Submitted:
17 October 2024
Posted:
18 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Commercial Veterinary Vaccines against Salmonella in Farm Animals
3. Role of Attenuation in the Recombinant Salmonella Vaccine
4. Molecular Mechanisms of Immune Stimulation by Recombinant Salmonella
5. Salmonella as a Vaccine Vector against Different Pathogens
5.1. Recombinant Salmonella Expressing Bacterial Antigens
5.2. Recombinant Salmonella Expressing Virus Antigens
5.3. Recombinant Salmonella Expressing Parasite Antigen
6. Conclusion and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roth, J.; Sandbulte, M. The Role of Veterinary Vaccines in Livestock Production, Animal Health. In Veterinary Vaccines: Principles and Applications; Metwally, S., Idrissi, A.E., Viljoen, G., Eds.; Wiley: Hudson County, NJ, USA, 2021; ISBN 9781119506287. [Google Scholar]
- Shaji, S.; Selvaraj, R.K.; Shanmugasundaram, R. Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. Microorganisms 2023, 11. [Google Scholar] [CrossRef] [PubMed]
- Kuria, J.K.N. Salmonellosis in Food and Companion Animals and Its Public Health Importance. IntechOpen 2023.
- Zanella, J.R.C. Zoonoses Emergentes e Reemergentes e Sua Importância Para Saúde e Produção Animal. Pesqui Agropecu Bras 2016, 51, 510–519. [Google Scholar] [CrossRef]
- Roth, J.A. Veterinary Vaccines and Their Importance to Animal Health and Public Health. Procedia Vaccinol 2011, 5, 127–136. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic Resistance-the Need for Global Solutions. Lancet Infect Dis 2013, 13, 1057–1098. [Google Scholar] [CrossRef]
- Morrison, L.; Zembower, T.R. Antimicrobial Resistance. Gastrointest Endosc Clin N Am 2020, 30, 619–635. [Google Scholar] [CrossRef]
- Clark-Curtiss, J.E.; Curtiss, R. Salmonella Vaccines: Conduits for Protective Antigens. The Journal of Immunology 2018, 200, 39–48. [Google Scholar] [CrossRef]
- Jorge, S.; Dellagostin, O.A. The Development of Veterinary Vaccines: A Review of Traditional Methods and Modern Biotechnology Approaches. Biotechnology Research and Innovation 2017, 1, 6–13. [Google Scholar] [CrossRef]
- de Oliveira, N.R.; Santos, F.D.S.; dos Santos, V.A.C.; Maia, M.A.C.; Oliveira, T.L.; Dellagostin, O.A. Challenges and Strategies for Developing Recombinant Vaccines against Leptospirosis: Role of Expression Platforms and Adjuvants in Achieving Protective Efficacy. Pathogens 2023, 12. [Google Scholar] [CrossRef]
- Singh, B.R. Salmonella Vaccines for Animals and Birds and Their Future Perspective. Open Vaccine J 2009, 2, 100–112. [Google Scholar] [CrossRef]
- Gayet, R.; Bioley, G.; Rochereau, N.; Paul, S.; Corthésy, B. Vaccination against Salmonella Infection: The Mucosal Way. Microbiology and Molecular Biology Reviews 2017, 81. [Google Scholar] [CrossRef] [PubMed]
- Amagliani, G.; La Guardia, M.E.; Dominici, S.; Brandi, G.; Omiccioli, E. Salmonella abortusovis: An Epidemiologically Relevant Pathogen. Curr Microbiol 2022, 79. [Google Scholar] [CrossRef] [PubMed]
- Soliani, L.; Rugna, G.; Prosperi, A.; Chiapponi, C.; Luppi, A. Salmonella Infection in Pigs: Disease, Prevalence, and a Link between Swine and Human Health. Pathogens 2023, 12. [Google Scholar] [CrossRef] [PubMed]
- Velasquez-Munoz, A.; Castro-Vargas, R.; Cullens-Nobis, F.M.; Mani, R.; Abuelo, A. Review: Salmonella Dublin in Dairy Cattle. Front Vet Sci 2023, 10, 103389/fvets20231331767. [Google Scholar] [CrossRef]
- Young, M.K.; Cox, M.M.; Calhoun, L.N. Salmonella-Based Vaccines for Infectious Diseases. Expert Rev Vaccines 2007, 6, 147–152. [Google Scholar] [CrossRef]
- Wang, S.; Kong, Q.; Curtiss, R. New Technologies in Developing Recombinant Attenuated Salmonella Vaccine Vectors. Microb Pathog 2013, 58, 17–28. [Google Scholar] [CrossRef]
- Galen, J.E.; Curtiss, R. The Delicate Balance in Genetically Engineering Live Vaccines. Vaccine 2014, 32, 4376–4385. [Google Scholar] [CrossRef]
- Cardenas, L.; Clements, J.D. Oral Immunization Using Live Attenuated Salmonella spp. as Carriers of Foreign Antigens. Clin Microbiol Rev 1992, 5, 328–342. [Google Scholar] [CrossRef]
- Roland, K.L.; Kong, Q.; Jiang, Y. Attenuated Salmonella for Oral Immunization. In Mucosal Vaccines: Innovation for Preventing Infectious Diseases; Kiyono, H., Pascual, D.W., Eds.; Academic Press, 2020; pp. 383–399 ISBN 9780128119242. [CrossRef]
- Shin, H.; La, T.M.; Lee, H.J.; Kim, T.; Song, S.U.U.; Park, E.; Park, G.H.; Choi, I.S.; Park, S.Y.; Lee, J.B.; et al. Evaluation of Immune Responses and Protective Efficacy of a Novel Live Attenuated Salmonella enteritidis Vaccine Candidate in Chickens. Vaccines (Basel) 2022, 10. [Google Scholar] [CrossRef]
- Cong, H.; Yuan, Q.; Zhao, Q.; Zhao, L.; Yin, H.; Zhou, H.; He, S.; Wang, Z. Comparative Efficacy of a Multi-Epitope DNA Vaccine via Intranasal, Peroral, and Intramuscular Delivery against Lethal Toxoplasma gondii Infection in Mice. Parasit Vectors 2014, 7, 1–8. [Google Scholar] [CrossRef]
- Hajam, I.A.; Kim, J.; Lee, J.H. Oral Immunization with a Novel Attenuated Salmonella gallinarum Encoding Infectious Bronchitis Virus Spike Protein Induces Protective Immune Responses against Fowl Typhoid and Infectious Bronchitis in Chickens. Vet Res 2018, 49. [Google Scholar] [CrossRef] [PubMed]
