Submitted:
29 October 2024
Posted:
29 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
2.1. Primary Energy Consumption and CO2 Emissions
2.2. Alternative Energy and CO2 Emissions
2.3. Energy Patents and CO2 Emissions
3. Methodology and Data
3.1. Methodology
3.2. Variable Design
3.2.1. Dependent Variables
3.2.2. Independent Variable
3.3. Data
3.4. Descriptive Statistics
4. Results and Discussion
4.1. Effects of Primary Energy Consumption on CO2 Emission Intensity and CO2 Emissions Per Capita in China based on MLR
4.1.1. Effects of Primary Energy Consumption on CO2 Emission Intensity
4.1.2. Effects of Primary Energy Consumption on CO2 Emissions Per Capita
4.2. Effects of Alternative Energy Patents on total CO2 Emissions and CO2 Emissions per Capita in China Based on MLR
4.2.1. Effects of Alternative Energy Patents on Total CO2 Emissions
4.2.2. Effects of Alternative Energy Patents on CO2 Emissions per Capita
4.3. Relationship Between CO2 Emissions and Alternative Energy Patents in China Based on CCA
4.3.1. Canonical Correlations Sets
4.3.2. Canonical Correlations
4.3.3. Correlation Coefficients and Models for CO2 Emissions from Primary Energy Consumption
4.3.4. Correlation Coefficients and Models for Alternative Energy Patents
4.3.5. Correlation Coefficients Between CO2 Emissions from Primary Energy Consumption and Alternative Energy Patents
4.3.6. Proportion of Variance Explained
5. Conclusion and Policy Implications
5.1. Conclusions
5.2. Policy Implications
5.3. Limitations and Future Research Prospects
Appendix A
| No. | Technology fields patent | IPC |
|---|---|---|
| 1 | BFLP | C10L 5/00, 5/40-5/48; C10L 1/00, 1/02, 1/14; C02F 3/28, 11/04; C10L 3/00; C12M 1/107; C12P 5/02; C12N 1/13, 1/15, 1/21, 5/10, 15/00; A01H |
| 2 | IGCP | C10L 3/00; F02C 3/28 |
| 3 | FLCP | H01M 4/86-4/98, 8/00-8/24, 12/00-12/08; H01M 4/86-4/98; H01M 8/00-8/24, 50/00-50/171; H01M 12/00-12/08 |
| 4 | PGBP | C10B 53/00; C10J |
| 5 | HEMP | C10L 5/00;C10J 3/02, 3/46; F23B 90/00; F23G 5/027; B09B 3/00; F23G 7/00; C10L 5/48; F23G 5/00, 7/00; B09B 3/00; F23G 5/00; B09B; C10L 5/46; F23G 5/00 |
| 6 | HDEP | E02B 9/00-9/06; F03B; F03C; F03B 15/00-15/22; B63H 19/02, 19/04 |
| 7 | OTCP | F03G 7/05 |
| 8 | WDEP | F03D; H02K 7/18; B63B 35/00, E04H 12/00; F03D 13/00; B60K 16/00; B63H 13/00 |
| 9 | SLEP | F24S; H02S; F24S; H01L 31/0525, H02S 40/44; B60K 16/00; F03G 6/00-6/06; E04D 13/00, 13/18; F22B 1/00, F24V 30/00; F25B 27/00; F26B 3/00, 3/28; F24S 23/00, G02B 7/183; F24S 10/10 |
| 10 | GTEP | F24T; F01K, F24F 5/00, F24T 10/00-50/00, H02N 10/00, F25B 30/06; F03G 4/00-4/06, 7/04 |
| 11 | OPHP | F24T 10/00-50/00; F24V 30/00-50/00; F24D 11/02; F24D 15/04; F24D 17/02, 18/00; F24H 4/00; F25B 30/00 |
| 12 | UWHP | F01K 27/00; F01K 23/06-23/10; F01N 5/00; F02G 5/00-5/04; F25B 27/02; F01K 17/00, 23/04; F02C 6/18; F25B 27/02; C02F 1/16; D21F 5/20; F22B 1/02; F23G 5/46; F24F 12/00; F27D 17/00; F28D 17/00-20/00; C10J 3/86 |
| 13 | DPMP | F03G 5/00-5/08 |
References
