Submitted:
26 October 2024
Posted:
29 October 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Methods
Results
Discussion
Conclusion
Funding
Acknowledgement
Conflict of interest
References
- Iadecola, C.; Yaffe, K.; Biller, J.; Bratzke, L.C.; Faraci, F.M.; Gorelick, P.B.; Gulati, M.; Kamel, H.; Knopman, D.S.; Launer, L.J.; et al. Impact of Hypertension on Cognitive Function: A Scientific Statement from the American Heart Association. Hypertension 2016, 68, e67–e94. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.A.; Power, M.C.; Gottesman, R.F. Defining the Relationship between Hypertension, Cognitive Decline, and Dementia: A Review. Curr Hypertens Rep 2017, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.; Parati, G.; Stergiou, G.; Asmar, R.; Beilin, L.; Bilo, G.; Clement, D.; de la Sierra, A.; de Leeuw, P.; Dolan, E.; et al. European Society of Hypertension Position Paper on Ambulatory Blood Pressure Monitoring. J Hypertens 2013, 31, 1731–1768. [Google Scholar] [CrossRef]
- Hermida, R.C.; Fernández, J.R.; Ayala, D.E.; Mojón, A.; Alonso, I.; Smolensky, M. Circadian Rhythm of Double (Rate-Pressure) Product in Healthy Normotensive Young Subjects. Chronobiol Int 2001, 18, 475–489. [Google Scholar] [CrossRef]
- Gavriilaki, M.; Anyfanti, P.; Mastrogiannis, K.; Gavriilaki, E.; Lazaridis, A.; Kimiskidis, V.; Gkaliagkousi, E. Association between Ambulatory Blood Pressure Monitoring Patterns with Cognitive Function and Risk of Dementia: A Systematic Review and Meta-analysis. Aging Clin Exp Res 2023, 35, 745–761. [Google Scholar] [CrossRef]
- de la Torre, J.C. Cerebral Hemodynamics and Vascular Risk Factors: Setting the Stage for Alzheimer’s Disease. J Alzheimers Dis 2012, 32, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Cani, I.; Sambati, L.; Bartiromo, F.; Asioli, G.M.; Baiardi, S.; Belotti, L.M.B.; Giannini, G.; Guaraldi, P.; Quadalti, C.; Romano, L.; et al. Cognitive Profile in Idiopathic Autonomic Failure: Relation with White Matter Hyperintensities and Neurofilament Levels. Ann Clin Transl Neurol 2022, 9, 864–876. [Google Scholar] [CrossRef]
- Daniela, M.; Grigoras, C.; Cuciureanu, D.; Constantinescu, V. The Circadian Rhythm of Arterial Blood Pressure in Alzheimer’s Disease and Vascular Dementia. Acta Neurol Belg 2023, 123, 129–137. [Google Scholar] [CrossRef]
- Ghazi, L.; Yaffe, K.; Tamura, M.K.; Rahman, M.; Hsu, C.; Anderson, A.H.; Cohen, J.B.; Fischer, M.J.; Miller, E.R.; Navaneethan, S.D.; et al. Association of 24-Hour Ambulatory Blood Pressure Patterns with Cognitive Function and Physical Functioning in CKD. CJASN 2020, 15, 455–464. [Google Scholar] [CrossRef]
- Shim, Y.S.; Shin, H.-E. Impact of the Ambulatory Blood Pressure Monitoring Profile on Cognitive and Imaging Findings of Cerebral Small-Vessel Disease in Older Adults with Cognitive Complaints. J Hum Hypertens 2022, 36, 14–23. [Google Scholar] [CrossRef]
- Tan, X.; Sundström, J.; Lind, L.; Franzon, K.; Kilander, L.; Benedict, C. Reverse Dipping of Systolic Blood Pressure Is Associated with Increased Dementia Risk in Older Men: A Longitudinal Study over 24 Years. Hypertension 2021, 77, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Sun, Y.; Wang, S.; Feng, F.; Zhang, D.; Li, H. Nocturnal Blood Pressure Rise as a Predictor of Cognitive Impairment among the Elderly: A Retrospective Cohort Study. BMC Geriatr 2021, 21, 462. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-F.; Chang-Quan, H.; You, C.; Wang, Z.-R.; Hui, W.; Liu, Q.-X.; Si-Qing, H. The Circadian Rhythm of Arterial Blood Pressure in Alzheimer Disease (AD) Patients without Hypertension. Blood Pressure 2013, 22, 101–105. [Google Scholar] [CrossRef]
- Cicconetti, P.; Ciotti, V.; Monteforte, G.; Moisè, A.; Chiarotti, F.; Piccirillo, G.; Cacciafesta, M. Circadian Blood Pressure Pattern and Cognitive Function in Newly Diagnosed Older Hypertensives. Blood Pressure 2003, 12, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Cicconetti, P.; Ciotti, V.; Tafaro, L.; Priami, C.; Chiarotti, F.; Costarella, M.; Piccirillo, G.; Cacciafesta, M. Event-Related Brain Potentials in Elderly Dippers and Nondippers with Recently Diagnosed Hypertension. Hypertens Res 2004, 27, 581–588. [Google Scholar] [CrossRef]
- Gregory, M. Investigating the Relationship between Vascular Health, Gait, and Cognition in Community-Dwelling Older Adults without Dementia, The University of Western Ontario, 2016.
