Submitted:
17 October 2024
Posted:
18 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Mouse Endometrial Cancer Xenograft Models
3. Heterotopic Xenografts
3.1. Subcutaneous Models
3.2. Subrenal Capsule Models
3.3. Other Models
4. Orthotopic Xenografts
4.1. Cell-Line Derived Orthotopic Xenograft Models
4.2. Patient Derived Orthotopic Xenograft Models
4.3. Patient-Derived Organoids for Establishing Orthotopic Xenografts
5. Discussion
5.1. Comparison of the Different Xenograft Locations
5.2. Cell-Lines Compared to Patient-Derived Material and Factors Influencing Model Establishment
5.3. Translational Potential of Xenograft Models, Limitations, and Recommendations
5.4. Conclusions
Acknowledgments
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. [CrossRef]
- Crosbie, E.J.; Kitson, S.J.; McAlpine, J.N.; Mukhopadhyay, A.; Powell, M.E.; Singh, N. Endometrial cancer. Lancet (London, England) 2022, 399, 1412–1428. [Google Scholar] [CrossRef]
- Aune, D.; Navarro Rosenblatt, D.A.; Chan, D.S.; Vingeliene, S.; Abar, L.; Vieira, A.R.; Greenwood, D.C.; Bandera, E.V.; Norat, T. Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Ann Oncol 2015, 26, 1635–1648. [Google Scholar] [CrossRef]
- Timoteo-Liaina, I.; Khozaim, K.; Chen, Y.A.; Buenconsejo-Lum, L.; Arslan, A.A.; Matthews, R.; Del Priore, G. The rising relative and absolute incidence of uterine cancer in specific populations. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics 2021, 153, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Chavez, T.F.; Snyder, R.; Lee, R.K.; Mosunjac, M.; Del Priore, G. Rising endometrial cancer rates and potential for screening. Int J Gynecol Cancer 2023, 33, 1487. [Google Scholar] [CrossRef]
- https://gco.iarc.fr/tomorrow/en.
- Oaknin, A.; Bosse, T.J.; Creutzberg, C.L.; Giornelli, G.; Harter, P.; Joly, F.; Lorusso, D.; Marth, C.; Makker, V.; Mirza, M.R.; et al. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022, 33, 860–877. [Google Scholar] [CrossRef]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int J Gynecol Cancer 2021, 31, 12–39. [Google Scholar] [CrossRef]
- Restaino, S.; Paglietti, C.; Arcieri, M.; Biasioli, A.; Della Martina, M.; Mariuzzi, L.; Andreetta, C.; Titone, F.; Bogani, G.; Raimondo, D.; et al. Management of Patients Diagnosed with Endometrial Cancer: Comparison of Guidelines. Cancers 2023, 15. [Google Scholar] [CrossRef] [PubMed]
- El-Ghazzi, N.; Durando, X.; Giro, A.; Herrmann, T. Targeted Treatment of Advanced Endometrial Cancer: Focus on Pembrolizumab. Onco Targets Ther 2023, 16, 359–369. [Google Scholar] [CrossRef]
- Wada, M.; Yamagami, W. Immunotherapy for endometrial cancer. Int J Clin Oncol 2024. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, W.; Cai, C.; Zhang, H.; Shen, H.; Han, Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduction and Targeted Therapy 2023, 8, 160. [Google Scholar] [CrossRef]