- Tian, X.; Bai, F.; Jia, J.; Liu, Y.; Shi, F. Realizing low-carbon development in a developing and industrializing region: impacts of industrial structure change on CO2 emissions in southwest China. Journal of Environmental Management 2019, 233, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Peng, Y.L.; Ma, C.Q.; Shen, B. Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy 2017, 100, 18–28. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Li, J. Industrial structural transformation and carbon dioxide emissions in China. Energy Policy 2013, 57, 43–51. [Google Scholar] [CrossRef]
- Liu, X.; Mao, G.; Ren, J.; Li, R.Y.M.; Guo, J.; Zhang, L. How might China achieve its 2020 emissions target? A scenario analysis of energy consumption and CO2 emissions using the system dynamics model. Journal of Cleaner Production 2015, 103, 401–410. [Google Scholar] [CrossRef]
- Bai, C.; Feng, C.; Yan, H.; Yi, X.; Chen, Z.; Wei, W. Will income inequality influence the abatement effect of renewable energy technological innovation on carbon dioxide emissions? Journal of Environmental Management 2020, 264, 110482. [Google Scholar] [CrossRef]
- Lu, C.; Li, W.; Gao, S.B. Driving determinants and prospective prediction simulations on carbon emissions peak for China's heavy chemical industry. Journal of Cleaner Production 2020, 251, 119642. [Google Scholar] [CrossRef]
- Wu, R.; Wang, J.Y.; Wang, S.J.; Feng, K.S. The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: a historical and prospective analysis. Renewable and Sustainable Energy Reviews 2021, 149, 111328. [Google Scholar] [CrossRef]
- Margolis, R.M.; Kammen, D.M. Evidence of under-investment in energy R&D in the United States and the impact of federal policy. Energy Policy 1999, 27, 575–584. [Google Scholar]
- Şahin, U. Forecasting share of renewables in primary energy consumption and CO2 emissions of China and the United States under Covid-19 pandemic using a novel fractional nonlinear grey model. Expert Systems with Applications 2022. [Google Scholar] [CrossRef]
- Zhou, N.; Price, L.; Yande, D.; et al. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030. Applied Energy 2019, 239, 793–819. [Google Scholar] [CrossRef]
- Siitonen, S.; Tuomaala, M.; Suominen, M.; et al. Implications of process energy efficiency improvements for primary energy consumption and CO2 emissions at the national level. Applied Energy 2010, 87, 2928–2937. [Google Scholar] [CrossRef]
- Valadkhani, A.; Smyth, R.; Nguyen, J. Effects of primary energy consumption on CO2 emissions under optimal thresholds: Evidence from sixty countries over the last half century. Energy Economics 2019, 80, 680–690. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, T.; Chang, C.T.; Fu, C.J. China’s renewable energy strategy and industrial adjustment policy. Renewable Energy 2021, 170, 1382–1395. [Google Scholar] [CrossRef]