- Guo, H.; Tabara, Y.; Igase, M.; Yamamoto, M.; Ochi, N.; Kido, T.; Uetani, E.; Taguchi, K.; Miki, T.; Kohara, K. Abnormal Nocturnal Blood Pressure Profile Is Associated with Mild Cognitive Impairment in the Elderly: The J-SHIPP Study. Hypertens Res 2010, 33, 32–36. [Google Scholar] [CrossRef]
- Kececi Savan, D.; Cengiz, M.; Yavuzer, H.; Yavuzer, S.; Sulu, C.; Doventas, A.; Beger, T. Relation of Ambulatory Blood Pressure Measurement and Cognitive Functions in Hypertensive Elderly Patients. Aging Clin Exp Res 2016, 28, 699–704. [Google Scholar] [CrossRef]
- Kim, J.E.; Shin, J.S.; Jeong, J.H.; Choi, K.G.; Park, K.D.; Kim, S. Relationships between 24-Hour Blood Pressures, Subcortical Ischemic Lesions, and Cognitive Impairment. J Clin Neurol 2009, 5, 139. [Google Scholar] [CrossRef]
- Komori, T.; Eguchi, K.; Saito, T.; Nishimura, Y.; Hoshide, S.; Kario, K. Riser Blood Pressure Pattern Is Associated with Mild Cognitive Impairment in Heart Failure Patients. AJHYPE 2016, 29, 194–201. [Google Scholar] [CrossRef]
- Li, X.-F.; Cui, L.-M.; Sun, D.-K.; Wang, H.-T.; Liu, W.-G. The Correlation between Cognitive Impairment and Ambulatory Blood Pressure in Patients with Cerebral Small Vessel Disease. Eur Rev Med Pharmacol Sci 2017, 21, 52–56. [Google Scholar]
- Mahmoud, K.S.; Ismail, T.T.; Saad, M.; Mohsen, L.A.; Ibrahiem, M.A.; Fadeel, N.A.A.; Sotouhy, A. Values of Ambulatory Blood Pressure Monitoring for Prediction of Cognitive Function Impairment in Elderly Hypertensive Patients. The Egyptian Heart Journal 2015, 67, 7–12. [Google Scholar] [CrossRef]
- Ohya, Y.; Ohtsubo, T.; Tsuchihashi, T.; Eto, K.; Sadanaga, T.; Nagao, T.; Abe, I.; Fujishima, M. Altered Diurnal Variation of Blood Pressure in Elderly Subjects with Decreased Activity of Daily Living and Impaired Cognitive Function. Hypertens Res 2001, 24, 655–661. [Google Scholar] [CrossRef]
- Okuno, J.; Yanagi, H.; Tomura, S. Cognitive Impairment and Nocturnal Blood Pressure Fall in Treated Elderly Hypertensives. Environmental Health and Preventive Medicine 2003, 8, 124–132. [Google Scholar] [CrossRef]
- Paganini-Hill, A.; Bryant, N.; Corrada, M.M.; Greenia, D.E.; Fletcher, E.; Singh, B.; Floriolli, D.; Kawas, C.H.; Fisher, M.J. Blood Pressure Circadian Variation, Cognition and Brain Imaging in 90+ Year-Olds. Front. Aging Neurosci. 2019, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Sierra, C.; Salamero, M.; Domenech, M.; Camafort, M.; Coca, A. Circadian Blood Pressure Pattern and Cognitive Function in Middle-Aged Essential Hypertensive Patients. Revista Española de Cardiología (English Edition) 2015, 68, 157–158. [Google Scholar] [CrossRef]
- Suzuki, R.; Meguro, M.; Meguro, K. Sleep Disturbance Is Associated with Decreased Daily Activity and Impaired Nocturnal Reduction of Blood Pressure in Dementia Patients. Archives of Gerontology and Geriatrics 2011, 53, 323–327. [Google Scholar] [CrossRef]
- Tadic, M.; Cuspidi, C.; Bombelli, M.; Facchetti, R.; Mancia, G.; Grassi, G. Relationships between Residual Blood Pressure Variability and Cognitive Function in the General Population of the PAMELA Study. J of Clinical Hypertension 2019, 21, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Shimo, Y.; Yamashiro, K.; Ogawa, T.; Nishioka, K.; Oyama, G.; Umemura, A.; Hattori, N. Association between Abnormal Nocturnal Blood Pressure Profile and Dementia in Parkinson’s Disease. Parkinsonism & Related Disorders 2018, 46, 24–29. [Google Scholar] [CrossRef]