- Shi, J.; Li, Y.; Jia, R.; Fan, X. The fidelity of cancer cells in PDX models: Characteristics, mechanism and clinical significance. International Journal of Cancer 2020, 146, 2078–2088. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, U.; Ha, G.; Tseng, Y.Y.; Greenwald, N.F.; Oh, C.; Shih, J.; McFarland, J.M.; Wong, B.; Boehm, J.S.; Beroukhim, R.; et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nature genetics 2017, 49, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Felchle, H.; Brunner, V.; Groll, T.; Walther, C.N.; Nefzger, S.M.; Zaurito, A.E.; Silva, M.G.; Gissibl, J.; Topping, G.J.; Lansink Rotgerink, L.; et al. Novel Tumor Organoid-Based Mouse Model to Study Image Guided Radiation Therapy of Rectal Cancer After Noninvasive and Precise Endoscopic Implantation. International Journal of Radiation Oncology, Biology, Physics 2024, 118, 1094–1104. [Google Scholar] [CrossRef]
- Wilson, M.N.; Thunemann, M.; Liu, X.; Lu, Y.; Puppo, F.; Adams, J.W.; Kim, J.-H.; Ramezani, M.; Pizzo, D.P.; Djurovic, S.; et al. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nature Communications 2022, 13, 7945. [Google Scholar] [CrossRef]
- Jian, M.; Ren, L.; He, G.; Lin, Q.; Tang, W.; Chen, Y.; Chen, J.; Liu, T.; Ji, M.; Wei, Y.; et al. A novel patient-derived organoids-based xenografts model for preclinical drug response testing in patients with colorectal liver metastases. Journal of translational medicine 2020, 18, 234. [Google Scholar] [CrossRef]
- Glia-enriched cortical organoids implanted in mice capture astrocyte diversity. Nature Biotechnology 2024. [CrossRef]
- Bao, Z.; Fang, K.; Miao, Z.; Li, C.; Yang, C.; Yu, Q.; Zhang, C.; Miao, Z.; Liu, Y.; Ji, J. Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice. Oxidative medicine and cellular longevity 2021, 2021, 6338722. [Google Scholar] [CrossRef]
- Freedman, B.S.; Dekel, B. Engraftment of Kidney Organoids In Vivo. Current Transplantation Reports 2023, 10, 29–39. [Google Scholar] [CrossRef]
- Wang, E.; Xiang, K.; Zhang, Y.; Wang, X.-F. Patient-derived organoids (PDOs) and PDO-derived xenografts (PDOXs): New opportunities in establishing faithful pre-clinical cancer models. Journal of the National Cancer Center 2022, 2, 263–276. [Google Scholar] [CrossRef]
- Pauli, C.; Hopkins, B.D.; Prandi, D.; Shaw, R.; Fedrizzi, T.; Sboner, A.; Sailer, V.; Augello, M.; Puca, L.; Rosati, R.; et al. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine. Cancer discovery 2017, 7, 462–477. [Google Scholar] [CrossRef]
- Espedal, H.; Berg, H.F.; Fonnes, T.; Fasmer, K.E.; Krakstad, C.; Haldorsen, I.S. Feasibility and utility of MRI and dynamic (18)F-FDG-PET in an orthotopic organoid-based patient-derived mouse model of endometrial cancer. Journal of translational medicine 2021, 19, 406. [Google Scholar] [CrossRef] [PubMed]
- Berg, H.F.; Hjelmeland, M.E.; Lien, H.; Espedal, H.; Fonnes, T.; Srivastava, A.; Stokowy, T.; Strand, E.; Bozickovic, O.; Stefansson, I.M.; et al. Patient-derived organoids reflect the genetic profile of endometrial tumors and predict patient prognosis. Communications Medicine 2021, 1, 20. [Google Scholar] [CrossRef] [PubMed]
- Dowdy, S.C.; Jiang, S.; Zhou, X.C.; Hou, X.; Jin, F.; Podratz, K.C.; Jiang, S.W. Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Molecular cancer therapeutics 2006, 5, 2767–2776. [Google Scholar] [CrossRef]
- Takahashi, K.; Saga, Y.; Mizukami, H.; Takei, Y.; Machida, S.; Fujiwara, H.; Ozawa, K.; Suzuki, M. Cetuximab inhibits growth, peritoneal dissemination, and lymph node and lung metastasis of endometrial cancer, and prolongs host survival. International journal of oncology 2009, 35, 725–729. [Google Scholar] [CrossRef]
