Submitted:
21 October 2024
Posted:
22 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Lipid Nanoparticles
2.1. Relevant Studies with Bioactive Marine Compounds in SLN and NLC
2.2. Omega 3
2.3. β–Carotene
2.4. Astaxanthin
2.5. Lycopene, Fucoxanthin and Zeaxanthin
2.6. Vitamin A
2.7. Vitamin D, E and K
2.8. Chitosan
2.9. Alginate
2.10. Gelatin
3. Regulatory and Safety Concerns of Lipid Nanoparticles for Healthcare Applications
3.1. Cosmetics
3.2. Food Supplements
4. Conclusions
Acknowledgments
References
- Favas, R.; Morone, J.; Martins, R.; Vasconcelos, V.; Lopes, G., Cyanobacteria and microalgae bioactive compounds in skin-ageing: potential to restore extracellular matrix filling and overcome hyperpigmentation. Journal of Enzyme Inhibition and Medicinal Chemistry 2021, 36 (1), 1829–1838.
- Augusto, A.; Lemos, M. F. L.; Silva, S. F. J., Exploring Marine-Based Food Production: The Challenges for a Sustainable and Fast Biotechnology-Based Development. Applied Sciences 2024, 14 (18).
- Pateiro, M.; Domínguez, R.; Munekata, P. E. S.; Barba, F. J.; Lorenzo, J. M., Lipids and fatty acids. Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds 2019, 107–137.
- Burdge, G. C.; Calder, P. C., Introduction to Fatty Acids and Lipids. Intravenous Lipid Emulsions 2014, 1–16.
- Roy, V. C.; Islam, M. R.; Sadia, S.; Yeasmin, M.; Park, J.-S.; Lee, H.-J.; Chun, B.-S. Trash to Treasure: An Up-to-Date Understanding of the Valorization of Seafood By-Products, Targeting the Major Bioactive Compounds Marine Drugs [Online], 2023.
- Misawa, N., Comprehensive Natural Products II. In Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Ed. Elsevier BV: Elsevier, 2010; Vol. 1, pp 733-753.
- Chuyen, H. V.; Eun, J.-B., Marine carotenoids: Bioactivities and potential benefits to human health. Critical Reviews in Food Science and Nutrition 2015, 57 (12), 2600–2610.
- Carpenter, K.; Baigent, M. J. Vitamin. https://www.britannica.com/science/vitamin (accessed January, 23).
- Rucker, R. B.; Morris, J. G., The Vitamins. Clinical Biochemistry of Domestic Animals 1997, 703–739.
- Thawabteh, A.; Swaileh, Z.; Ammar, M.; Jaghama, W.; Yousef, M.; Karaman, R.; Bufo, S.; Scrano, L., Antifungal and Antibacterial Activities of Isolated Marine Compounds. Toxins 2023, 15, 1-22.
- Venkatesan, J.; Anil, S.; Kim, S.-K.; Shim, M., Marine Fish Proteins and Peptides for Cosmeceuticals: A Review. Marine Drugs 2017, 15, 143.
- Hu, D.; Jin, Y.; Hou, X.; Zhu, Y.; Chen, D.; Tai, J.; Chen, Q.; Shi, C.; Ye, J.; Wu, M.; Zhang, H.; Lu, Y. Application of Marine Natural Products against Alzheimer’s Disease: Past, Present and Future Marine Drugs [Online], 2023.
- Fonseca, S.; Amaral, M. N.; Reis, C. P.; Custódio, L. Marine Natural Products as Innovative Cosmetic Ingredients Marine Drugs [Online], 2023.
- Almeida, H.; Amaral, M. H.; Lobão, P., Silva, A. C.; Loboa, J. M. S., Applications of Polymeric and Lipid Nanoparticles in Ophthalmic Pharmaceutical Formulations: Present and Future Considerations. Journal of Pharmacy & Pharmaceutical Sciences 2014, 17 (3), 278–293.
- Seo, Y.; Lim, H.; Park, H.; Yu, J.; An, J.; Yoo, H. Y.; Lee, T., Recent Progress of Lipid Nanoparticles-Based Lipophilic Drug Delivery: Focus on Surface Modifications. Pharmaceutics 2023, 15 (3).