- White, W.B.; Jalil, F.; Wakefield, D.B.; Kaplan, R.F.; Bohannon, R.W.; Hall, C.B.; Moscufo, N.; Fellows, D.; Guttmann, C.R.G.; Wolfson, L. Relationships among Clinic, Home, and Ambulatory Blood Pressures with Small Vessel Disease of the Brain and Functional Status in Older People with Hypertension. American Heart Journal 2018, 205, 21–30. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Akiguchi, I.; Oiwa, K.; Hayashi, M.; Ohara, T.; Ozasa, K. The Relationship between 24-Hour Blood Pressure Readings, Subcortical Ischemic Lesions and Vascular Dementia. Cerebrovasc Dis 2005, 19, 302–308. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ohara, T.; Nagakane, Y.; Tanaka, E.; Morii, F.; Koizumi, T.; Akiguchi, I. Chronic Kidney Disease, 24-h Blood Pressure and Small Vessel Diseases Are Independently Associated with Cognitive Impairment in Lacunar Infarct Patients. Hypertens Res 2011, 34, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Yaneva-Sirakova, T.; Tarnovska-Kadreva, R.; Traykov, L.; Vassilev, D. [PP.17.16] Correlation of Dipping Status to Mild Cognitive Impairment in Hypertensive Patients. Journal of Hypertension 2016, 34, e226. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Akiguchi, I.; Oiwa, K.; Hayashi, M.; Kasai, T.; Ozasa, K. Twenty-Four–Hour Blood Pressure and Mri as Predictive Factors for Different Outcomes in Patients with Lacunar Infarct. Stroke 2002, 33, 297–305. [Google Scholar] [CrossRef]
- Lackland, D.T. Racial Differences in Hypertension: Implications for High Blood Pressure Management. The American Journal of the Medical Sciences 2014, 348, 135–138. [Google Scholar] [CrossRef]
- De Reuck, J.; Deramecourt, V.; Cordonnier, C.; Leys, D.; Pasquier, F.; Maurage, C.-A. Prevalence of Small Cerebral Bleeds in Patients with a Neurodegenerative Dementia: A Neuropathological Study. J Neurol Sci 2011, 300, 63–66. [Google Scholar] [CrossRef]
- Dolan, E.; Stanton, A.; Thijs, L.; Hinedi, K.; Atkins, N.; McClory, S.; Hond, E.D.; McCormack, P.; Staessen, J.A.; O’Brien, E. Superiority of Ambulatory over Clinic Blood Pressure Measurement in Predicting Mortality. Hypertension 2005, 46, 156–161. [Google Scholar] [CrossRef]
- Hermida, R.C.; Crespo, J.J.; Otero, A.; Domínguez-Sardiña, M.; Moyá, A.; Ríos, M.T.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L.; Sineiro, E.; et al. Asleep Blood Pressure: Significant Prognostic Marker of Vascular Risk and Therapeutic Target for Prevention. European Heart Journal 2018, 39, 4159–4171. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Smolensky, M.H.; Crespo, J.J.; Otero, A.; Domínguez-Sardiña, M.; Moyá, A.; Ríos, M.T.; Castiñeira, M.C.; et al. Cardiovascular Disease Risk Stratification by the Framigham Score Is Markedly Improved by Ambulatory Compared with Office Blood Pressure. Revista Española de Cardiología (English Edition) 2021, 74, 953–961. [Google Scholar] [CrossRef] [PubMed]
- ABC-H Investigators; Roush, G.C.; Fagard, R.H.; Salles, G.F.; Pierdomenico, S.D.; Reboldi, G.; Verdecchia, P.; Eguchi, K.; Kario, K.; Hoshide, S.; et al. Prognostic Impact from Clinic, Daytime, and Night-Time Systolic Blood Pressure in Nine Cohorts of 13,844 Patients with Hypertension. J Hypertens 2014, 32, 2332–2340. [CrossRef]
- Staplin, N.; Sierra, A. de la; Ruilope, L.M.; Emberson, J.R.; Vinyoles, E.; Gorostidi, M.; Ruiz-Hurtado, G.; Segura, J.; Baigent, C.; Williams, B. Relationship between Clinic and Ambulatory Blood Pressure and Mortality: An Observational Cohort Study in 59 124 Patients. The Lancet 2023, 401, 2041–2050. [Google Scholar] [CrossRef]