- Pant, A.; Lee, II; Lu, Z. ; Rueda, B.R.; Schink, J.; Kim, J.J. Inhibition of AKT with the orally active allosteric AKT inhibitor, MK-2206, sensitizes endometrial cancer cells to progestin. PLoS One 2012, 7, e41593. [Google Scholar] [CrossRef]
- Packer, L.M.; Geng, X.; Bonazzi, V.F.; Ju, R.J.; Mahon, C.E.; Cummings, M.C.; Stephenson, S.A.; Pollock, P.M. PI3K Inhibitors Synergize with FGFR Inhibitors to Enhance Antitumor Responses in FGFR2(mutant) Endometrial Cancers. Molecular cancer therapeutics 2017, 16, 637–648. [Google Scholar] [CrossRef]
- Packer, L.M.; Stehbens, S.J.; Bonazzi, V.F.; Gunter, J.H.; Ju, R.J.; Ward, M.; Gartside, M.G.; Byron, S.A.; Pollock, P.M. Bcl-2 inhibitors enhance FGFR inhibitor-induced mitochondrial-dependent cell death in FGFR2-mutant endometrial cancer. Molecular oncology 2019, 13, 738–756. [Google Scholar] [CrossRef]
- Eritja, N.; Chen, B.J.; Rodríguez-Barrueco, R.; Santacana, M.; Gatius, S.; Vidal, A.; Martí, M.D.; Ponce, J.; Bergadà, L.; Yeramian, A.; et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy 2017, 13, 608–624. [Google Scholar] [CrossRef] [PubMed]
- Groeneweg, J.W.; Hall, T.R.; Zhang, L.; Kim, M.; Byron, V.F.; Tambouret, R.; Sathayanrayanan, S.; Foster, R.; Rueda, B.R.; Growdon, W.B. Inhibition of gamma-secretase activity impedes uterine serous carcinoma growth in a human xenograft model. Gynecol Oncol 2014, 133, 607–615. [Google Scholar] [CrossRef]
- Groeneweg, J.W.; Hernandez, S.F.; Byron, V.F.; DiGloria, C.M.; Lopez, H.; Scialabba, V.; Kim, M.; Zhang, L.; Borger, D.R.; Tambouret, R.; et al. Dual HER2 targeting impedes growth of HER2 gene-amplified uterine serous carcinoma xenografts. Clinical cancer research : an official journal of the American Association for Cancer Research 2014, 20, 6517–6528. [Google Scholar] [CrossRef]
- Bradford, L.S.; Rauh-Hain, A.; Clark, R.M.; Groeneweg, J.W.; Zhang, L.; Borger, D.; Zukerberg, L.R.; Growdon, W.B.; Foster, R.; Rueda, B.R. Assessing the efficacy of targeting the phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway in endometrial cancer. Gynecol Oncol 2014, 133, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Dosil, M.A.; Mirantes, C.; Eritja, N.; Felip, I.; Navaridas, R.; Gatius, S.; Santacana, M.; Colàs, E.; Moiola, C.; Schoenenberger, J.A.; et al. Palbociclib has antitumour effects on Pten-deficient endometrial neoplasias. The Journal of pathology 2017, 242, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hall, T.; Eathiraj, S.; Wick, M.J.; Schwartz, B.; Abbadessa, G. In-vitro and in-vivo combined effect of ARQ 092, an AKT inhibitor, with ARQ 087, a FGFR inhibitor. Anti-cancer drugs 2017, 28, 503–513. [Google Scholar] [CrossRef]
- Felip, I.; Moiola, C.P.; Megino-Luque, C.; Lopez-Gil, C.; Cabrera, S.; Solé-Sánchez, S.; Muñoz-Guardiola, P.; Megias-Roda, E.; Pérez-Montoyo, H.; Alfon, J.; et al. Therapeutic potential of the new TRIB3-mediated cell autophagy anticancer drug ABTL0812 in endometrial cancer. Gynecol Oncol 2019, 153, 425–435. [Google Scholar] [CrossRef]