- González-Peña, M. A.; Ortega-Regules, A. E.; Anaya de Parrodi, C.; Lozada-Ramírez, J. D., Chemistry, Occurrence, Properties, Applications, and Encapsulation of Carotenoids-A Review. . Plants (Basel, Switzerland) 2023, 12 (2).
- Garcês, A.; Amaral, M. H.; Sousa Lobo, J. M.; Silva, A. C., Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. European Journal of Pharmaceutical Sciences 2018, 112, 159–167.
- Preeti; Sambhakar, S.; Saharan, R.; Narwal, S.; Malik, R.; Gahlot, V.; Mohan, S., Exploring LIPIDs for their potential to improves bioavailability of lipophilic drugs candidates: A review. Saudi Pharmaceutical Journal 2023, 31 (12).
- Tenchov, R.; Bird, R.; Curtze, A. E.; Zhou, Q., Lipid Nanoparticles horizontal line From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15 (11), 16982-17015.
- Mohammed, A. S. A.; Naveed, M.; Jost, N., Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). Journal of Polymers and the Environment 2021, 29 (8), 2359-2371.
- Ju, H.; Yu, C.; Liu, W.; Li, H.-H.; Fu, Z.; Wu, Y.-C.; Gong, P.-X.; Li, H.-J., Polysaccharides from marine resources exhibit great potential in the treatment of tumor: A review. Carbohydrate Polymer Technologies and Applications 2023, 5, 100308.
- Tan, K.; Lu, S.-Y.; Tan, K.; Ransangan, J.; Cai, X.; Cheong, K.-L., Bioactivity of polysaccharides derived from bivalves. International Journal of Biological Macromolecules 2023, 250, 126096.
- Liu, Q.; Hu, L.; Wang, C.; Cheng, M.; Liu, M.; Wang, L.; Pan, P.; Chen, J., Renewable marine polysaccharides for microenvironment-responsive wound healing. International Journal of Biological Macromolecules 2023, 225, 526-543.
- Wang, Z.; Xu, Z.; Yang, X.; Li, M.; Yip, R. C. S.; Li, Y.; Chen, H., Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. Biomaterials Advances 2023, 154, 213580.
- Sahraee, S.; Ghanbarzadeh, B.; Maryam mohammadi, P., A.; hoseini, M., Development of heat-stable gelatin-coated nanostructured lipid carriers (NLC): Colloidal and stability properties. LWT 2022, 160.
- Muller, R. H.; Radtke, M.; Wissing, S. A., Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002, 54 Suppl 1, S131-55.
- Muller, R. H.; Shegokar, R.; Keck, C. M., 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr Drug Discov Technol 2011, 8 (3), 207-27.
- Silva, A. C.; González-Mira, E.; García, M. L.; Egea, M. A.; Fonseca, J.; Silva, R.; Santos, D.; Souto, E. B.; Ferreira, D., Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids and Surfaces B: Biointerfaces 2011, 86 (1), 158–165.
- Pardeike, J.; Hommoss, A.; H. Müller, R., Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics 2009, 366 (1-2), 170-184.
- Lima, S. G. M.; Freire, M. C. L. C.; Oliveira, V. d. S.; Solisio, C.; Converti, A.; de Lima, Á. A. N., Astaxanthin Delivery Systems for Skin Application: A Review. Marine Drugs 2021, 19.
- Serini, S.; Cassano, R.; Corsetto, P. A.; Rizzo, A. M.; Calviello, G.; Trombino, S., Omega-3 PUFA Loaded in Resveratrol-Based Solid Lipid Nanoparticles: Physicochemical Properties and Antineoplastic Activities in Human Colorectal Cancer Cells In Vitro. International journal of molecular sciences 2018, 19 (2).
- Li, Z.; Yin, Z.; Li, B.; He, J.; Liu, Y.; Zhang, N.; Li, X.; Cai, Q.; Meng, W., Docosahexaenoic Acid-Loaded Nanostructured Lipid Carriers for the Treatment of Peri-Implantitis in Rats. International Journal of Molecular Sciences 2023, 24 (3).