- Hermida, R.C.; Smolensky, M.H.; Ayala, D.E.; Portaluppi, F. Ambulatory Blood Pressure Monitoring (ABPM) as the Reference Standard for Diagnosis of Hypertension and Assessment of Vascular Risk in Adults. Chronobiology International 2015, 32, 1329–1342. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Ayala, D.E.; Fontao, M.J.; Mojón, A.; Fernández, J.R. Ambulatory Blood Pressure Monitoring: Importance of Sampling Rate and Duration—48 versus 24 Hours—on the Accurate Assessment of Cardiovascular Risk. Chronobiology International 2013, 30, 55–67. [Google Scholar] [CrossRef]
- Hermida, R.C.; Calvo, C.; Ayala, D.E.; Fern, ández J.R.; Ruilope, L.M.; L, ópez J.E. Evaluation of the Extent and Duration of the “ABPM Effect” in Hypertensive Patients. Journal of the American College of Cardiology 2002, 40, 710–717. [CrossRef] [PubMed]
- Hermida, R.C.; Crespo, J.J.; Otero, A.; Domínguez-Sardiña, M.; Moyá, A.; Ríos, M.T.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L.; Sineiro, E.; et al. Asleep (Not Night-Time) Blood Pressure as Prognostic Marker of Cardiovascular Risk. European Heart Journal 2019, 40, 789–789. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Fernández, J.R.; Calvo, C. Comparison of the Efficacy of Morning versus Evening Administration of Telmisartan in Essential Hypertension. Hypertension 2007, 50, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Ayala, D.E.; Calvo, C.; López, J.E.; Mojón, A.; Fontao, M.J.; Soler, R.; Fernández, J.R. Effects of Time of Day of Treatment on Ambulatory Blood Pressure Pattern of Patients with Resistant Hypertension. Hypertension 2005, 46, 1053–1059. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Calvo, C.; Portaluppi, F.; Smolensky, M.H. Chronotherapy of Hypertension: Administration-Time-Dependent Effects of Treatment on the Circadian Pattern of Blood Pressure. Advanced drug delivery reviews 2007, 59, 923–939. [Google Scholar] [CrossRef]
- Smolensky, M.H.; Hermida, R.C.; Ayala, D.E.; Tiseo, R.; Portaluppi, F. Administration–Time-Dependent Effects of Blood Pressure-Lowering Medications: Basis for the Chronotherapy of Hypertension. Blood pressure monitoring 2010, 15, 173–180. [Google Scholar] [CrossRef]
- Hermida, R.C.; Calvo, C.; Ayala, D.E.; Domínguez, M.J.; Covelo, M.; Fernández, J.R.; Mojón, A.; López, J.E. Administration Time–Dependent Effects of Valsartan on Ambulatory Blood Pressure in Hypertensive Subjects. Hypertension 2003, 42, 283–290. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojon, A.; Fernández, J.R. Influence of Time of Day of Blood Pressure–Lowering Treatment on Cardiovascular Risk in Hypertensive Patients with Type 2 Diabetes. Diabetes care 2011, 34, 1270–1276. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Mojon, A.; Fernandez, J.R. Bedtime Dosing of Antihypertensive Medications Reduces Cardiovascular Risk in CKD. Journal of the American Society of Nephrology 2011, 22, 2313–2321. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Crespo, J.J.; Domínguez-Sardiña, M.; Otero, A.; Moya, A.; Ríos, M.T.; Sineiro, E.; Castiñeira, M.C.; Callejas, P.A.; Pousa, L. Bedtime Hypertension Treatment Improves Cardiovascular Risk Reduction: The Hygia Chronotherapy Trial. European heart journal 2020, 41, 4565–4576. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Ayala, D.E.; Mojón, A.; Fernández, J.R. Influence of Circadian Time of Hypertension Treatment on Cardiovascular Risk: Results of the MAPEC Study. Chronobiology International 2010, 27, 1629–1651. [Google Scholar] [CrossRef]