- Leya, M.; Kim, W.K.; Cho, J.S.; Yu, E.C.; Kim, Y.J.; Yeo, Y.; Lyoo, K.S.; Yang, M.S.; Han, S.S.; Lee, J.H.; et al. Vaccination of Goats with a Combination Salmonella Vector Expressing Four Brucella Antigens (BLS, PrpA, Omp19, and SOD) Confers Protection against Brucella abortus Infection. J Vet Sci 2018, 19, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Lyimu, W.M.; Leta, S.; Everaert, N.; Paeshuyse, J. Influence of Live Attenuated Salmonella Vaccines on Cecal Microbiome Composition and Microbiota Abundances in Young Broiler Chickens. Vaccines (Basel) 2023, 11. [Google Scholar] [CrossRef] [PubMed]
- Peeters, L.; Dewulf, J.; Boyen, F.; Brossé, C.; Vandersmissen, T.; Rasschaert, G.; Heyndrickx, M.; Cargnel, M.; Mattheus, W.; Pasmans, F.; et al. Bacteriological Evaluation of Vaccination against Salmonella Typhimurium with an Attenuated Vaccine in Subclinically Infected Pig Herds. Prev Vet Med 2020, 182, 104687. [Google Scholar] [CrossRef]
- Won, G.; Lee, J.H. F18+ Escherichia coli Flagellin Expression in Salmonella Has Immunoadjuvant Effects in a Ghost Vaccine Candidate Containing E. coli Stx2eB, FedF and FedA against Porcine Edema Disease. Comp Immunol Microbiol Infect Dis 2018, 58, 44–51. [Google Scholar] [CrossRef]
- Li, Y.A.; Ji, Z.; Wang, X.; Wang, S.; Shi, H. Salmonella enterica Serovar Choleraesuis Vector Delivering SaoA Antigen Confers Protection against Streptococcus suis Serotypes 2 and 7 in Mice and Pigs. Vet Res 2017, 48. [Google Scholar] [CrossRef]
- Kim, W.K.; Moon, J.Y.; Kim, S.; Hur, J. Comparison between Immunization Routes of Live Attenuated Salmonella Typhimurium Strains Expressing BCSP31, Omp3b, and SOD of Brucella abortus in Murine Model. Front Microbiol 2016, 7. [Google Scholar] [CrossRef]
- Hajam, I.A.; Lee, J.H. Preexisting Salmonella-Specific Immunity Interferes with the Subsequent Development of Immune Responses against the Salmonella Strains Delivering H9N2 Hemagglutinin. Vet Microbiol 2017, 205, 117–123. [Google Scholar] [CrossRef]
- Pompa-Mera, E.N.; Yépez-Mulia, L.; Ocaña-Mondragón, A.; García-Zepeda, E.A.; Ortega-Pierres, G.; González-Bonilla, C.R. Trichinella spiralis: Intranasal Immunization with Attenuated Salmonella enterica Carrying a Gp43 Antigen-Derived 30mer Epitope Elicits Protection in BALB/c Mice. Exp Parasitol 2011, 129, 393–401. [Google Scholar] [CrossRef]
- Huang, L.Y.; Wang, K.Y.; Xiao, D.; Chen, D.F.; Geng, Y.; Wang, J.; He, Y.; Wang, E.L.; Huang, J.L.; Xiao, G.Y. Safety and Immunogenicity of an Oral DNA Vaccine Encoding Sip of Streptococcus agalactiae from Nile Tilapia Oreochromis niloticus Delivered by Live Attenuated Salmonella Typhimurium. Fish Shellfish Immunol 2014, 38, 34–41. [Google Scholar] [CrossRef]
- Wang, S.; Hofacre, C.L.; Wanda, S.Y.; Zhou, J.; Callum, R.A.; Nordgren, B.; Curtiss, R. A Triple-Sugar Regulated Salmonella Vaccine Protects against Clostridium perfringens-Induced Necrotic Enteritis in Broiler Chickens. Poult Sci 2022, 101. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Mclennan, M.; Trott, D. Intramuscular Vaccination of Young Calves with a Salmonella Dublin Metabolic-Drift Mutant Provides Superior Protection to Oral Delivery. Vet Res 2008, 39, 26. [Google Scholar] [CrossRef] [PubMed]
- Curtiss, R. Vaccines to Control Salmonella in Poultry. Avian Dis 2023, 67, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Chatfield Roberts, S.M.; Cropley, I.; Douce, G.; Dougan, G. The Development of Oral Vaccines Based on Live Attenuated Salmonella Strains. FEMS Immunol Med Microbiol 1993, 7, 1–8. [Google Scholar] [CrossRef]
- Desin, T.S.; Köster, W.; Potter, A.A. Salmonella Vaccines in Poultry: Past, Present and Future. Expert Rev Vaccines 2013, 12, 87–96. [Google Scholar] [CrossRef]
- Bearson, S.M.D. Annual Review of Animal Biosciences Salmonella in Swine: Prevalence, Multidrug Resistance, and Vaccination Strategies. 2021. [Google Scholar] [CrossRef]
- Jia, S.; McWhorter, A.R.; Andrews, D.M.; Underwood, G.J.; Chousalkar, K.K. Challenges in Vaccinating Layer Hens against Salmonella Typhimurium. Vaccines (Basel) 2020, 8, 1–12. [Google Scholar] [CrossRef]
- De Ridder, L.; Maes, D.; Dewulf, J.; Butaye, P.; Pasmans, F.; Boyen, F.; Haesebrouck, F.; Van der Stede, Y. Use of a Live Attenuated Salmonella enterica Serovar Typhimurium Vaccine on Farrow-to-Finish Pig Farms. Veterinary Journal 2014, 202, 303–308. [Google Scholar] [CrossRef]
- Theuß, T.; Ueberham, E.; Lehmann, J.; Lindner, T.; Springer, S. Immunogenic Potential of a Salmonella Typhimurium Live Vaccine for Pigs against Monophasic Salmonella Typhimurium DT 193. BMC Vet Res 2017, 13. [Google Scholar] [CrossRef]
- Smith, R.P.; Andres, V.; Martelli, F.; Gosling, B.; Marco-Jimenez, F.; Vaughan, K.; Tchorzewska, M.; Davies, R. Maternal Vaccination as a Salmonella Typhimurium Reduction Strategy on Pig Farms. J Appl Microbiol 2018, 124, 274–285. [Google Scholar] [CrossRef]
- Hegazy, W.A.H.; Hensel, M. Salmonella enterica as a Vaccine Carrier. Future Microbiol 2012, 7, 111–127. [Google Scholar] [CrossRef]
- Nakayama, K.; Kelly, S.M.; Curtiss III, R. Construction of an ASD+ Expression-Cloning Vector: Stable Maintenance and High Level Expression of Cloned Genes in a Salmonella Vaccine Strain. Nature 1988, 6, 693–697. [Google Scholar] [CrossRef]