- Shao, S.; Huang, T.; Yang, L. Using latent variable approach to estimate China’s economy-wide energy rebound effect over 1954–2010. Energy Policy 2014, 72, 235–248. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, P.; Choi, Y. Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: a meta-frontier non-radial directional distance function analysis. Energy Policy 2013, 56, 653–662. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Q.; Dong, X.; Dong, K. Assessing energy poverty and its effect on CO2 emissions: the case of China. Energy Economics 2021, 97, 105191. [Google Scholar] [CrossRef]
- Dong, K. , Hochman, G., Zhang, Y., Sun, R., Li, H., Liao, H. CO2 emissions, economic and population growth, and renewable energy: empirical evidence across regions. Energy Economics 2018, 75, 180–192. [Google Scholar] [CrossRef]
- Chen, Q.; Kang, C.; Xia, Q.; Guan, D.B. Preliminary exploration on low-carbon technology roadmap of China’s power sector. Energy 2011, 36, 1500–1512. [Google Scholar] [CrossRef]
- Manoli, G.; Katul, G.G.; Marani, M. Delay-induced rebounds in CO2 emissions and critical time-scales to meet global warming targets. Earth’s Future 2016, 4, 636–643. [Google Scholar] [CrossRef]
- Kapitonov, I.A. , Patapas, A. Principles regulation of electricity tariffs for the integrated generation of traditional and alternative energy sources. Renewable and Sustainable Energy Reviews 2021, 146, 111183. [Google Scholar] [CrossRef]
- Erdogan, S.; Yıldırım, S.; Yıldırım, D.Ç.; Gedikli, A. The effects of innovation on sectoral carbon emissions: evidence from G20 countries. Journal Environmental Management 2020, 267, 110637. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, R.; Alam, K. Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: a panel investigation. Journal of Cleaner Production 2019, 231, 1100–1109. [Google Scholar] [CrossRef]
- Wurlod, J.D.; Noailly, J. The impact of green innovation on energy intensity: an empirical analysis for 14 industrial sectors in OECD countries. Energy Economics 2018, 71, 47–61. [Google Scholar] [CrossRef]
- Li, W.; Elheddad, M.; Doytch, N. The impact of innovation on environmental quality: Evidence for the non-linear relationship of patents and CO2 emissions in China. Journal of Environmental Management 2021, 292, 112781. [Google Scholar] [CrossRef]
- Cheng, X.; Long, R.; Chen, H.; Li, W. Green competitiveness evaluation of provinces in China based on correlation analysis and fuzzy rough set. Ecological Indicators 2018, 85, 841–852. [Google Scholar] [CrossRef]
- Cho, J.H.; Sohn, S.Y. A novel decomposition analysis of green patent applications for the evaluation of R&D efforts to reduce CO2 emissions from fossil fuel energy consumption. Journal of Cleaner Production 2018, 193, 290–299. [Google Scholar]
- Kwon, D.S.; Cho, J.H.; Sohn, S.Y. Comparison of technology efficiency for CO2 emissions reduction among European countries based on DEA with decomposed factors. Journal of Cleaner Production 2017, 151, 109–120. [Google Scholar] [CrossRef]
- Lee, B.K.; Sohn, S.Y. Patent portfolio-based indicators to evaluate the commercial benefits of national plant genetic resources. Ecological Indicators 2016, 70, 43–52. [Google Scholar] [CrossRef]