- Wasserstein, R.L.; Lazar, N.A. The ASA Statement on P-Values: Context, Process, and Purpose. The American Statistician 2016, 70, 129–133. [Google Scholar] [CrossRef]
| First Author (Year) | Study Question | Study Type | Sample Size (% female) |
Age (year) |
Race | Cognitive Status at Recruitment | Cognitive Assessmenta | Blood Pressure Status at Recruitment |
| Cani I (2022) [7] |
Describe cognitive profile in patients with idiopathic autonomic failure | Cross-sectional | 23 (30%) |
Not specified | Not specified | Not in criteria | CIb was defined as an abnormal score on at least one test of the NPS without specifying cognitive domains | Not in criteria |
| Chen HF (2013) [13] | Examine circadian rhythm of arterial BPb in ADb patients without hypertension | Cross-sectional | 318 (46%) |
76c | Not specified | ADb patients and healthy controls | NINCDS-ADRDAb criteria | Without hypertensiond |
| Cicconetti P (2003) [14] | Investigate relationship between non-dipping BPb pattern and cognitive function in early hypertension | Cross-sectional | 40 (65%) |
62.9c | Not specified | No neurological diseases | MMSEb and ERPsb (N2, P300 latencies) | Newly diagnosed grade 1 and 2 hypertensiond |
| Cicconetti P (2004) [15] | Investigate relationship between circadian BPb pattern and cognitive function in elderly with recently diagnosed hypertension | Cross-sectional | 30 (90.0%) |
68.3c | Not specified | No dementia | MMSEb and ERPsb (N2, P300 latencies) | Recently diagnosed grade 1 or 2 hypertensiond |
| Daniela M (2023) [8] | Evaluate BP using 24h ABPMb in ADb and VaDb patients compared to healthy controls | Cross-sectional | 90 (51.1%) |
74.7 | Not specified | 30 ADa, 30 VaDa, 30 healthy controls | ADb: NINCDS-ADRDAb criteria; VaD: NINDS-AIRENb criteria, Hachinski score, CTb/MRIb | Not in criteria |
| Ghazi L (2020) [9] | Determine association between ABPMb, cognitive function, physical function, and frailty in CKDb patients | Longitudinal (Cognitive follow-up after 4 years) |
1,502 (44%) | 63±10 | 45% non-Hispanic white, 39% non-Hispanic black, 12% Hispanic | Not in criteria | 3MSb | Not in criteria |
| Gregory MA (2016) [16] | Determine if differences in cognitive and gait performance exist between older adults with normal vs. reduced BPb dipping status | Cross-sectional | 115 (63%) | 71.7±6.9 | 96% Caucasian | Without dementia | MoCAb, MMSEb, TMTb, DSSTb, verbal fluency tasks, and AVLTb | > 180/100 mmHg or < 100/60 mmHg excluded |
| Guo H (2010) [17] |
Investigate association of circadian BPb variation with MCIb in community-dwelling persons | Cross-sectional | 144 (66%) | 68 ± 7 | Not specified | No definitive dementia | MCISb | Without antihypertensive |
| Kececi Savan D (2016) [18] |
Determine relationship between ABPMb and cognitive functions in elderly hypertensive patients | Cross-sectional | 91 (77%) | 71.9c | Not specified | Without antidemential medication | sMMTb<24=MCI/early dementia) | Hypertensived |
| Kim JE (2009) [19] |
Examine relationships between ABPMb patterns, subcortical ischemic lesions, and cognitive impairment | Cross-sectional | 109 (42.2%) | 69.9±4.12 | Not specified | SvMCIb, SVaDb, or healthy controls | DSMb-IV, neuropsychological tests, CDRb, I-ADLb, Hachinski score, MRIb evidence of subcortical lesions | Some with hypertensiond |
| Komori T (2016) [20] | Examine if abnormal circadian BPb rhythm is associated with MCIb in heart failure patients | Cross-sectional | 444 (38.5%) | 68±13 | Not specified | Excluded those with documented dementia | MMSEb<26=MCIb | Not in criteria |