- Roland, K.L.; Brenneman, K.E. Salmonella as a Vaccine Delivery Vehicle. Expert Rev Vaccines 2013, 12, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.V.; A1vrridge, S.; Hackettt, J. Mutations at Rfc or Pmi Attenuate Salmonella Typhimurium Virulence for Mice. Infect Immun 1991, 59, 1079–1085. [Google Scholar] [CrossRef]
- Curtiss Iii, R.; Xin, W.; Li, Y.; Kong, W.; Wanda, S.-Y.; Gunn, B.; Wang, S. New Technologies in Using Recombinant Attenuated Salmonella Vaccine Vectors. Crit Rev Immunol 2010, 30, 255–270. [Google Scholar] [CrossRef]
- Chabalgoity, J.A.; Moreno, M.; Carol, H.; Dougan, G.; Hormaeche, C.E. Salmonella Typhimurium as a Basis for a Live Oral Echinococcus granulosus Vaccine. Vaccine 2000, 19, 460–469. [Google Scholar] [CrossRef]
- Wang, S.; Kong, Q.; Curtiss, R. New Technologies in Developing Recombinant Attenuated Salmonella Vaccine Vectors. Microb Pathog 2013, 58, 17–28. [Google Scholar] [CrossRef]
- Li, Y.A.; Ji, Z.; Wang, X.; Wang, S.; Shi, H. Salmonella enterica Serovar Choleraesuis Vector Delivering SaoA Antigen Confers Protection against Streptococcus suis Serotypes 2 and 7 in Mice and Pigs. Vet Res 2017, 48. [Google Scholar] [CrossRef]
- Chatfield, S.N.; Charles, I.G.; Makoff, A.J.; Oxer, M.D.; Dougan, G.; Pickard, D.; Slater, D.; Fairweather, N.F. Use of the NirB Promoter to Direct the Stable Expression of Heterelogous Antigens in Salmonella Oral Vaccine Strains: Development of a Single-Dose Oral Tetanus Vaccine. Nature 1992, 10, 888–892. [Google Scholar] [CrossRef]
- Baud, D.; Ponci, F.; Bobst, M.; De Grandi, P.; Nardelli-Haefliger, D. Improved Efficiency of a Salmonella -Based Vaccine against Human Papillomavirus Type 16 Virus-Like Particles Achieved by Using a Codon-Optimized Version of L1. J Virol 2004, 78, 12901–12909. [Google Scholar] [CrossRef]
- Zhou, G.; Zhao, Y.; Ma, Q.; Li, Q.; Wang, S.; Shi, H. Manipulation of Host Immune Defenses by Effector Proteins Delivered from Multiple Secretion Systems of Salmonella and Its Application in Vaccine Research. Front Immunol 2023, 14. [Google Scholar] [CrossRef]
- Lou, L.; Zhang, P.; Piao, R.; Wang, Y. Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. Front Cell Infect Microbiol 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Malik-Kale, P.; Jolly, C.E.; Lathrop, S.; Winfree, S.; Luterbach, C.; Steele-Mortimer, O. Salmonella- at Home in the Host Cell. Front Microbiol 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Waterman, R.; Holden, D.W.; Waterman, S.R.; Holden, D.W. Pathogenicity Island 2 Type III Secretion SystemS Functions and Effectors of the Salmonella Pathogenicity Island 2 Type III Secretion System; 2003; Vol. 5. [CrossRef]
- Samakchan, N.; Thinwang, P.; Boonyom, R. Oral Immunization of Rat with Chromosomal Expression Lipl32 in Attenuated Salmonella Vaccine Induces Immune Respond against Pathogenic Leptospira. Clin Exp Vaccine Res 2021, 10, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Hurley, D.; McCusker, M.P.; Fanning, S.; Martins, M. Salmonella-Host Interactions - Modulation of the Host Innate Immune System. Front Immunol 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Sirard, J.-C.; Niedergang, F.; Kraehenbuhl, P.; Sirurd, J.-C.; Kruehenbuhi, J.-P.; Sirard, J.-C. Live Attenuated Salmonella: A Paradigm of Mucosal Vaccines Immunological Reviews. Immunoiogical Reviews 1999, 171, 5–26. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors. Nat Immunol 2010, 11, 373–384. [Google Scholar] [CrossRef]
- Monack, D.M.; Bouley, D.M.; Falkow, S. Salmonella Typhimurium Persists within Macrophages in the Mesenteric Lymph Nodes of Chronically Infected Nramp1+/+ Mice and Can Be Reactivated by IFNγ Neutralization. Journal of Experimental Medicine 2004, 199, 231–241. [Google Scholar] [CrossRef]
- Mastroeni, P.; Chabalgoity, J.A.; Dunstan, S.J.; Maskell, D.J.; Dougan, G. Salmonella: Immune Responses and Vaccines. Veterinary Journal 2001, 161, 132–164. [Google Scholar] [CrossRef]
- Hur, J.; Lee, J.H. Protective Efficacy by Various Doses of Salmonella ghost Vaccine Carrying Enterotoxigenic Escherichia Coli Fimbrial antigen against Neonatal Piglet Colibacillosis. Can J Vet Res. 2016, 80, 245–249. [Google Scholar]
- Tennant, S.M.; Levine, M.M. Live Attenuated Vaccines for Invasive Salmonella Infections. Vaccine 2015, 33, 36–41. [Google Scholar] [CrossRef]
- Fagan, P.K.; Djordjevic, S.P.; Chin, J.; Eamens, G.J.; Walker, M.J. Oral Immunization of Mice with Attenuated Salmonella Typhimurium AroA Expressing a Recombinant Mycoplasma hyopneumoniae Antigen (NrdF). Infect Immun 1997, 65, 2502–2507. [Google Scholar] [CrossRef] [PubMed]
- Fagan, P.K.; Walker, M.J.; Chin, J.; Eamens, G.J.; Djordjevic, S.P. Oral Immunization of Swine with Attenuated Salmonella Typhimurium AroA SL3261 Expressing a Recombinant Antigen of Mycoplasma hyopneumoniae (NrDF) Primes the Immune System for a NrDF Specific Secretory IgA Response in the Lungs. Microb Pathog 2001, 30, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.Y.; Fry, S.R.; Forbes-Faulkner, J.; Daggard, G.; Mukkur, T.K.S. Evaluation of the Immunogenicity of the P97R1 Adhesin of Mycoplasma hyopneumoniae as a Mucosal Vaccine in Mice. J Med Microbiol 2006, 55, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.Y.; Fry, S.R.; Forbes-Faulkner, J.; Daggard, G.E.; Mukkur, T.K.S. Comparative Immunogenicity of M. hyopneumoniae NrdF Encoded in Different Expression Systems Delivered Orally via Attenuated S. Typhimurium AroA in Mice. Vet Microbiol 2006, 114, 252–259. [Google Scholar] [CrossRef]