- Depreeuw, J.; Hermans, E.; Schrauwen, S.; Annibali, D.; Coenegrachts, L.; Thomas, D.; Luyckx, M.; Gutierrez-Roelens, I.; Debruyne, D.; Konings, K.; et al. Characterization of patient-derived tumor xenograft models of endometrial cancer for preclinical evaluation of targeted therapies. Gynecol Oncol 2015, 139, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Cuppens, T.; Depreeuw, J.; Annibali, D.; Thomas, D.; Hermans, E.; Gommé, E.; Trinh, X.B.; Debruyne, D.; Moerman, P.; Lambrechts, D.; et al. Establishment and characterization of uterine sarcoma and carcinosarcoma patient-derived xenograft models. Gynecologic Oncology 2017, 146, 538–545. [Google Scholar] [CrossRef]
- Cuppens, T.; Annibali, D.; Coosemans, A.; Trovik, J.; ter Haar, N.; Colas, E.; Garcia-Jimenez, A.; Van de Vijver, K.; Kruitwagen, R.P.M.; Brinkhuis, M.; et al. Potential Targets' Analysis Reveals Dual PI3K/mTOR Pathway Inhibition as a Promising Therapeutic Strategy for Uterine Leiomyosarcomas—an ENITEC Group Initiative. Clinical Cancer Research 2017, 23, 1274–1285. [Google Scholar] [CrossRef]
- Shin, H.Y.; Lee, E.J.; Yang, W.; Kim, H.S.; Chung, D.; Cho, H.; Kim, J.H. Identification of Prognostic Markers of Gynecologic Cancers Utilizing Patient-Derived Xenograft Mouse Models. Cancers 2022, 14. [Google Scholar] [CrossRef]
- Bonazzi, V.F.; Kondrashova, O.; Smith, D.; Nones, K.; Sengal, A.T.; Ju, R.; Packer, L.M.; Koufariotis, L.T.; Kazakoff, S.H.; Davidson, A.L.; et al. Patient-derived xenograft models capture genomic heterogeneity in endometrial cancer. Genome Med 2022, 14, 3. [Google Scholar] [CrossRef]
- Villafranca-Magdalena, B.; Masferrer-Ferragutcasas, C.; Lopez-Gil, C.; Coll-de la Rubia, E.; Rebull, M.; Parra, G.; García, Á.; Reques, A.; Cabrera, S.; Colas, E.; et al. Genomic Validation of Endometrial Cancer Patient-Derived Xenograft Models as a Preclinical Tool. International Journal of Molecular Sciences 2022, 23, 6266. [Google Scholar] [CrossRef]
- Imai, T.; Yoshida, H.; Machida, Y.; Kuramochi, M.; Ichikawa, H.; Kubo, T.; Takahashi, M.; Kato, T. Alteration in molecular properties during establishment and passaging of endometrial carcinoma patient-derived xenografts. Scientific Reports 2023, 13, 8511. [Google Scholar] [CrossRef] [PubMed]
- Sengal, A.T.; Bonazzi, V.; Smith, D.; Moiola, C.P.; Lourie, R.; Rogers, R.; Colas, E.; Gil-Moreno, A.; Frentzas, S.; Chetty, N.; et al. Endometrial cancer PDX-derived organoids (PDXOs) and PDXs with FGFR2c isoform expression are sensitive to FGFR inhibition. npj Precision Oncology 2023, 7, 127. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.X.; Xue, H.; Lin, D.; Dong, X.; Gout, P.W.; Gao, X.; Pang, J. Subrenal capsule grafting technology in human cancer modeling and translational cancer research. Differentiation; research in biological diversity 2016, 91, 15–19. [Google Scholar] [CrossRef]
- Zhu, M.; Jia, N.; Nie, Y.; Chen, J.; Jiang, Y.; Lv, T.; Li, Y.; Yao, L.; Feng, W. Establishment of Patient-Derived Tumor Xenograft Models of High-Risk Endometrial Cancer. Int J Gynecol Cancer 2018, 28, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Press, J.Z.; Kenyon, J.A.; Xue, H.; Miller, M.A.; De Luca, A.; Miller, D.M.; Huntsman, D.G.; Gilks, C.B.; McAlpine, J.N.; Wang, Y.Z. Xenografts of primary human gynecological tumors grown under the renal capsule of NOD/SCID mice show genetic stability during serial transplantation and respond to cytotoxic chemotherapy. Gynecologic Oncology 2008, 110, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Unno, K.; Ono, M.; Winder, A.D.; Maniar, K.P.; Paintal, A.S.; Yu, Y.; Wei, J.J.; Lurain, J.R.; Kim, J.J. Establishment of human patient-derived endometrial cancer xenografts in NOD scid gamma mice for the study of invasion and metastasis. PLoS One 2014, 9, e116064. [Google Scholar] [CrossRef]