| Li XF (2017) [21] |
Analyze correlation between cognitive impairment and ABPMb in patients with cerebral small vessel disease | Cross-sectional | 108 (47.2%) | 67.7c | Not specified | Healthy and cognitive impairment | MoCAb<23=CIb | Refractory hypertensions were excluded |
| Mahmoud KS (2014) [22] | To test the correlation of ABPMb to cognitive function in elderly hypertensive patients | Cross-sectional | 77 (46.8%) | 69 | Not specified | No neurological disorders | MMSEb, MRIb | With history of hypertension and control group |
| Ohya Y (2001) [23] |
Study the relationship among activity of daily living, cognitive function, and ABPMb in the elderly | Cross-sectional | 99 (78%) | 79.8±10.1 | Not specified | ADb and neuronal degenerative disease were excluded | MMSEb | Without antihypertensive |
| Okuno J (2003) [24] | Investigate association between fall of nocturnal BPb and cognitive impairment in elderly subjects | Cross-sectional | 204 (69.1%) | 75.2±7.2 | Not specified | People with severely impaired cognition were excluded | MMSEb≤23=CIb | Not in criteria |
| Paganini-Hill A (2019) [25] | Analyze relationship between BPb variables and cognition in 90+ year-olds | Cross-sectional | 121 (63%) | 93 | All Caucasian except one Asian | Not in criteria | VFTb (Animal, Letter F), BNTb, CVLTb, TMTb, Clock Drawing, CERADb Construction, Digit Span, MMSEb, 3MSb, CDRb, MRIb | Not in criteria |
| Shim YS (2022) [10] | Investigate ABPMb profiles and MRIb findings of cerebral small-vessel disease in older adults with cognitive complaints | Cross-sectional | 174 (68.4%) | 75.36±7.13 | Not specified | SCDb, MCIb, or ADb | MMSEb, CDRb, CDR-SBb, SNSBb, MRIb | Not in criteria |
| Sierra C (2015) [26] | Investigate relationship between circadian BPb pattern and cognitive function in middle-aged essential hypertensive patients | Cross-sectional | 56 (34%) |
54.3±3.1 | Not specified | Not in criteria | attention/working memory (Digit Span), logical/visual memory (WMSb) | Never-treated essential hypertensived |
| Suzuki R (2011) [27] | Investigate relationships between sleep disturbance, ADLb, and ABPMb patterns in institutionalized dementia patients | Cross-sectional | 107 (70.1%) | 76.3±9.2 | Not specified | Institutionalized dementia patients | DSM-III R, Hachinski Score, MMSE | Not in criteria |
| Tadic M (2019) [28] | Assess relationships between absolute and individual residual BPb variability and cognitive function in general population | Cross-sectional | 471 (47%) | 63±5.7 | Not specified | Not in criteria | MMSEb | Not in criteria |
| Tan X (2021) [11] |
Examine if nocturnal dipping pattern of systolic BPb was associated with risk of dementia (ADb, VaDb, any dementia) in older Swedish men | Longitudinal (Cognitive and ABPMa follow-up after 4 years) |
997 (0%) |
71 at first exam, 77.6 at second | Swedish men | No dementia at baseline | DSMb-IV (dementia); NINCDS-ADRDAb (ADb); ADDTCb (VaDb) | Not in criteria |
| Tanaka R (2018) [29] | To assess the relationship between abnormal nocturnal blood pressure profiles and dementia in Parkinson's disease | Cross-sectional | 137 (54.0%) | 64.1±10.5 | Not specified | Not in criteria | Movement Disorder Society Task Force criteria for PDDb, MMSEb, HDS-Rb | Not in criteria |