- Maretti, E.; Leo, E.; Rustichelli, C.; Truzzi, E.; Siligardi, C.; Iannuccelli, V., In vivo β-carotene skin permeation modulated by Nanostructured Lipid Carriers. International Journal of Pharmaceutics 2021, 597.
- Rohmah, M.; Rahmadi, A.; Raharjo, S., Bioaccessibility and antioxidant activity of β-carotene loaded nanostructured lipid carrier (NLC) from binary mixtures of palm stearin and palm olein. Heliyon 2022, 8 (2).
- Geng, Q.; Zhao, Y.; Wang, L.; Xu, L.; Chen, X.; Han, J., Development and Evaluation of Astaxanthin as Nanostructure Lipid Carriers in Topical Delivery. . AAPS PharmSciTech 2020, 21 (8).
- Vu, N. B. D.; Pham, N. D.; Tran, T. N. M.; Pham, X. H.; Ngo, D. N.; Nguyen, M. H., Possibility of nanostructured lipid carriers encapsulating astaxanthin from Haematococcus pluvialis to alleviate skin injury in radiotherapy. I nternational Journal of Radiation Biology 2023, 1-11.
- Mao , X.; Tian , Y.; Sun , R.; Wang , Q.; Huang, J.; Xia, Q., Stability study and in vitro evaluation of astaxanthin nanostructured lipid carriers in food industry. Integrated Ferroelectrics 2019, 200 (1), 208-216.
- Shehata , M.; Ismail, A.; Kamel, M., Nose to Brain Delivery of Astaxanthin–Loaded Nanostructured Lipid Carriers in Rat Model of Alzheimer’s Disease: Preparation, in vitro and in vivo Evaluation. International Journal of Nanomedicine 2023, 18, 1631-1658.
- Torres, J.; Pereira, J. M.; Marques-Oliveira, R.; Costa, I.; Gil-Martins, E.; Silva, R.; Remião, F.; Peixoto, A. F.; Sousa Lobo, J. M.; Silva, A. C., An In Vitro Evaluation of the Potential Neuroprotective Effects of Intranasal Lipid Nanoparticles Containing Astaxanthin Obtained from Different Sources: Comparative Studies. Pharmaceutics 2023, 15 (4).
- Okonogi, S.; Riangjanapatee, P., Physicochemical characterization of lycopene-loaded nanostructured lipid carrier formulations for topical administration. International Journal of Pharmaceutics 2015, 478 (2), 726–735.
- Malgarim Cordenonsi, L.; Faccendini, A.; Catanzaro, M.; Bonferoni, M. C.; Rossi, S.; Malavasi, L.; Raffin, R.; Schapoval, E.; Lanni, C.; Sandri, G.; Ferrari, F., The role of chitosan as coating material for nanostructured lipid carriers for skin delivery of fucoxanthin. International Journal of Pharmaceutics 2019, 567.
- Lee, Y.-J.; Nam, G.-W., Sunscreen Boosting Effect by Solid Lipid Nanoparticles-Loaded Fucoxanthin Formulation. Cosmetics 2020, 7 (1).
- Jenning, V.; Gysler, A.; Schäfer-Korting, M.; Gohla, S. H., Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 2000, 49 (3), 211–218.
- Pople, P. V.; Singh, K. K., Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech 2006, 7 (91), E63-E69.
- Resende, D.; Costa Lima, S. A.; Reis, S., Nanoencapsulation approaches for oral delivery of vitamin A. Colloids and Surfaces B: Biointerfaces 2020, 193.
- Sabzichi , M.; Mohammadian , J.; Mohammadi , M.; Jahanfar , F.; Movassagh Pour , A.; Hamishehkar, H.; Ostad-Rahimi, A., Vitamin D-Loaded Nanostructured Lipid Carrier (NLC): A New Strategy for Enhancing Efficacy of Doxorubicin in Breast Cancer Treatment. Nutrition and Cancer 2017, 69 (6), 840-848.