- Stevenson, G.; Manning, P.A. Galactose Epimeraseless (GalE) Mutant G30 of Salmonella Typhimurium Is a Good Potential Live Oral Vaccine Carrier for Fimbrial Antigens. FEMS Microbiol Lett 1985, 28, 317–321. [Google Scholar] [CrossRef]
- Hur, J.; Stein, B.D.; Lee, J.H. A Vaccine Candidate for Post-Weaning Diarrhea in Swine Constructed with a Live Attenuated Salmonella Deliv-Ering Escherichia coli K88ab, K88ac, FedA, and FedF Fimbrial Antigens and Its Immune Responses in a Murine Model. Canadian Journal of Veterinary Research 2012, 76, 186–194. [Google Scholar] [CrossRef]
- Hur, J.; Lee, J.H. Immune Responses to New Vaccine Candidates Constructed by a Live Attenuated Salmonella Typhimurium De-Livery System Expressing Escherichia coli F4, F5, F6, F41 and Intimin Adhesin Antigens in a Murine Model. J. Vet. Med. Sci 2011, 73, 1265–1273. [Google Scholar] [CrossRef]
- Won, G.; Lee, J.H. Multifaceted Immune Responses and Protective Efficacy Elicited by a Recombinant Autolyzed Salmonella Expressing FliC Flagellar Antigen of F18+ Escherichia coli. Vaccine 2016, 34, 6335–6342. [Google Scholar] [CrossRef]
- Won, G.; John Hwa, L. Potent Immune Responses Induced by a Salmonella ghost Delivery System That Expresses the Recombinant StX2eB, FedF, and FedA Proteins of the Escherichia coli-Producing F18 and Shiga Toxin in a Murine Model and Evaluation of Its Protective Effect as a Porcine Vaccine Candidate. Veterinary Quarterly 2017, 37, 81–90. [Google Scholar] [CrossRef]
- Chaudhari, A.A.; Matsuda, K.; Lee, J.H. Construction of an Attenuated Salmonella Delivery System Harboring Genes Encoding Various Virulence Factors of Avian Pathogenic Escherichia coli and Its Potential as a Candidate Vaccine for Chicken Colibacillosis. Avian Dis 2013, 57, 88–96. [Google Scholar] [CrossRef]
- Lee, J.H.; Chaudhari, A.A; Oh, I.G.; Eo, S.K.; Park, S.; Jawale, C.V. Immune Responses to Oral Vaccination with Salmonella-Delivered Pathogenic Escherichia coli Antigens and Protective efficacy against Colibacillosis. The Canadian Journal of Veterinary Research 2015, 79, 229–234. [Google Scholar] [PubMed]
- Han, Y.; Liu, Q.; Yi, J.; Liang, K.; Wei, Y.; Kong, Q. A Biologically Conjugated Polysaccharide Vaccine Delivered by Attenuated Salmonella Typhimurium Provides Protection against Challenge of Avian Pathogenic Escherichia coli O1 Infection. Pathog Dis 2017, 75. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.G.; Jawale, C.; Lee, J. The B Subunits of Cholera and Escherichia coli Heat-Labile Toxins Enhance the Immune Responses in Mice Orally Immunised with a Recombinant Live P-Fimbrial Vaccine for Avian Pathogenic E. coli. Acta Vet Hung 2014, 62, 293–303. [Google Scholar] [CrossRef]
- Stromberg, Z.R.; Van Goor, A.; Redweik, G.A.J.; Mellata, M. Characterization of Spleen Transcriptome and Immunity against Avian Colibacillosis after Immunization with Recombinant Attenuated Salmonella Vaccine Strains. Front Vet Sci 2018, 5. [Google Scholar] [CrossRef]
- Jiang, Y.; Kulkarni, R.R.; Parreira, V.R.; Poppe, C.; Roland, K.L.; Prescott, J.F. Assessment of 2 Salmonella enterica Serovar Typhimurium-Based Vaccines against Necrotic Enteritis in Reducing Colonization of Chickens by Salmonella Serovars of Different Serogroups. Canadian Journal of Veterinary Research 2010, 74, 264–270. [Google Scholar]
- Kulkarni, R.R.; Parreira, V.R.; Jiang, Y.F.; Prescott, J.F. A Live Oral Recombinant Salmonella enterica Serovar Typhimurium Vaccine Expressing Clostridium perfringens Antigens Confers Protection against Necrotic Enteritis in Broiler Chickens. Clinical and Vaccine Immunology 2010, 17, 205–214. [Google Scholar] [CrossRef]
- Wilde, S.; Jiang, Y.; Tafoya, A.M.; Horsman, J.; Yousif, M.; Vazquez, L.A.; Roland, K.L. Salmonella-Vectored Vaccine Delivering Three Clostridium Perfringens Antigens Protects Poultry against Necrotic Enteritis. PLoS One 2019, 14. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, D.A.; Scarff, J.M.; Garcia, P.P.; Cassidy, S.K.B.; Di Giandomenico, A.; Waag, D.M.; Inzana, T.J.; Goldberg, J.B. Recombinant Salmonella Expressing Burkholderia Mallei LPS o Antigen Provides Protection in a Murine Model of Melioidosis and Glanders. PLoS One 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Salete, M.C.N.; Malak, K.; Poirier, T.P.; Stocker, B.A.D.; Beachey, E.H. Expression and Immunogenicity of a Streptococcal M Protein Epitope Inserted in Salmonella Flagellin. Infect Immun 1991, 59, 2158–2165. [Google Scholar] [CrossRef]