| White WB (2018) [30] | Evaluate relationships of clinic, ambulatory, and home BP measurements with WMHb burden and mobility/cognitive outcomes in older persons with hypertension | Cross-sectional | 199 (54.3%) | 81.2±4.1 | 87.4% Caucasian, 6.5% Black, 4.5% Hispanic/Latino, 1.5% Asian | No dementia | MMSEb, TMT A&B, Stroop Color and Word Test, Simple Reaction Time, MRIb | 24h mean systolic hypertension |
| Xing Y (2021) [12] |
To investigate the relationship between ABPMb and cognitive impairment in elderly patients and explore the effect on mortality | Cross-sectional | 305 (31%) |
80.6±7.6 | Not specified | Not in criteria | MMSEb<27=MCIb | Not in criteria |
| Yamamoto Y (2002) [34] | How ABPMb values and MRIb findings can predict subsequent development of dementia and vascular events in lacunar infarct patients | Longitudinal (Cognitive follow-up after ~8.9 years) |
177 (37.9%) | 69.1±8.6 | Not specified | Without dementia at baseline | CDRb, HDSRb, MRIb | Without administration of antihypertensive for >4 weeks |
| Yamamoto Y (2005) [31] | Investigate relationships between ABPMb readings, lacunar infarcts/white matter lesions, and cognitive impairment/VaDb | Cross-sectional | 200 (39%) |
68.8±9.3 | Not specified | Without strategic dementia | CDRb and HDSRb | Without administration of antihypertensive for 2-4 weeks |
| Yamamoto Y (2011) [32] | Elucidate associations between ABPMb, cerebral small vessel disease, CKDb and cognitive impairment in patients with lacunar infarcts | Cross-sectional | 224 (40.2%) | 69.8c | Not specified | Not in criteria | MMSEb ≤24=CIb, MMSEb of 25-27=MCIb, MRIb | Without administration of antihypertensive for >2 weeks |
| Yaneva-Sirakova T (2016) [33] | Investigate correlation between dipping status and mild cognitive impairment in hypertensive patients | Cross-sectional | 439 (63.6%) | 64.65±10.15 | Not specified | Not in criteria | MoCAb, MMSEb | Hypertensived |
| First Author (Year) | ABPM Duration (sampling Intervals) | Dipping Definition | ABPM Quality Control | Sleep/Wake Classification | Effect Size Calculation | Report of Dropout or Completion % | Control for Confounding variables |
Control for Timing of BPa Medication |
| Cani I (2022) [7] |
24h (Not specified) |
SBPa and DBPa | No | Fixed time | No | No | No | No |
| Chen HF (2013) [13] | 24h (30-min) |
SBPa or DBPa | No | Fixed time | No | No | No | N/A (no medication) |
| Cicconetti P (2003) [14] |
24h (Day:15-min, Night: 20-min) |
SBPa and DBPa | SBPa > 260 and <70, DBPa > 150 and <20 mmHg values excluded | Fixed time | No | No | No | N/A (no medication) |
| Cicconetti P (2004) [15] | 24h (Day: 15-min, Night: 20-min) |
SBPa and DBPa | No | Fixed time | No | No | No | N/A (no medication) |
| Daniela M (2023) [8] | 24h (Day: 15-min, Night: 30-min) |
SBPa | No | Fixed time | No | No | sex | No |
| Ghazi L (2020) [9] | 24h (Not specified) |
SBPa | Excluded if <14 daytime readings or <6 readings nighttime readings | Fixed time | Yes (HRa) | No | clinic site, year, age, race, sex, education, marital status, income, smoking, alcohol use, illicit drug use, BMIa, use of antihypertensive medications, history of hypertension, diabetes mellitus, hyperlipidemia, anemia, C-reactive protein, urine protein-creatinine ratio, depression, stroke, and GFRa | No |
| Gregory MA (2016) [16] | 24h (Day: 30-min, Night: 60-min) |
SBPa | No | Fixed time | No | 93.5% completion | No | No |
| Guo H (2010) [17] |
24h (Day: 15-min, Night: 30-min) |
SBPa | Excluded BPa readings if beyond specified range | Fixed time | Yes (ORa) | No | age, sex, clinic SBPa, hypnotic treatment, type II diabetes, brachial-ankle pulse wave velocity, Apolipoprotein E ε4 allele | N/A (no medication) |