- Winder, A.; Unno, K.; Yu, Y.; Lurain, J.; Kim, J.J. The allosteric AKT inhibitor, MK2206, decreases tumor growth and invasion in patient derived xenografts of endometrial cancer. Cancer biology & therapy 2017, 18, 958–964. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Cho, Y.-J.; Ryu, J.-Y.; Choi, J.-J.; Hwang, J.-R.; Kim, B.; Lee, Y.-Y.; Kim, H.-S.; Lee, J.-W. Establishment and preclinical application of a patient-derived xenograft model for uterine cancer. Gynecologic Oncology 2021, 162, 173–181. [Google Scholar] [CrossRef]
- Colon-Otero, G.; Zanfagnin, V.; Hou, X.; Foster, N.R.; Asmus, E.J.; Wahner Hendrickson, A.; Jatoi, A.; Block, M.S.; Langstraat, C.L.; Glaser, G.E.; et al. Phase II trial of ribociclib and letrozole in patients with relapsed oestrogen receptor-positive ovarian or endometrial cancers. ESMO open 2020, 5, e000926. [Google Scholar] [CrossRef]
- Haldorsen, I.S.; Popa, M.; Fonnes, T.; Brekke, N.; Kopperud, R.; Visser, N.C.; Rygh, C.B.; Pavlin, T.; Salvesen, H.B.; McCormack, E.; et al. Multimodal Imaging of Orthotopic Mouse Model of Endometrial Carcinoma. PLoS One 2015, 10, e0135220. [Google Scholar] [CrossRef]
- Fonnes, T.; Strand, E.; Fasmer, K.E.; Berg, H.F.; Espedal, H.; Sortland, K.; Stefansson, I.; Bjørge, L.; Haldorsen, I.S.; Krakstad, C.; et al. Near-Infrared Fluorescent Imaging for Monitoring of Treatment Response in Endometrial Carcinoma Patient-Derived Xenograft Models. Cancers 2020, 12, 370. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Shen, D.; Jin, D.; Zheng, Y.; Zhu, Y.; Zhao, X.; Zhang, Z.; Wang, N.; Chen, H.; Yang, L. High-fat diet promotes tumor growth in the patient-derived orthotopic xenograft (PDOX) mouse model of ER positive endometrial cancer. Sci Rep 2023, 13, 16537. [Google Scholar] [CrossRef] [PubMed]
- Kamat, A.A.; Merritt, W.M.; Coffey, D.; Lin, Y.G.; Patel, P.R.; Broaddus, R.; Nugent, E.; Han, L.Y.; Landen, C.N., Jr.; Spannuth, W.A.; et al. Clinical and biological significance of vascular endothelial growth factor in endometrial cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2007, 13, 7487–7495. [Google Scholar] [CrossRef]
- Lee, J.W.; Stone, R.L.; Lee, S.J.; Nam, E.J.; Roh, J.W.; Nick, A.M.; Han, H.D.; Shahzad, M.M.; Kim, H.S.; Mangala, L.S.; et al. EphA2 targeted chemotherapy using an antibody drug conjugate in endometrial carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 2010, 16, 2562–2570. [Google Scholar] [CrossRef]
- Takahashi, T.; Ogawa, H.; Izumi, K.; Uehara, H. The soluble EP2 receptor FuEP2/Ex2 suppresses endometrial cancer cell growth in an orthotopic xenograft model in nude mice. Cancer Lett 2011, 306, 67–75. [Google Scholar] [CrossRef]
- Takahashi, K.; Saga, Y.; Mizukami, H.; Takei, Y.; Urabe, M.; Kume, A.; Suzuki, M.; Ozawa, K. Development of a mouse model for lymph node metastasis with endometrial cancer. Cancer science 2011, 102, 2272–2277. [Google Scholar] [CrossRef]
- Cabrera, S.; Llauradó, M.; Castellví, J.; Fernandez, Y.; Alameda, F.; Colás, E.; Ruiz, A.; Doll, A.; Schwartz, S., Jr.; Carreras, R.; et al. Generation and characterization of orthotopic murine models for endometrial cancer. Clinical & experimental metastasis 2012, 29, 217–227. [Google Scholar] [CrossRef]