- Hotelling, H. The most predictable criterion. Journal of Educational Psychology 1935, 26, 139–142. [Google Scholar] [CrossRef]
- Larson, M.; Capobianco, M.; Hanson, H. Relationship between beach profiles and waves at Duck, North Carolina, determined by canonical correlation analysis. Marine Geology 2000, 163, 275–288. [Google Scholar] [CrossRef]
- Xujing, Guo, Huibin, et al. Tracking variations of fluorescent dissolved organic matter during wastewater treatment by accumulative fluorescence emission spectroscopy combined with principal component, second derivative and canonical correlation analyses. Chemosphere: Environmental toxicology and risk assessment 2018, 194, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D. Effects of tetracycline on the relationship between the microbial community and oxidative stress in earthworms based on canonical correlation analysis. Environmental toxicology and pharmacology 2020, 76, 103342. [Google Scholar] [CrossRef] [PubMed]
- Guilhot, L. An analysis of China's energy policy from 1981 to 2020: Transitioning towards to a diversified and low-carbon energy system. Energy Policy 2022, 162, 112806. [Google Scholar] [CrossRef]


| CO2 emissions/Patents | Number of cases | Min | Max | Mean | Standard Deviation | Variance |
|---|---|---|---|---|---|---|
| CEIT | 717 | 0.0000 | 30.0200 | 4.1644 | 3.3799 | 11.424 |
| CEPC | 717 | 0.0000 | 41.5465 | 7.36514 | 5.9093 | 34.919 |
| CECL | 716 | 0.0000 | 93118.4044 | 18716.1945 | 16904.1429 | 285750045.400 |
| CECK | 713 | 0.0286 | 26753.4942 | 2477.0916 | 3478.7841 | 12101939.090 |
| CECO | 652 | 0.0302 | 39419.2915 | 3902.5952 | 4715.4648 | 22235608.040 |
| CEGL | 715 | 28.5548 | 4554.3921 | 752.0542 | 712.7446 | 508004.803 |
| CEKS | 704 | 0.0304 | 2131.0210 | 159.9756 | 288.8964 | 83461.122 |
| CEDS | 715 | 30.2231 | 5624.0911 | 1194.9783 | 1017.6913 | 1035695.603 |
| CEFO | 714 | 0.0634 | 14858.3263 | 468.1455 | 1180.3048 | 1393119.376 |
| CELG | 180 | 6.7588 | 2592.3762 | 333.1892 | 431.8124 | 186461.932 |
| CENG | 650 | 0.0000 | 5979.6703 | 753.6010 | 910.2725 | 828595.971 |
| BFLP | 720 | 0 | 15412 | 437.09 | 1271.677 | 1617162.929 |
| IGCP | 720 | 0 | 327 | 19.96 | 38.937 | 1516.082 |
| FLCP | 720 | 0 | 1961 | 68.39 | 170.042 | 28914.344 |
| PGBP | 720 | 0 | 153 | 9.48 | 18.586 | 345.429 |
| HEMP | 720 | 0 | 346 | 25.58 | 45.960 | 2112.363 |
| HDEP | 720 | 0 | 494 | 23.05 | 52.696 | 2776.817 |
| OTCP | 720 | 0 | 48 | 2.68 | 5.524 | 30.512 |
| WDEP | 720 | 0 | 1600 | 81.19 | 194.671 | 37896.605 |
| SLEP | 720 | 0 | 3957 | 225.20 | 540.133 | 291743.217 |
| GTEP | 720 | 0 | 2707 | 62.02 | 213.084 | 45404.760 |
| OPHP | 720 | 0 | 3224 | 88.15 | 248.292 | 61648.837 |
| UWHP | 720 | 0 | 3981 | 209.57 | 448.556 | 201202.304 |
| DPMP | 720 | 0 | 111 | 7.82 | 13.216 | 174.654 |
| Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Durbin-Watson |
|---|---|---|---|---|---|
| 1 | 0.809a | 0.654 | 0.635 | 0.9977881 | 1.724 |
| Model | Sum of Squares | df | Mean Square | F | Sig. | |
|---|---|---|---|---|---|---|