| Kececi Savan D (2016) [18] |
24h (Not specified) |
MAPa | No | Fixed time | No | No | Stratified by sex | No |
| Kim JE (2009) [19] |
24h (60-min) |
Not specified | No | Fixed time | Yes (ORa) | No | No | No |
| Komori T (2016) [20] | 24h (30-min) |
SBPa | <20 valid awake readings and <6 valid sleep readings excluded after | Sleep diary | Yes (ORa) | 87% completion | Age, sex | No |
| Li XF (2017) [21] |
24h (Day: 30-min, Night: 60-min) |
Not specified | omitted all presumed erroneous readings | Fixed time | Yes (Correlation) | No | No | No |
| Mahmoud KS (2014) [22] |
24h (Day: 30-min, Night: 60-min) |
Not specified | No | Fixed time | Yes (Correlation) | No | No | No |
| Ohya Y (2001) [23] |
24h (30-min) |
SBPa | Omitted all presumed erroneous readings | Fixed time | Yes (Correlation) | No | age, Barthel Index, hematocrit, previous stroke | N/A (no medication) |
| Okuno J (2003) [24] | 24h (Day: 30-min, Night: 60-min) |
SBPa and DBPa, separately | No | Fixed time | Yes (ORa) | <1% not completed | age, sex, education level, diabetes mellitus, heart disease, hypercholesterolemia, current alcohol intake, Current smoking, benzodiazepine use, BMI≥25. Antihypertensive drug use |
No |
| Paganini-Hill A (2019) [25] |
24h (60-min) |
SBPa and DBPa, separately | Omitted all presumed erroneous-readings; <6 valid daytime or nighttime readings excluded |
Fixed time | No | 81.2% completion | No | No |
| Shim YS (2022) [10] | 24h (Day: 30-min, Night: 60-min) |
Not specified | No | Fixed time | Yes (Regression) | No | No | No |
| Sierra C (2015) [26] | 24h (Not specified) |
SBPa | No | Not specified | No | No | No | N/A (no medication) |
| Suzuki R (2011) [27] | 24h (60-min) |
Not specified | No | Fixed time | No | No | No | No |
| Tadic M (2019) [28] | 24h (20-min) |
SBPa and DBPa, separately | Edited for artifact (no detail) | Not specified | No | No | No | No |
| Tan X (2021) [11] |
24h (Day: 20 or 30-min, Night: 20 or 60-min) |
SBPa | Omitted all presumed erroneous readings | Fixed time | Yes (HRa) | No | BPa dipping status; age; BMIa; education; daytime SBPa; treatment of hypertension; diabetes; hyperlipidemia; physical activity level; smoking habit; living status | No |
| Tanaka R (2018) [29] | 24h (Day: 30-min, Night: 60-min) |
Not specified | No | Fixed time | Yes (ORa) | 97.9% completion | age, sex, Hoehn and Yahr Scale, diabetes, history of stroke, cerebrovascular lesions, and orthostatic hypotension | No |
| White WB (2018) [30] | 24h (Day: 15-min, Night: 30-min) |
Not specified | >80% of programmed values; < 2h of missing data required | Fixed time | Regression coefficients | No | age, sex, LDL cholesterol, BMIa | No |
| Xing Y (2021) [12] |
24h (Day: 30-min, Night: 60-min) |
SBPa | No | Fixed time | Yes (Correlation) | 71.7% completion | No | No |
| Yamamoto Y (2002) [34] |
24h (30-min) |
SBPa,b | No | Fixed time | Yes (HRa) | No | age and sex | N/A (4-week washout) |
| Yamamoto Y (2005) [31] |
24h (30-min) |
SBPa | No | Fixed time | Yes (ORa) | No | age, sex, PVHa, and nighttime SBPa | N/A (2-4 weeks washout) |
| Yamamoto Y (2011) [32] |
24h (30-min) |
Not specified | No | Fixed time | Yes (ORa) | No | age, sex, 24h SBPa, estimated GFRa, white matter lesion grade, lacunar infarct grade | N/A (>2 weeks washout) |
| Yaneva-Sirakova T (2016) [33] | Not specified (Not specified) |
Not specified | No | Not specified | No | No | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