- Konings, G.F.; Saarinen, N.; Delvoux, B.; Kooreman, L.; Koskimies, P.; Krakstad, C.; Fasmer, K.E.; Haldorsen, I.S.; Zaffagnini, A.; Hakkinen, M.R.; et al. Development of an Image-Guided Orthotopic Xenograft Mouse Model of Endometrial Cancer with Controllable Estrogen Exposure. Int J Mol Sci 2018, 19. [Google Scholar] [CrossRef]
- Xanthoulea, S.; Konings, G.F.J.; Saarinen, N.; Delvoux, B.; Kooreman, L.F.S.; Koskimies, P.; Hakkinen, M.R.; Auriola, S.; D'Avanzo, E.; Walid, Y.; et al. Pharmacological inhibition of 17beta-hydroxysteroid dehydrogenase impairs human endometrial cancer growth in an orthotopic xenograft mouse model. Cancer Lett 2021, 508, 18–29. [Google Scholar] [CrossRef]
- Medina-Gutierrez, E.; Cespedes, M.V.; Gallardo, A.; Rioja-Blanco, E.; Pavon, M.A.; Asensio-Puig, L.; Farre, L.; Alba-Castellon, L.; Unzueta, U.; Villaverde, A.; et al. Novel Endometrial Cancer Models Using Sensitive Metastasis Tracing for CXCR4-Targeted Therapy in Advanced Disease. Biomedicines 2022, 10. [Google Scholar] [CrossRef]
- Doll, A.; Gonzalez, M.; Abal, M.; Llaurado, M.; Rigau, M.; Colas, E.; Monge, M.; Xercavins, J.; Capella, G.; Diaz, B.; et al. An orthotopic endometrial cancer mouse model demonstrates a role for RUNX1 in distant metastasis. Int J Cancer 2009, 125, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Taurin, S.; Yang, C.H.; Reyes, M.; Cho, S.; Coombs, D.M.; Jarboe, E.A.; Werner, T.L.; Peterson, C.M.; Janat-Amsbury, M.M. Endometrial Cancers Harboring Mutated Fibroblast Growth Factor Receptor 2 Protein Are Successfully Treated With a New Small Tyrosine Kinase Inhibitor in an Orthotopic Mouse Model. Int J Gynecol Cancer 2018, 28, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Pillozzi, S.; Fortunato, A.; De Lorenzo, E.; Borrani, E.; Giachi, M.; Scarselli, G.; Arcangeli, A.; Noci, I. Over-Expression of the LH Receptor Increases Distant Metastases in an Endometrial Cancer Mouse Model. Front Oncol 2013, 3, 285. [Google Scholar] [CrossRef] [PubMed]
- Kurra, V.; Krajewski, K.M.; Jagannathan, J.; Giardino, A.; Berlin, S.; Ramaiya, N. Typical and atypical metastatic sites of recurrent endometrial carcinoma. Cancer Imaging 2013, 13, 113–122. [Google Scholar] [CrossRef]
- Li, J.; Sun, L.; Zhang, Y.Z.; Cai, S.L. Patterns of distant metastases in patients with endometrial carcinoma: A SEER population-based analysis. J Clin Oncol 2019, 37. [Google Scholar] [CrossRef]
- Stewart, C.J.; Doherty, D.A.; Havlat, M.; Koay, M.H.; Leung, Y.C.; Naran, A.; O'Brien, D.; Ruba, S.; Salfinger, S.; Tan, J. Transtubal spread of endometrial carcinoma: correlation of intra-luminal tumour cells with tumour grade, peritoneal fluid cytology, and extra-uterine metastasis. Pathology 2013, 45, 382–387. [Google Scholar] [CrossRef]
- Skok, K.; Maver, U.; Gradišnik, L.; Kozar, N.; Takač, I.; Arko, D. Endometrial cancer and its cell lines. Molecular Biology Reports 2020, 47, 1399–1411. [Google Scholar] [CrossRef]
- Romano, A.; Xanthoulea, S.; Giacomini, E.; Delvoux, B.; Alleva, E.; Vigano, P. Endometriotic cell culture contamination and authenticity: a source of bias in in vitro research? Human reproduction (Oxford, England) 2020, 35, 364–376. [Google Scholar] [CrossRef]