| 1 | Regression | 306.752 | 9 | 34.084 | 34.235 | 0.000b |
| Residual | 162.280 | 163 | 0.996 | |||
| Total | 469.032 | 172 | ||||
| Modes | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||
|---|---|---|---|---|---|---|---|
| B | Std. Error | Beta | TOL | VIF | |||
| (Constant) | 2.339 | 0.224 | 10.446 | 0.000 | |||
| CECL | 0.061 | 0.005 | 0.786 | 11.404 | 0.000 | 0.446 | 2.240 |
| CECK | -0.056 | 0.022 | -0.161 | -2.572 | 0.011 | 0.541 | 1.848 |
| CECO | 0.071 | 0.023 | 0.281 | 3.128 | 0.002 | 0.262 | 3.814 |
| CEGL | -1.457 | 0.238 | -0.767 | -6.120 | 0.000 | 0.135 | 7.392 |
| CEKS | -0.140 | 0.263 | -0.035 | -0.533 | 0.595 | 0.492 | 2.032 |
| CEDS | -0.225 | 0.217 | -0.138 | -1.038 | 0.301 | 0.120 | 8.304 |
| CEFO | -0.351 | 0.068 | -0.420 | -5.190 | 0.000 | 0.324 | 3.089 |
| CELG | 1.039 | 0.351 | 0.275 | 2.961 | 0.004 | 0.246 | 4.067 |
| CENG | 2.339 | 0.224 | 0.102 | 10.446 | 0.000 | 0.484 | 2.066 |
| Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Durbin-Watson |
|---|---|---|---|---|---|
| 1 | 0.789a | 0.622 | 0.601 | 4.7926981 | 1.945 |
| Model | Sum of Squares | df | Mean Square | F | Sig. | |
|---|---|---|---|---|---|---|
| 1 | Regression | 6167.771 | 9 | 685.308 | 29.835 | 0.000b |
| Residual | 3744.103 | 163 | 22.970 | |||
| Total | 9911.873 | 172 | ||||
| Modes | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||
|---|---|---|---|---|---|---|---|
| B | Std. Error | Beta | TOL | VIF | |||
| (Constant) | 10.022 | 1.075 | 9.319 | 0.000 | |||
| CECL | 0.326 | 0.026 | 0.921 | 12.788 | 0.000 | 0.446 | 2.240 |
| CECK | -0.339 | 0.105 | -0.212 | -3.238 | 0.001 | 0.541 | 1.848 |
| CECO | 0.561 | 0.109 | 0.485 | 5.160 | 0.000 | 0.262 | 3.814 |
| CEGL | -4.008 | 1.143 | -0.459 | -3.506 | 0.001 | 0.135 | 7.392 |
| CEKS | 1.442 | 1.261 | 0.078 | 1.143 | 0.255 | 0.492 | 2.032 |
| CEDS | -3.598 | 1.041 | -0.479 | -3.456 | 0.001 | 0.120 | 8.304 |
| CEFO | -1.579 | 0.325 | -0.411 | -4.861 | 0.000 | 0.324 | 3.089 |
| CELG | 4.639 | 1.685 | 0.267 | 2.753 | 0.007 | 0.246 | 4.067 |
| CENG | 0.520 | 0.456 | 0.079 | 1.141 | 0.256 | 0.484 | 2.066 |
| Model | R | R2 | Adjusted R2 | Std. Error of the Estimate | Durbin-Watson |
|---|---|---|---|---|---|
| 1 | 0.693a | 0.480 | 0.470 | 17.5873205 | 1.408 |
| Model | Sum of Squares | df | Mean Square | F | Sig. | |
|---|---|---|---|---|---|---|
| 1 | Regression | 200493.291 | 13 | 15422.561 | 49.861 | 0.000b |
| Residual | 217447.631 | 703 | 309.314 | |||
| Total | 417940.922 | 716 | ||||
| Modes | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||
|---|---|---|---|---|---|---|---|
| B | Std. Error | Beta | TOL | VIF | |||
| (Constant) | 18.181 | 0.840 | 21.632 | 0.000 | |||
| BFLP | -0.001 | 0.002 | -0.065 | -0.755 | 0.451 | 0.101 | 9.921 |
| IGCP | 0.083 | 0.053 | 0.134 | 1.572 | 0.116 | 0.102 | 9.782 |
| FLCP | -0.091 | 0.013 | -0.639 | -6.827 | 0.000 | 0.085 | 11.831 |
| PGBP | 0.493 | 0.071 | 0.380 | 6.994 | 0.000 | 0.251 | 3.988 |
| HEMP | 0.112 | 0.056 | 0.213 | 1.998 | 0.046 | 0.065 | 15.306 |