- Park, S.; Won, G.; Lee, J.H. An Attenuated Salmonella Vaccine Secreting Lawsonia intracellularis Immunogenic Antigens Confers Dual Protection against Porcine Proliferative Enteropathy and Salmonellosis in a Murine Model. J Vet Sci 2019, 20, e24. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, C.; Gu, J.; Yan, X.; Wang, B.; Cui, Z.; Sun, X.; Tong, C.; Feng, X.; Lei, L.; et al. Salmonella Typhimurium Strain Expressing OprF-OprI Protects Mice against Fatal Infection by Pseudomonas aeruginosa. Microbiol Immunol 2015, 59, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.; Byeon, H.; Lee, H.J. Immunologic Study and Optimization of Salmonella Delivery Strains Adhesin and Toxin Antigens for Protection against Progressive Rhinitis in a Murine m. The Canadian Journal of Veterinary Research 2014, 78, 297–303. [Google Scholar] [PubMed]
- Buckley, A.M.; Wang, J.; Hudson, D.L.; Grant, A.J.; Jones, M.A.; Maskell, D.J.; Stevens, M.P. Evaluation of Live-Attenuated Salmonella Vaccines Expressing Campylobacter Antigens for Control of C. Jejuni in Poultry. Vaccine 2010, 28, 1094–1105. [Google Scholar] [CrossRef]
- Łaniewski, P.; Kuczkowski, M.; Chrzastek, K.; Woźniak, A.; Wyszyńska, A.; Wieliczko, A.; Jagusztyn-Krynicka, E.K. Evaluation of the Immunogenicity of Campylobacter jejuni CjaA Protein Delivered by Salmonella enterica Sv. Typhimurium Strain with Regulated Delayed Attenuation in Chickens. World J Microbiol Biotechnol 2014, 30, 281–292. [Google Scholar] [CrossRef]
- Stabel, T.J.; Mayfield, J.E.; Tabatabai, L.B.; Wannemuehler1, M.J. Oral Immunization of Mice with Attenuated Salmonella Typhimurium Containing a Recombinant Plasmid Which Codes for Production of a 31-Kilodalton Protein of Brucella abortus. Infect Immun 1990, 58, 2048–2055. [Google Scholar] [CrossRef]
- Stabel, T.J.; Mayfield, J.E.; Tabatabai, L.B.; Wannemuehler1, M.J. Swine Immunity to an Attenuated Salmonella Typhimurium Mutant Containing a Recombinant Plasmid Which Codes for Production of a 31-Kilodalton Protein of Brucella abortus. Infect Immun 1991, 59, 2941–2947. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, M.; Luo, D.; Xing, L.; Wu, S.; Duan, Y.; Yang, P.; Wang, X. Protection of Mice from Brucella Infection by Immunization with Attenuated Salmonella enterica Serovar Typhimurium Expressing A L7/L12 and BLS Fusion Antigen of Brucella. Vaccine 2009, 27, 5214–5219. [Google Scholar] [CrossRef]
- Lalsiamthara, J.; Lee, J.H. Brucella Lipopolysaccharide Reinforced Salmonella Delivering Brucella Immunogens Protects Mice against Virulent Challenge. Vet Microbiol 2017, 205, 84–91. [Google Scholar] [CrossRef]
- Kim, W.K.; Moon, J.Y.; Cho, J.S.; Hur, J. Protective Efficacy by Various Doses of a New Brucellosis Vaccine Candidate Based on Salmonella Strains Expressing Brucella abortus BSCP31, Omp3b and Superoxide Dismutase against Brucellosis in Murine Model. Pathog Dis 2017, 75. [Google Scholar] [CrossRef]
- Kim, W.K.; Moon, J.Y.; Cho, J.S.; Park, B.Y.; Hur, J. Protective Efficacy of a Canine Brucellosis Vaccine Candidate Based on Live Attenuated Salmonella Expressing Recombinant Brucella BCSP31, Omp3b and SOD Proteins in Beagles. Journal of Veterinary Medical Science 2018, 80, 1373–1379. [Google Scholar] [CrossRef]
- Kim, W.-K.; Moon, J.-Y.; Cho, J.-S.; Hur, J. Protective Efficacy of a Brucella Vaccine Using a Salmonella-Based System Expressing Brucella Omp3b, BCSP31, and SOD proteins against Brucellosis in Korean Black Goats. The Canadian Journal of Veterinary Research 2019, 83, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Senevirathne, A.; Hewawaduge, C.; Lee, J.H. Live Vaccine Consisting of Attenuated Salmonella Secreting and Delivering Brucella Ribosomal Protein L7/L12 Induces Humoral and Cellular Immune Responses and Protects Mice against Virulent Brucella abortus 544 Challenge. Vet Res 2020, 51. [Google Scholar] [CrossRef]
- Stabel, T.J.; Mayfield, J.E.; Morfitt, D.C.; Wannemuehler, M.J. Oral Immunization of Mice and Swine with an Attenuated Salmonella choleraesuis [Δcya-12 Δ(Crp-Cdt)19] Mutant Containing a Recombinant Plasmid. Infect Immun 1993, 61, 610–618. [Google Scholar] [CrossRef]
- Ji, Z.; Shang, J.; Li, Y.; Wang, S.; Shi, H. Live Attenuated Salmonella enterica Serovar Choleraesuis Vaccine Vector Displaying Regulated Delayed Attenuation and Regulated Delayed Antigen Synthesis to Confer Protection against Streptococcus suis in Mice. Vaccine 2015, 33, 4858–4867. [Google Scholar] [CrossRef]
- Li, Y.A.; Chen, Y.; Du, Y. zhao; Guo, W.; Chu, D.; Fan, J.; Wang, X.; Bellefleur, M.; Wang, S.; Shi, H. Live-Attenuated Salmonella enterica Serotype Choleraesuis Vaccine with Regulated Delayed Fur Mutation Confer Protection against Streptococcus Suis in Mice. BMC Vet Res 2020, 16, 1–16. [Google Scholar] [CrossRef]
- Li, Y.A.; Sun, Y.; Fu, Y.; Zhang, Y.; Li, Q.; Wang, S.; Shi, H. Salmonella enterica Serovar Choleraesuis Vector Delivering a Dual-Antigen Expression Cassette Provides Mouse Cross-Protection against Streptococcus suis Serotypes 2, 7, 9, and 1/2. Vet Res 2022, 53, 46. [Google Scholar] [CrossRef]
- Zhou, G.; Tian, Y.; Tian, J.; Ma, Q.; Huang, S.; Li, Q.; Wang, S.; Shi, H. Oral Immunization with Attenuated Salmonella choleraesuis Expressing the P42 and P97 Antigens Protects Mice against Mycoplasma hyopneumoniae Challenge. Microbiol Spectr 2022, 10. [Google Scholar] [CrossRef]
- Liu, G.; Li, C.; Liao, S.; Guo, A.; Wu, B.; Chen, H. C500 Variants Conveying Complete Mucosal Immunity against Fatal Infections of Pigs with Salmonella enterica Serovar Choleraesuis C78-1 or F18+ Shiga Toxin-Producing Escherichia coli. Front Microbiol 2023, 14. [Google Scholar] [CrossRef]