- Moiola, C.P.; Lopez-Gil, C.; Cabrera, S.; Garcia, A.; Van Nyen, T.; Annibali, D.; Fonnes, T.; Vidal, A.; Villanueva, A.; Matias-Guiu, X.; et al. Patient-Derived Xenograft Models for Endometrial Cancer Research. Int J Mol Sci 2018, 19. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, W.; Long, Y.; Liu, H.; Cheng, J.; Guo, L.; Li, R.; Meng, C.; Yu, S.; Zhao, Q.; et al. Characterization of drug responses of mini patient-derived xenografts in mice for predicting cancer patient clinical therapeutic response. Cancer Communications 2018, 38, 60. [Google Scholar] [CrossRef]
- Tellez-Gabriel, M.; Cochonneau, D.; Cadé, M.; Jubellin, C.; Heymann, M.F.; Heymann, D. Circulating Tumor Cell-Derived Pre-Clinical Models for Personalized Medicine. Cancers 2018, 11. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Vela, I.; Sboner, A.; Iaquinta, P.J.; Karthaus, W.R.; Gopalan, A.; Dowling, C.; Wanjala, J.N.; Undvall, E.A.; Arora, V.K.; et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014, 159, 176–187. [Google Scholar] [CrossRef] [PubMed]
| Subcutaneous | Subrenal capsule | Intra-peritoneally | Other locations | |
|---|---|---|---|---|
| CDXs | Dowdy et al. Mol Cancer Ther (2006) | Takahashi et al. Int J Oncol (2009) | Tail vein: Takahashi et al. Int J Oncol (2009) | |
| Takahashi et al. Int J Oncol (2009) | Retro-orbital: Eritja et al. Autophagy (2017) | |||
| Pant et al. PLoS One (2012) | ||||
| Packer et al. Mol Cancer Ther (2017) | ||||
| Eritja et al. Autophagy (2017) | ||||
| Packer et al. Mol Oncol (2019) | ||||
| PDTXs | Groeneweg et al. Gynecol Oncol (2014) * | Press et al. Gynecologic Oncology (2008) | Colon-Otero et al. ESMO Open (2020) | |
| Groeneweg et al. Clin Cancer Res (2014) * | Unno et al. PLoS One (2014) | |||
| Bradford et al. Gynecol Oncol (2014) # | Winder et al. Cancer Biol Ther (2017) | |||
| Depreeuw et al. Gynecol Oncol (2015) | Zhu et al. Int J Gynecol Cancer (2018) | |||
| Dosil et al. J Pathol (2017) * | Jeong et al. Gynecologic Oncology (2021) | |||
| Yu et al. Anticancer Drugs (2017) * | ||||
| Cuppens et al. Gynecologic Oncology (2017) | ||||
| Cuppens et al. Clinical Cancer Research (2017) | ||||
| Zhu et al. Int J Gynecol Cancer (2018) | ||||
| Felip et al. Gynecol Oncol (2019) * | ||||
| Shin et al. Cancers (Basel) (2022) | ||||
| Bonazzi et al. Genome Med (2022) | ||||
| Villafranca-Magdalena et al. International Journal of Molecular Sciences (2022) | ||||
| Imai et al. Scientific Reports (2023) | ||||
| Sengal et al. npj Precision Oncology (2023) | ||||
| PDOXs | Pauli et al. Cancer Discov (2017) |
| intrauterine | metastases | |
|---|---|---|
| CDXs | Kamat et al. Clin Cancer Res (2007) | Cell suspension of Ishikawa and HEC-1A. Mets: peritoneum, kidney, mesentery, liver, lymph nodes. |
| Doll et al. Int J Cancer (2009) # | Tumor fragments of HEC-1A-derived s.c. xenografts sutured onto the posterior face of the uterus. Mets: lymph nodes, lungs. |
|
| Lee et al. Clin Cancer Res (2010) | Cell suspensions of Ishikawa and HEC-1A. Mets: abdominal cavity, pelvis, mesentery, omentum, liver, porta hepatis, lymph nodes, diaphragm. |
|
| Takahashi et al. Cancer Lett (2011) | Cell suspension of Ishikawa. Mets: not reported. |
|
| Takahashi et al. Cancer Sci (2011) | Cell suspension of HEC-1A. Mets: lymph nodes. |
|