- Zai, K.; Hirota, M.; Yamada, T.; Ishihara, N.; Mori, T.; Kishimura, A.; Suzuki, K.; Hase, K.; Katayama, Y., Therapeutic effect of vitamin D3-containing nanostructured lipid carriers on inflammatory bowel disease. Journal of Controlled Release 2018, 286, 94–102.
- Eiras, F.; Amaral, M. H.; Silva, R.; Martins, E.; Lobo, J. M. S.; Silva, A. C., Characterization and biocompatibility evaluation of cutaneous formulations containing lipid nanoparticles. Int J Pharm 2017, 519 (1-2), 373-380.
- Vaz, S.; Silva, R.; Amaral, M. H.; Martins, E.; Sousa Lobo, J. M.; Silva, A. C., Evaluation of the biocompatibility and skin hydration potential of vitamin E-loaded lipid nanosystems formulations: In vitro and human in vivo studies. Colloids and Surfaces B: Biointerfaces 2019, 179, 242–249.
- Ijaz, M.; Akhtar, N., Fatty acids based α-Tocopherol loaded nanostructured lipid carrier gel: In vitro and in vivo evaluation for moisturizing and anti-aging effects. Journal of Cosmetic Dermatology 2020, 19 (11), 3067-3076.
- Gambaro, R. C.; Berti, I. R.; Cacicedo, M. L.; Gehring, S.; Alvarez, V. A.; Castro, G. R.; Seoane, A.; Padula, G.; Islan, G. A., Colloidal delivery of vitamin E into solid lipid nanoparticles as a potential complement for the adverse effects of anemia treatment. Chemistry and Physics of Lipids 2022, 249.
- Liu, C.-H.; Wu, C.-T.; Fang, J.-Y., Characterization and formulation optimization of solid lipid nanoparticles in vitamin K1 delivery. Drug Development and Industrial Pharmacy 2010, 36 (7), 751-761.
- Almeida, E. D. P.; Santos Silva, L. A.; de Araujo, G. R. S.; Montalvao, M. M.; Matos, S. S.; da Cunha Gonsalves, J. K. M.; de Souza Nunes, R.; de Meneses, C. T.; Oliveira Araujo, R. G.; Sarmento, V. H. V.; De Lucca, W. J.; Correa, C. B.; Rodrigues, J. J. J.; Lira, A. A. M., Chitosan-functionalized nanostructured lipid carriers containing chloroaluminum phthalocyanine for photodynamic therapy of skin cancer. Eur J Pharm Biopharm 2022, 179, 221-231.
- Costa-Fernandez, S.; Matos, J. K. R.; Scheunemann, G. S.; Salata, G. C.; Chorilli, M.; Watanabe, I. S.; de Araujo, G. L. B.; Santos, M. F.; Ishida, K.; Lopes, L. B., Nanostructured lipid carriers containing chitosan or sodium alginate for co-encapsulation of antioxidants and an antimicrobial agent for potential application in wound healing. Int J Biol Macromol 2021, 183, 668-680.
- Malekmohammadi, M.; Ghanbarzadeh, B.; Hanifian, S.; Samadi Kafil, H.; Gharekhani, M.; Falcone, P. M., The Gelatin-Coated Nanostructured Lipid Carrier (NLC) Containing Salvia officinalis Extract: Optimization by Combined D-Optimal Design and Its Application to Improve the Quality Parameters of Beef Burger. Foods 2023, 12 (20).
- Osanlou, R.; Emtyazjoo, M.; Banaei, A.; Hesarinejad, M. A.; Ashrafi, F., Preparation of solid lipid nanoparticles and nanostructured lipid carriers containing zeaxanthin and evaluation of physicochemical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 641.
- Oliveira, C.; Coelho, C.; Teixeira, J. A.; Ferreira-Santos, P.; Botelho, C. M., Nanocarriers as Active Ingredients Enhancers in the Cosmetic Industry—The European and North America Regulation Challenges. Molecules 2022, 27 (5).
- Commission, E., Regulation on Cosmetic Products No 1223/2009. Commission, E., Ed. 2009.
- FDA FDA’s Approach to Regulation of Nanotechnology Products. https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-fact-sheet (accessed 15 February 2024).
- Ferraris, C.; Rimicci, C.; Garelli, S.; Ugazio, E.; Battaglia, L., Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns. Pharmaceutics 2021, 13 (9).