- Liljebjelke, K.A.; Petkov, D.I.; Kapczynski, D.R. Mucosal Vaccination with a Codon-Optimized Hemagglutinin Gene Expressed by Attenuated Salmonella Elicits a Protective Immune Response in Chickens against Highly Pathogenic Avian Influenza. Vaccine 2010, 28, 4430–4437. [Google Scholar] [CrossRef]
- Jazayeri, S.D.; Ideris, A.; Zakaria, Z.; Omar, A.R. Attenuated Salmonella Typhimurium SV4089 as a Potential Carrier of Oral DNA Vaccine in Chickens. J Biomed Biotechnol 2012, 2012. [Google Scholar] [CrossRef]
- Rahman, M.M.; Uyangaa, E.; Han, Y.W.; Kim, S.B.; Kim, J.H.; Choi, J.Y.; Eo, S.K. Oral Co-Administration of Live Attenuated Salmonella enterica Serovar Typhimurium Expressing Chicken Interferon-α and Interleukin-18 Enhances the Alleviation of Clinical Signs Caused by Respiratory Infection with Avian Influenza Virus H9N2. Vet Microbiol 2012, 157, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri, S.D.; Ideris, A.; Zakaria, Z.; Yeap, S.K.; Omar, A.R. Improved Immune Responses against Avian Influenza Virus Following Oral Vaccination of Chickens with HA DNA Vaccine Using Attenuated Salmonella Typhimurium as Carrier. Comp Immunol Microbiol Infect Dis 2012, 35, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Hyoung, K.J.; Hajam, I.A.; Lee, J.H. A Consensus-Hemagglutinin-Based Vaccine Delivered by an Attenuated Salmonella Mutant Protects Chickens against Heterologous H7N1 Influenza Virus. Oncotarget 2017, 8. [Google Scholar] [CrossRef]
- Kim, J.H.; Hajam, I.A.; Lee, J.H. Oral Immunization with a Novel Attenuated Salmonella Typhimurium Encoding Influenza HA, M2e and NA Antigens Protects Chickens against H7N9 Infection. Vet Res 2018, 49, 1–11. [Google Scholar] [CrossRef]
- Hajam, I.A.; Kirthika, P.; Hewawaduge, C.; Jawalagatti, V.; Park, S.W.; Senevirathne, A.; Lee, J.H. Oral Immunization with an Attenuated Salmonella gallinarum Encoding the H9N2 Haemagglutinin and M2 Ectodomain Induces Protective Immune Responses against H9N2 Infection in Chickens. Avian Pathology 2020, 486–495. [Google Scholar] [CrossRef]
- Lee, B.M.; Han, Y.W.; Kim, S.B.; Rahman, M.M.; Uyangaa, E.; Kim, J.H.; Roh, Y.S.; Kim, B.; Han, S.B.; Hong, J.T.; et al. Enhanced Protection against Infection with Transmissible Gastroenteritis Virus in Piglets by Oral Co-Administration of Live Attenuated Salmonella enterica Serovar Typhimurium Expressing Swine Interferon-α and Interleukin-18. Comp Immunol Microbiol Infect Dis 2011, 34, 369–380. [Google Scholar] [CrossRef]
- Eo, S.K.; Yoon, H.A.; Aleyas, A.G.; Park, S.O.; Han, Y.W.; Chae, J.S.; Lee, J.H.; Song, H.J.; Cho, J.G. Systemic and Mucosal Immunity Induced by Oral Somatic Transgene Vaccination against Glycoprotein B of Pseudorabies Virus Using Live Attenuated Salmonella Typhimurium. FEMS Immunol Med Microbiol 2006, 47, 451–461. [Google Scholar] [CrossRef]
- Kim, S.J.; Bum Kim, S.; Woo Han, Y.; Uyangaa, E.; Hyoung Kim, J.; Young Choi, J.; Kim, K.; Kug Eo, S. Co-Administration of Live Attenuated Salmonella enterica Serovar Typhimurium Expressing Swine Interleukin-18 and Interferon-α Provides Enhanced Th1-Biased Protective Immunity against Inactivated Vaccine of Pseudorabies Virus. Microbiol Immunol 2012, 56, 529–540. [Google Scholar] [CrossRef]
- Yu, X.; Jia, R.; Huang, J.; Zhu, D.; Liu, Q.; Gao, X.; Lin, M.; Yin, Z.; Wang, M.; Chen, S.; et al. Attenuated Salmonella Typhimurium Delivering DNA Vaccine Encoding Duck Enteritis Virus UL24 Induced Systemic and Mucosal Immune Responses and Conferred Good Protection against Challenge. Vet Res 2012, 43, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Q.; Xiao, K.; Li, P.; Liu, Q.; Zhao, X.; Kong, Q. Attenuated Salmonella Typhimurium Delivery of a Novel DNA Vaccine Induces Immune Responses and Provides Protection against Duck Enteritis Virus. Vet Microbiol 2016, 186, 189–198. [Google Scholar] [CrossRef]
- Bhilare, K.D.; Jawalagatti, V.; Alam, M.J.; Chen, B.; Kim, B.; Lee, J.H.; Kim, J.H. Immune Response Following Safer Administration of Recombinant Salmonella Typhimurium Harboring ASFV Antigens in Pigs. Vet Immunol Immunopathol 2023, 259. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.; Pan, Z.; Yin, Y.; Geng, S.; Sun, L.; Jiao, X. Oral and Nasal DNA Vaccines Delivered by Attenuated Salmonella enterica Serovar Typhimurium Induce a Protective Immune Response against Infectious Bronchitis in Chickens. Clinical and Vaccine Immunology 2011, 18, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fang, W.; Li, J.; Fang, L.; Huang, Y.; Yu, L. Oral DNA Vaccination with the Polyprotein Gene of Infectious Bursal Disease Virus (IBDV) Delivered by Attenuated Salmonella Elicits Protective Immune Responses in Chickens. Vaccine 2006, 24, 5919–5927. [Google Scholar] [CrossRef]
- Pan, Y.; Jia, R.; Li, J.; Wang, M.; Chen, S.; Liu, M.; Zhu, D.; Zhao, X.; Wu, Y.; Yang, Q.; et al. Heterologous Prime-Boost: An Important Candidate Immunization Strategy against Tembusu Virus. Virol J 2020, 17. [Google Scholar] [CrossRef]