| Cabrera et al. Clin Exp Metastasis (2012) | Cell suspension of HEC-1A. Mets: bladder, perivesical fat, lymph nodes, liver, spleen, pancreas, kidney, diaphragm, lungs. |
|
| Pillozzi et al. Front Oncol (2013) # | Tumor fragments of HEC-1A-derived s.c. xenografts sutured onto the posterior face of the uterus. Mets: lymph nodes, bladder, spleen, diaphragm, lungs. |
|
| Haldorsen et al. PLoS One (2015) | Cell suspension of Ishikawa. Mets: ovaries, kidney, spleen, pancreas, liver, connective tissue, lymph nodes, adrenal glands, lungs. |
|
| Taurin et al. Int J Gynecol Cancer (2018) # | Tumor fragments of AN3CA-derived s.c. xenografts. Mets: not reported. |
|
| Konings et al. Int J Mol Sci (2018) | Cell suspension of Ishikawa. Mets: LVI, abdominal (liver, intestine, spleen, stomach, kidney), lungs. |
|
| Fonnes et al. Cancers (2020) | Cell suspension of Ishikawa and HEC1B. Mets: abdominal, pancreas, lungs. |
|
| Xanthoulea et al. Cancer Lett (2021) | Cell suspension of Ishikawa. Mets: LVI, abdominal, lungs. |
|
| Medina-Gutierrez et al. Biomedicines (2022) | Cell suspension of AN3CA. Mets: liver, ovaries, peritoneum, abdominal lymph nodes, lungs. |
|
| PDTXs | Cabrera et al. Clin Exp Metastasis (2012) # | Cell suspension of patient-derived s.c. amplified xenografts. Mets: abdomen, pelvic cavity, lymph nodes. |
| Haldorsen et al. PLoS One (2015) * | Cell suspension of primary tumor. Mets: not reported. |
|
| Eritja et al. Autophagy (2017) ^ | Tumor fragments of patient-derived i.u. amplified xenografts. Mets: not reported. |
|
| Fonnes et al. Cancers (2020) * | Cell suspension of primary tumor. Mets: not reported. |
|
| Jeong et al. Gynecologic Oncology (2021) | Patient-derived tumor fragments. Mets: no metastases observed. |
|
| Shen et al. Sci Rep (2023) # | Tumor fragments of patient-derived s.c. amplified xenografts. Mets: suspected satellite metastases around the tumor. |
|
| PDOXs | Berg et al. Communications Medicine (2021) | Injection of organoids. Mets: ovaries, kidneys, pancreas, liver, diaphragm, lymph nodes. |
| Espedal et al. J Transl Med (2021) | Injection of organoids. Mets: not reported. |
| Advantages | Disadvantages | |
|---|---|---|
| Subcutaneous | Technically easy to perform | Non physiological location/poor translational value |
| Easy to monitor tumor growth | Low engraftment rates | |
| Fast tumor growth | No metastases | |
| Cost and time effective | ||
| Tumors can grow to large volumes | ||
| Subrenal capsule | Improved engraftment rates compared to subcutaneous models | Non physiological location/poor translational value |
| Regional metastases (peritoneum, liver) reported in some studies | Difficult to monitor tumor growth (need for in-vivo imaging techniques/probes) | |
| Slow and constrained tumor growth | ||
| Orthotopic | Highly relevant due to physiological location | Technically difficult microsurgical skills required |
| High engraftment rates | Difficult to monitor tumor growth (need for in-vivo imaging techniques/probes) | |
| Regional spread (uterus, pancreas, peritoneum, spleen, liver) | Potential leakage of tumors cells from the injection site in the abdominal cavity (in case a tumor cell-suspension is used) | |
| Lymphatic and hematogenous metastases |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
