|---|---|
| Hernández-Ruiz et al., 2024. [105] | Mexican | Patients with myocardial infarction (n=16) | supragingival dental plaque | 16S, V3-V4 | A positive and significant correlation of blood TMAO levels with oral Porphyromonas was identified in patients with myocardial infarction. | N | |
| Rao et al., 2023. [123] | India | Patients with CAD (n=12) | subgingival plaque | 16S,V3-V4 | 22 bacterial genera were shared between subgingival and atherosclerotic plaques, with Acinetobacter being dominant. | N | |
| Schulz et al., 2021. [124] | Germany | Patients with CVD (n=102) | Subgingival plaque | 16S,V3-V4 | One biomarker of Saccharibacteria phylum (class: TM7-3, order: CW040, family: F16) was associated with the incidence of a secondary CV event | N | |
| Leskelä et al., 2020. [49] | Germany | Controls (n=100), Patients with stroke (n=98), total (n=198) | Saliva | Targeted qPCR sequencing | Specific oral bacteria A. actinomycetemcomitans concentration↑ in ischemic stroke cases than controls. IgG against A. actinomycetemcomitans is one of the main determinants of LPS neutralizing capacity. | Cases matched controls on age and sex. | |
| Perry et al., 2020. [125] | New Zealand. | Patients with atherosclerosis (n=100) | Saliva | Targeted qPCR | Acute stroke patients were at increased risk of colonisation from respiratory pathogens. The presence of these pathogens in saliva at one month was associated with adverse respiratory events. | N | |
| Nikolaeva et al., 2019. [36] | Russia | Patients with angina pectoris (n=15), with acute myocardial infarction (n=15), with chest pain but no CAD (n=15), total (n=45) | Oral plaque | Targeted 16S sequencing | In acute myocardial infarction patients, the frequency of P.gingivalis, T. forsythia, and A.actinomycetemcomitans detection was significantly higher than participants without CVD. | N | |
| Author, year | Location | Sample size | Oral sample site | Methods | Findings | Specific Quality features | |
| Su et al., 2019. [40] | Japan | Total sample (n=70) | Tongue dorsum | Targeted PCR sequencing | Subjects with medical histories of stroke and heart disease exhibited a trend toward higher P. gingivalispositive rates on the tongue dorsum than those without such disorders. | N | |
| Liljestrand et al., 2018. [50] | Finland | Control (n=123), stable CAD (n=184), ACS (n=169), ACS-like no CAD (n=29), total (n=505) | Subgingival plaque | DNA hybridization | periodontal pathogens such as A.actinomycetemcomitans and the antibody levels to these pathogens associated with coronary artery disease and acute coronary syndrome | Multivariable adjustment for age, gender, and CVD risk factors. | |
| Ziebolz, Rost et al., 2018. [39] | Germany | Patients undergoing surgery for aortic valve stenosis (n=10) | Subgingival plaque | Targeted PCR sequencing | Demonstrate the presence of periodontal bacteria DNA in human cardiac tissue. Identified correlations of inflammatory proteins and infection markers with valvular heart disease. | N | |
| Ziebolz, Jahn et al., 2018. [45] | Germany | Patients undergoing surgery for aortic valve stenosis (n=30) | Subgingival plaque | Targeted PCR sequencing | Periodontal pathogens (e.g. P. gingivalis ,C.rectus, P. intermedia, F. nucleatum) DNA found in atrial and myocardial tissue, and linked to tissue inflammation. | N | |
| Kannoch et al., 2018. [37] | Serbia | Patients with atherosclerosis (n=100) | Subgingival plaque | Targeted 16S sequencing | Detect presence of periopathogenic bacteria in subgingival and atherosclerotic plaques(P.gingivalis, P.intermedia, T. forsythensis) Patient's age can influence the findings | N | |
| Mahalakshmi et al., 2017. [35] | India | Patients with atherosclerosis (n=65), with periodontitis but no systemic disease (n=59), Control (n=100), total (n=224) | Subgingival plaque | Targeted 16S sequencing | Statistical significance was observed for the prevalence of 16S rRNA of P. gingivalis, T. forsythia, T. denticola and P. nigrescens both in subgingival plaque and atheromatous plaque . Significant odds and risk ratio to atherosclerosis were observed for these bacteria. | N | |
| Author, year | Location | Sample size | Oral sample site | Methods | Findings | Specific Quality features | |
| Boaden, 2017. [126] | UK | Patients with stroke (n=50) | Saliva, buccal mucosa, tongue, gingiva, hard palate | 16S,V1–V9 | Described the bacterial profile of the oral flora during the first 2 weeks following a stroke,14 of the 20 most common bacterial phylotypes found in the oral cavity were Streptococcal species with S.salivarius being the most common. The condition of the oral cavity worsened during the study period. | N | |
| Mougeot et al., 2017. [127] | USA | Patients with CVD (n=42) | Coronary artery tissue and femoral artery tissue | 16S,V3-V4 | The most abundant species were P. gingivalis, E. faecalis, and F.magna. | N | |
| Fåk et al., 2015. [38] | Sweden | Asymptomatic atherosclerosis (n=35), symptomatic atherosclerosis (n=27), control (n=30), total (n=92) | Whole mouth swab | 16S,V1–V2 | Abundance of Anaeroglobus in the oral cavity could be associated with symptomatic atherosclerosis. | Cases matched controls on age and sex. | |
| Serra e Silva Filho et al., 2014. [34] | Brazil | Patients with periodontitis and atherosclerosis (n=18) | Subgingival plaque | 16S,V1–V9 | Periodontal pockets and atheromatous plaques of cardiovascular disease patients can present similarities in the microbial diversity. 17 identical phylotypes(including P. gingivalis, T.vincentii, F.nucleatum) were found in atheroma and subgingival samples, indicating possible bacterial translocation. | N | |
| Koren et al., 2011. [42] | Sweden | Controls (n=15), patients with atherosclerosis (n=15), total (n=30) | Oral cavity swab | 16S,V1–V2 | 16S rRNA Sequencing Identified Chryseomonas, Veillonella and Streptococcus in atherosclerotic plaque samples. The combined abundances of Veillonella and Streptococcus in atherosclerotic plaques correlated with their abundance in the oral cavity. | The control subjects were matched to the patient group by sex. | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