- Yang, H.; Cao, S.; Huang, X.; Liu, J.; Tang, Y.; Wen, X. Intragastric Administration of Attenuated Salmonella Typhimurium Harbouring Transmissible Gastroenteritis Virus (TGEV) DNA Vaccine Induced Specific Antibody Production. Vaccine 2009, 27, 5035–5040. [Google Scholar] [CrossRef]
- Kim, S.J.; Han, Y.W.; Rahman, M.M.; Kim, S.B.; Uyangaa, E.; Lee, B.M.; Kim, J.H.; Roh, Y.S.; Kang, S.H.; Kim, K.; et al. Live Attenuated Salmonella enterica Serovar Typhimurium Expressing Swine Interferon-α Has Antiviral Activity and Alleviates Clinical Signs Induced by Infection with Transmissible Gastroenteritis Virus in Piglets. Vaccine 2010, 28, 5031–5037. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Liao, X.; Huang, X.; Cao, S.; Wen, X.; Wen, Y.; Wu, R.; Liu, W. Construction of a Bivalent DNA Vaccine Co-Expressing S Genes of Transmissible Gastroenteritis Virus and Porcine Epidemic Diarrhea Virus Delivered by Attenuated Salmonella Typhimurium. Virus Genes 2016, 52, 354–364. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, X.; Zhang, X.; Cao, S.; Wen, X.; Wen, Y.; Wu, R.; Liang, E. Construction of an Oral Vaccine for Transmissible Gastroenteritis Virus Based on the TGEV N Gene Expressed in an Attenuated Salmonella Typhimurium Vector. J Virol Methods 2016, 227, 6–13. [Google Scholar] [CrossRef]
- Qing, Y.; Liu, J.; Huang, X.; Li, Y.; Zhang, Y.; Chen, J.; Wen, X.; cao, S.; Wen, Y.; Wu, R.; et al. Immunogenicity of Transmissible Gastroenteritis Virus (TGEV) M Gene Delivered by Attenuated Salmonella Typhimurium in Mice. Virus Genes 2016, 52, 218–227. [Google Scholar] [CrossRef]
- Xiong, D.; Song, L.; Zhai, X.; Geng, S.; Pan, Z.; Jiao, X. A Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Vaccine Candidate Based on the Fusion Protein of PRRSV Glycoprotein 5 and the Toll-like Receptor-5 Agonist Salmonella Typhimurium FljB. BMC Vet Res 2015, 11. [Google Scholar] [CrossRef]
- Zhi, Y.; Ji, H.J.; Guo, H.; Lim, J.H.; Byun, E.B.; Kim, W.S.; Seo, H.S. Salmonella Vaccine Vector System for Foot-and-Mouth Disease Virus and Evaluation of Its Efficacy with Virus-like Particles. Vaccines (Basel) 2021, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Steger, K.K.; Valentine, P.J.; Heron, F.; So, M.; Pauza, C.D. Recombinant, Attenuated Salmonella Typhimurium Stimulate Lymphoproliferative Responses to SIV Capsid Antigen in Rhesus Macaques. Vaccine 1999, 17, 923–932. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Wu, X.; Yu, L.; Chen, H.; Guo, H.; Zhang, M.; Li, H.; Liu, X.; Sun, S.; et al. Oral Immunisation of Mice with a Recombinant Rabies Virus Vaccine Incorporating the Heat-Labile Enterotoxin B Subunit of Escherichia coli in an Attenuated Salmonella Strain. Res Vet Sci 2012, 93, 675–681. [Google Scholar] [CrossRef]
- Ong, W.C.; Jin, H.; Jiang, C.; Yan, W.; Liu, M.; Chen, J.; Zuo, X.; Zheng, Z. Attenuated Salmonella Choleraesuis-Mediated RNAi Targeted to Conserved Regions against Foot-and-Mouth Disease Virus in Guinea Pigs and Swine. Vet Res 2010, 41. [Google Scholar] [CrossRef]
- Li, Y.A.; Sun, Y.; Fu, Y.; Zhang, Y.; Li, Q.; Wang, S.; Shi, H. Salmonella enterica Serovar Choleraesuis Vector Delivering a Dual-Antigen Expression Cassette Provides Mouse Cross-Protection against Streptococcus suis Serotypes 2, 7, 9, and 1/2. Vet Res 2022, 53, 46. [Google Scholar] [CrossRef]
- Ding, K.; Shang, K.; Yu, Z.H.; Yu, C.; Jia, Y.Y.; He, L.; Liao, C.S.; Li, J.; Zhang, C.J.; Li, Y.J.; et al. Recombinant-Attenuated Salmonella Pullorum Strain Expressing the Hemagglutinin-Neuraminidase Protein of Newcastle Disease Virus (NDV) Protects Chickens against NDV and Salmonella Pullorum Challenge. J Vet Sci 2018, 19, 232–241. [Google Scholar] [CrossRef]
- Layton, S.L.; Kapczynski, D.R.; Higgins, S.; Higgins, J.; Wolfenden, A.D.; Liljebjelke, K.A.; Bottje, W.G.; Swayne, D.; Berghman, L.R.; Kwon, Y.M.; et al. Vaccination of Chickens with Recombinant Salmonella Expressing M2e and CD154 Epitopes Increases Protection and Decreases Viral Shedding after Low Pathogenic Avian Influenza Challenge. Poult Sci 2009, 88, 2244–2252. [Google Scholar] [CrossRef]
- Tang, B.; Li, J.; Li, T.; Xie, Y.; Guan, W.; Zhao, Y.; Yang, S.; Liu, M.; Xu, D. Vaccines as a Strategy to Control Trichinellosis. Front Microbiol 2022, 13. [Google Scholar] [CrossRef]
- Hewitson, J.P.; Maizels, R.M. Vaccination against Helminth Parasite Infections. Expert Rev Vaccines 2014, 13, 473–487. [Google Scholar] [CrossRef]
- Chabalgoity, J.A.; Harrison, J.A.; Esteves, A.; Demarco De Hormaeche, R.; Ehrlich, R.; Anjam Khan, C.M.; Hormaeche, C.E. Expression and Immunogenicity of an Echinococcus granulosus Fatty Acid-Binding Protein in Live Attenuated Salmonella Vaccine Strains. Infect Immun 1997, 65, 2402–2412. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Z.; Yang, J.; Chen, X.; Cui, S.; Zhu, X. Oral Vaccination with Ts87 DNA Vaccine Delivered by Attenuated Salmonella Typhimurium Elicits a Protective Immune Response against Trichinella spiralis Larval Challenge. Vaccine 2010, 28, 2735–2742. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wang, Z.Q.; Liu, R.D.; Jiang, P.; Long, S.R.; Liu, L.N.; Zhang, X.Z.; Cheng, X.C.; Yu, C.; Ren, H.J.; et al. Oral Vaccination of Mice with Trichinella spiralis Nudix Hydrolase DNA Vaccine Delivered by Attenuated Salmonella Elicited Protective Immunity. Exp Parasitol 2015, 153, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Han, Y.; Jiang, P.; Yue, X.; Ren, H.N.; Sun, G.G.; Long, S.R.; Yu, C.; Cheng, X.C.; Cui, J.; et al. Oral Vaccination with Trichinella spiralis DNase II DNA Vaccine Delivered by Attenuated Salmonella Induces a Protective Immunity in BALB/c Mice. Vet Res 2018, 49. [Google Scholar] [CrossRef]