| HDEP | 0.128 | 0.043 | 0.280 | 2.954 | 0.003 | 0.082 | 12.137 |
| OTCP | -1.845 | 0.345 | -0.423 | -5.345 | 0.000 | 0.118 | 8.447 |
| WDEP | 0.098 | 0.020 | 0.787 | 4.860 | 0.000 | 0.028 | 35.436 |
| SLEP | -0.038 | 0.004 | -0.858 | -9.197 | 0.000 | 0.085 | 11.751 |
| GTEP | 0.017 | 0.007 | 0.154 | 2.415 | 0.016 | 0.182 | 5.480 |
| OPHP | -0.040 | 0.005 | -0.413 | -7.393 | 0.000 | 0.237 | 4.225 |
| UWHP | 0.023 | 0.004 | 0.435 | 6.037 | 0.000 | 0.143 | 7.004 |
| DPMP | 0.974 | 0.114 | 0.533 | 8.519 | 0.000 | 0.189 | 5.299 |
| Model | R | R2 | Adjusted R2 | Std. Error of the Estimate | Durbin-Watson |
|---|---|---|---|---|---|
| 1 | 0.412a | 0.170 | 0.154 | 5.4319320 | 1.116 |
| Model | Sum of Squares | Df | Mean Square | F | Sig. | |
|---|---|---|---|---|---|---|
| 1 | Regression | 4234.835 | 13 | 325.757 | 11.040 | 0.000b |
| Residual | 20713.132 | 702 | 29.506 | |||
| Total | 24947.967 | 715 | ||||
| Modes | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||
|---|---|---|---|---|---|---|---|
| B | Std. Error | Beta | TOL | VIF | |||
| (Constant) | 6.292 | 0.260 | 24.210 | 0.000 | |||
| BFLP | -0.001 | 0.001 | -0.181 | -1.671 | 0.095 | 0.101 | 9.919 |
| IGCP | 0.046 | 0.016 | 0.304 | 2.826 | 0.005 | 0.102 | 9.779 |
| FLCP | -0.016 | 0.004 | -0.467 | -3.950 | 0.000 | 0.085 | 11.829 |
| PGBP | 0.081 | 0.022 | 0.257 | 3.742 | 0.000 | 0.251 | 3.986 |
| HEMP | -0.042 | 0.017 | -0.324 | -2.412 | 0.016 | 0.065 | 15.300 |
| HDEP | 0.005 | 0.013 | 0.049 | 0.407 | 0.684 | 0.082 | 12.134 |
| OTCP | -0.392 | 0.107 | -0.367 | -3.674 | 0.000 | 0.118 | 8.445 |
| WDEP | 0.016 | 0.006 | 0.545 | 2.662 | 0.008 | 0.028 | 35.428 |
| SLEP | -0.002 | 0.001 | -0.209 | -1.771 | 0.077 | 0.085 | 11.748 |
| GTEP | -0.005 | 0.002 | -0.187 | -2.322 | 0.020 | 0.182 | 5.480 |
| OPHP | -0.003 | 0.002 | -0.125 | -1.765 | 0.078 | 0.237 | 4.225 |
| UWHP | 0.007 | 0.001 | 0.556 | 6.110 | 0.000 | 0.143 | 7.002 |
| DPMP | 0.137 | 0.035 | 0.307 | 3.883 | 0.000 | 0.189 | 5.298 |
| Correlation | Eigenvalue | Wilks Statistic | F | Num D.F | Denom D.F. | Sig. | |
|---|---|---|---|---|---|---|---|
| 1 | 0.948 | 8.911 | 0.001 | 13.168 | 117.000 | 1044.880 | 0.000 |
| 2 | 0.888 | 3.717 | 0.011 | 9.308 | 96.000 | 946.621 | 0.000 |
| 3 | 0.820 | 2.059 | 0.054 | 6.922 | 77.000 | 846.382 | 0.000 |
| 4 | 0.736 | 1.183 | 0.164 | 5.111 | 60.000 | 743.798 | 0.000 |
| 5 | 0.658 | 0.764 | 0.358 | 3.664 | 45.000 | 638.303 | 0.000 |
| 6 | 0.429 | 0.225 | 0.631 | 2.197 | 32.000 | 528.953 | 0.000 |
| 7 | 0.378 | 0.166 | 0.773 | 1.846 | 21.000 | 414.040 | 0.013 |
| 8 | 0.278 | 0.084 | 0.902 | 1.279 | 12.000 | 290.000 | 0.230 |
| 9 | 0.150 | 0.023 | 0.978 | 0.670 | 5.000 | 146.000 | 0.647 |
| Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| CECL | -0.158 | -0.037 | 0.275 | -0.426 | 0.106 | 0.593 | -0.867 | 0.167 | -1.188 |
| CECK | 0.111 | -0.141 | -0.077 | -0.223 | 0.188 | -1.253 | -0.068 | -0.099 | 0.470 |
| CECO | -0.302 | -0.208 | 0.962 | -0.839 | 0.884 | 0.826 | 0.273 | -0.485 | 0.504 |
| CEGL | -0.524 | -0.899 | 1.024 | 1.597 | 0.669 | 0.261 | -0.782 | 1.420 | 0.466 |