- Commission, E. Regulation (EU) 2015/2283. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02015R2283-20210327 (accessed 15 February 2024).
- Commission, E. Regulation (EC) No 178/2002. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02002R0178-20220701 (accessed 15 February 2024).
- Maurya, V.; Shakya, A.; Aggarwal, M.; Gothandam, K.; Bohn, T.; Pareek, S., Fate of β-Carotene within Loaded Delivery Systems in Food: State of Knowledge. Antioxidants 2021, 10 (3), 426.
- Committee, E. S.; More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hernandez-Jerez, A.; Hougaard Bennekou, S.; Koutsoumanis, K.; Lambre, C.; Machera, K.; Naegeli, H.; Nielsen, S.; Schlatter, J.; Schrenk, D.; Silano Deceased, V.; Turck, D.; Younes, M.; Castenmiller, J.; Chaudhry, Q.; Cubadda, F.; Franz, R.; Gott, D.; Mast, J.; Mortensen, A.; Oomen, A. G.; Weigel, S.; Barthelemy, E.; Rincon, A.; Tarazona, J.; Schoonjans, R., Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J 2021, 19 (8), e06768.
- Gunawan, M.; Boonkanokwong, V., Current applications of solid lipid nanoparticles and nanostructured lipid carriers as vehicles in oral delivery systems for antioxidant nutraceuticals: A review. Colloids and Surfaces B: Biointerfaces 2024, 233.
- Silva, A. C.; Santos, D.; Ferreira, D.; Lopes, C. M., Lipid-based nanocarriers as an alternative for oral delivery of poorly water- soluble drugs: peroral and mucosal routes. Curr Med Chem 2012, 19 (26), 4495-510.
| Marine bioactive compound | Type of lipid nanoparticle | Type of study | Relevant results | Healthcare application | References |
|---|---|---|---|---|---|
| Docosahexaenoic and α-linolenic acid | SLN | In vitro | Docosahexaenoic acid Particle size: 100 ± 1.8 nm PDI: 0.220 ± 0.020 EE: 100% α-linolenic acid Particle size: 842.2 ± 1.3 nm PDI: 0.126 ± 0.017 EE: 77% |
Food supplement | [31] |
| Docosahexaenoic acid | NLC | In vitro and in vivo |
Particle size: 163.7 ± 2.0 nm ZP: 40.1 ± 1.3 mV PDI: 0.118 ± 0.01 EE: 78.13 ± 1.85% DL: 28.09 ± 0.48% DPPH: 0.57 ± 0.03 |
Food supplement | [32] |
| β–carotene | NLC | In vitro and in vivo |
Particle size: 222.8 ± 87.3 nm ZP: -43.46 ± 1.74 mV PDI: 0.666 EE: 23.96 ± 3.13% 34% in vivo penetration of β–carotene in deeper skin layers in humans |
Cosmetic | [33] |
| In vitro |
Particle size: 166.3 ± 0.19 nm ZP: -26.9 ± 0.17 mV PDI: 0.35 ± 0.1 EE: 91.2 ± 0.15% ABTS: 91.47 ± 1.9% DPPH: 24.72 ± 0.38% IC50: 7.0 μg/mL |
Food supplement | [34] | ||
| Astaxanthin | NLC | In vitro |
Particle size: 67.4 ± 2.1nm PDI: 0.26 EE: 94.3 ± 0.5% CR: 83.0 ± 3.4% at 48h CP: 174.10 ± 4.38 μg/cm[2] Retention: 18.60 ± 1.62 μg/cm[2] |
Cosmetic | [35] |
| In vitro and in vivo |