| CEKS | 0.005 | -0.673 | -0.586 | -0.942 | 0.306 | 0.034 | 0.238 | 0.176 | -0.569 |
| CEDS | 0.519 | 0.556 | -0.658 | -0.626 | -0.355 | -0.467 | 2.368 | -0.534 | -1.218 |
| CEFO | 0.195 | -0.046 | -0.115 | 0.541 | -1.257 | -0.394 | -0.108 | 0.920 | 0.496 |
| CELG | -0.774 | 0.815 | -0.800 | -0.332 | -0.098 | -0.321 | -1.193 | -0.279 | 0.534 |
| CENG | -0.111 | -0.006 | -0.093 | 0.333 | -0.941 | -0.090 | -0.011 | -1.111 | 0.094 |
| Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| BFLP | 0.434 | -0.012 | 0.353 | -0.217 | -0.136 | -1.216 | 0.449 | -0.017 | 1.505 |
| IGCP | -0.224 | -0.346 | -0.056 | 0.301 | -0.780 | 1.238 | -0.539 | -1.195 | -0.850 |
| FLCP | -0.317 | 0.281 | -0.760 | 1.435 | 0.668 | 1.040 | -0.305 | -0.511 | -0.475 |
| PGBP | 0.046 | -0.090 | -0.008 | -0.623 | 0.034 | -1.467 | -0.112 | 0.353 | -0.720 |
| HEMP | 0.479 | -0.520 | 0.366 | 0.150 | -0.457 | -0.603 | 1.634 | 1.465 | 2.843 |
| HDEP | -0.376 | 0.179 | 0.766 | 1.496 | -0.691 | 0.014 | 1.311 | 0.162 | -2.060 |
| OTCP | 0.075 | 0.075 | -0.113 | 0.091 | -0.396 | 1.470 | -0.962 | -0.993 | -0.382 |
| WDEP | -0.368 | 0.375 | 0.771 | -1.086 | 1.582 | -1.619 | -4.562 | -0.159 | 0.028 |
| SLEP | 0.172 | -1.088 | -1.471 | -0.361 | -0.153 | 1.136 | 1.438 | 0.781 | -0.009 |
| GTEP | -0.411 | 0.826 | -0.517 | -0.405 | -1.842 | -0.107 | 0.023 | -0.079 | -0.711 |
| OPHP | 0.127 | 0.311 | -0.745 | -0.138 | -0.329 | 0.838 | 0.064 | 0.560 | -0.112 |
| UWHP | -0.436 | -0.042 | 1.068 | -0.768 | 1.091 | 0.901 | 0.979 | 0.207 | 0.171 |
| DPMP | -0.160 | -0.261 | 0.134 | 0.094 | 0.836 | -1.772 | 0.773 | -0.446 | 0.526 |
| Canonical Variable | Set 1 by Self | Set 1 by Set 2 | Set 2 by Self | Set 2 by Set 1 |
|---|---|---|---|---|
| 1 | 0.350 | 0.315 | 0.526 | 0.473 |
| 2 | 0.105 | 0.083 | 0.163 | 0.128 |
| 3 | 0.147 | 0.099 | 0.027 | 0.018 |
| 4 | 0.069 | 0.037 | 0.042 | 0.023 |
| 5 | 0.079 | 0.034 | 0.032 | 0.014 |
| 6 | 0.096 | 0.018 | 0.009 | 0.002 |
| 7 | 0.043 | 0.006 | 0.016 | 0.002 |
| 8 | 0.056 | 0.004 | 0.044 | 0.003 |
| 9 | 0.055 | 0.001 | 0.022 | 0.000 |
| 1 | In this study, primary energy sources include natural gas, fuel oil, coke, liquefied petroleum gas, kerosene, coal, crude oil, gasoline, and diesel. |
| 2 | The Green Inventory is published by the World Intellectual Property Organization to identify environmentally sound technologies based on the IPC. It divides green patents into eight categories: alternative energy patents, transportation patents, energy conservation patents, waste management patents, agriculture/forestry patents, administrative patents, regulatory or design aspects patents, and nuclear power generation patents. This study only considers alternative energy technology patents. |
| 3 | CO2 emission-related data and alternative energy patent-related data in this study are monthly data for 1995–2018 and 1998–2021. The three-year lag is because it generally takes around three years for a patent application to be granted. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