In vitro Particle size: 114.4 nm ZP: -34.1 mV EE: 85.67% ROS reduction: 81.6% DNA damage reduction: 41.6% In vivo Protection of 6/6 mice from skin damage |
Cosmetic | [36] | ||
| In vitro |
Particle size: 145.3 nm ZP: -30.8 ± 0.3 mV PDI: 0.468 ± 0.036 EE: 94.8 ± 1.0% Stability: 28 days at 25ºC |
Food supplement | [37] | ||
| In vitro and in vivo |
Particle size: 142.8 ± 5.02 nm ZP: -32.2 ± 7.88 mV PDI: 0.247 ± 0.016 EE: 94.1 ± 2.26% DL: 23.5 ± 1.48% Stability: 6 months at 4-8 ± 2ºC |
[38] | |||
| SLN and NLC | In vitro | SLN Particle size: 106.967 ± 2.515 nm ZP: −24.133 ± 0.379 mV PDI: 0.220 ± 0.017 EE: 99.99 ± 0.00% NLC Particle size: 117.300 ± 2.163 nm ZP: 23.267 ± 0.451 mV PDI: 0.222 ± 0.016 EE: 99.61 ± 0.04% |
Food supplement | [39] | |
| Lycopene | NLC | In vitro |
Particle size: 166 ± 4 nm ZP: -74.6 ± 2.0 mV PDI: 0.15 ± 0.05 EE: 100 ± 0% FRS: 36.6 ± 0.4mM/mg NLC AA: 14.1 ± 0.6mg/mL |
Cosmetic | [40] |
| Fucoxanthin | NLC | In vitro |
Particle size: 427.3 ± 5.7 nm ZP: 21.21 ± 1.23 mV PDI: 0.309 ± 0.11 EE: 90.12 ± 2.51% DL: 1.62 ± 0.12% |
Cosmetic | [41] |
| SLN |
Particle size: 168 nm PDI: 0.162 |
[42] | |||
| Vitamin A | SLN | In vitro and ex vivo |
Particle size: 224 nm PDI: 0.205 Vitamin A concentration in the in the stratum corneum: 3400 ng |
Cosmetic | [43] |
| In vitro and in vivo |
Particle size: 350 nm DR: 54.38% up to 24h Unabsorbed vitamin A: 67% PII: 0.00 |
[44] | |||
| SLN and NLC |
In vitro |
SLN Particle size: 223 ± 10 nm ZP: -25 ± 1 mV PDI: 0.171 ± 0.008 EE: 97 ± 3% DL: 7% NLC Particle size: 228 ± 7 nm ZP: -22 ± 1 mV PDI: 0.146 ± 0.007 EE: 90 ± 1% DL: 7% |
Food supplement |
[45] |
|
| Vitamin D | NLC | In vitro |
Particle size: 87 ± 5 nm ZP: -12.2 ± 4.86 mV PDI: 0.24 |
Food supplement | [46] |
| In vitro and in vivo |
Particle size: 110 ± 4 nm ZP: -17.10 ± 0.30 mV PDI: 0.23 ± 0.01 |
[47] | |||
| Vitamin E | NLC | In vitro | Particle size: 105 to 328 nm | Cosmetic | [48] |
| In vitro and in vivo |
Particle size: 386 ± 0.00 nm OF: 80% |
[49] | |||
|
Particle size: 82 nm ZP: -28.6 mV PDI: 0.261 EE: 95.83 ± 0.02% |
[50] | ||||
| SLN | In vitro |
Particle size: 228.2 ± 3.5 nm ZP: -8.92 ± 2.2 mV PDI: 0.34 ± 0.02 EE: 99.9 ± 0.1% |
Food supplement | [51] | |
| Vitamin K | SLN | In vitro |
Particle size: 132 nm ZP: -26.83 ± 2.83 mV PDI: 0.17 ± 0.02 EE: 98% |
Food supplement | [52] |
| Chitosan coating | NLC | In vitro and ex vivo |
Particle size: 231.5 ± 5.8 nm PDI: 0.18 ± 0.01 ZP: 19.9 ± 0.3 mV EE: 96% |
Cosmetic | [53] |
| Alginate coating | NLC | In vitro |
Particle size: 321.2 ± 18.3 nm PDI: 0.23 ± 0.02 ZP: -16.0 ± 3.0 mV EE for quercetin: 85% EE for alpha-tocopherol: 92% |
Cosmetic | [54] |
| Gelatin coating | NLC | In vitro |
Particle size: 100.4 nm PDI: 0.36 ZP: -18.4 mV EE: 80% |
Food supplement | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