- Li, J.F.; Guo, K.X.; Qi, X.; Lei, J.J.; Han, Y.; Yan, S.W.; Jiang, P.; Yu, C.; Cheng, X.C.; Wang, Z.Q.; et al. Protective Immunity against Trichinella spiralis in Mice Elicited by Oral Vaccination with Attenuated Salmonella-Delivered TsSP1.2 DNA. Vet Res 2018, 49. [Google Scholar] [CrossRef]
- Müller-Schollenberger, V.; Beyer, W.; Schnitzler, P.; Merckelbach, A.; Roth, S.; Kalinna, B.H.; Lucius, R. Immunisation with Salmonella Typhimurium-Delivered Glyceraldehyde-3-Phosphate Dehydrogenase Protects Mice against Challenge Infection with Echinococcus multilocularis Eggs. Int J Parasitol 2001, 31, 1441–1449. [Google Scholar] [CrossRef]
- Xu, D.; Mcsorley, S.J.; Chatfield, S.N.; Dougant, G.; Liew, F.Y. Protection against Leishmania major Infection in Genetically Susceptible BALB/c Mice by GP63 Delivered Orally in Attenuated Salmonella Typhimurium (AroA-AroD-). Immunology 1995, 85, 1–7. [Google Scholar]
- Cong, H.; Gu, Q.M.; Jiang, Y.; He, S.Y.; Zhou, H.Y.; Yang, T.T.; Li, Y.; Zhao, Q. Oral Immunization with a Live Recombinant Attenuated Salmonella Typhimurium Protects Mice against Toxoplasma gondii. Parasite Immunol 2005, 27, 29–35. [Google Scholar] [CrossRef]
- Benitez, A.J.; McNair, N.; Mead, J.R. Oral Immunization with Attenuated Salmonella Enterica Serovar Typhimurium Encoding Cryptosporidium parvum Cp23 and Cp40 Antigens Induces a Specific Immune Response in Mice. Clinical and Vaccine Immunology 2009, 16, 1272–1278. [Google Scholar] [CrossRef]
- Chen, G.; Dai, Y.; Chen, J.; Wang, X.; Tang, B.; Zhu, Y.; Hua, Z. Oral Delivery of the Sj23LHD-GST Antigen by Salmonella Typhimurium Type III Secretion System Protects against Schistosoma japonicum Infection in Mice. PLoS Negl Trop Dis 2011, 5. [Google Scholar] [CrossRef]
- Lattemann, C.T.; Yan, Z.-X.; Matzen, A.; Meyer, T.F.; Apfel, H. Immunogenicity of the Extracellular Copper/Zinc Superoxide Dismutase of the Filarial Parasite Acanthocheilonema viteae Delivered by a Two-Phase Vaccine Strain of Salmonella Typhimurium. Parasite Immunlogy 1999, 21, 219–224. [Google Scholar] [CrossRef]
| Antigen (Organism) |
Salmonella Strain or plasmid |
Attenuation | Route/dose (CFU) |
Model | Immunity | Reference |
|---|---|---|---|---|---|---|
| SspH2, LipL32 (Leptospira spp.) | S. Typhimurium SL3261 | ΔaroA | O/1 × 107 | Rat | HI, MI, CI | [57] |
| S. Typhimurium SL3261 | ΔaroA | O/109 | Mice | HI, MI | [65] | |
| S. Typhimurium SL3261 | ΔaroA | O/1 × 109 | Swine | HI, MI, CI | [66] | |
| P97R1 (M. hyopneumoniae) | S. Typhimurium CS332 | ΔaroA | O/2 × 108; 2ª dose 3 × 108 | Mice | HI, MI, CI | [67] |
| S. Typhimurium CS332 | ΔaroA | O/2 × 108; 2ª dose 3 × 108 | Mice | HI, MI, CI | [68] | |
| K88ab (Escherichia coli) |
S. Typhimurium G30/pFM205 |
galE | O, IP/1 × 108 | Mice | HI | [69] |
| S. Typhimurium | Δlon ΔcpxR Δasd | O/1 × 108 | Mice | HI, MI | [70] | |
| S. Typhimurium | Δlon ΔcpxR Δasd | O/2 × 1010 | Pregnant sows and piglets | HI, MI | [71] | |
| K88ab, K88ac, K99, FasA, F41 (E. coli) |
S. ghost controlled expression of φX174 lysis gene E | - | O/primed and boosted 2 × 109, 2 × 1010, and 2 × 1011 | Pregnant sows and piglets | HI, MI | [63] |
| S. Typhimurium JOL912 | Δlon, ΔcpxR, Δasd | IM/1 × 108 | Mice | HI, CI, MI | [72] | |
| Stx2eB, FedF, FedA F18+ Shiga toxin (E. coli) | S. Typhimurium JOL1311 and JOL912 | Δasd, Δlon, ΔcpxR | IM/9 × 107 | Mice | HI, CI, MI | [73] |
| fliC F18+ Shiga toxin (E. coli) |
S. Typhimurium JOL1454, JOL1460, JOL1464 |
Δlon, ΔcpxR, Δasd | SC/3 × 107 | Mice | HI, CI, MI | [27] |
| APEC papA, papG, iutA, and clpG (E. coli) | S. Typhimurium JOL912 | Δlon, ΔcpxR, ΔasdA16 | O/1 x 107 | Chicken | HI, CI, MI | [74] |
| APEC papA, papG, iutA, and clpG (E. coli) | S. Typhimurium JOL912 | Δlon, ΔcpxR, ΔasdA16 | O/1 x 107 | Chicken | HI, CI, MI | [75] |
| APEC O-antigen (E. coli) | S. Typhimurium S100 | Δasd, Δcrp, Δcya, ΔrfbP | O/ × 109, IM/ 5.0 × 107 | Chicken | HI, MI | [76] |
| APEC PapA, CTB and LTB (E. coli) | S. Typhimurium χ8501 | hisG, Δcrp-28, ΔasdA16 | O/2 × 109 | Mice | HI, MI | [77] |
| APEC (E. coli) | S. Typhimurium χ8025 | Δasd | O/1 × 108 | Chicken | MI | [78] |
| tHP (Clostridium perfringens) | S. Typhimurium | Δasd | O/1 × 109 | Chicken | Intestinal colonization, BSG | [79] |
| tHP (C. perfringens) | S. Typhimurium χ9352 | Δasd, lacI | O/1.2 × 109 | Chicken | MI | [80] |
| α-toxin, NetB toxin, Fba (C. perfringens) |
S. Typhimurium χ11802 | Δasd, lacI | O/1 x 108 or 1 × 109 | Chicken | CI, MI | [81] |
| PLcC, GST-NetB (C. perfringens) | Salmonella vaccine (PIESV) χ11802 and χ12341 | asdA, murA | O/~5 × 108 | Chicken | NE Intestinal Lesion Scoring | [33] |
| O antigen (Burkholderia mallei) | S. Typhimurium SL326 | ΔaroA | IN/1 × 107 | Mice | HI, MI | [82] |
| M protein (Streptococcus pyogenes) | S. Typhimurium LB5000 | - | SC/Rabbit: 108 heat-killer bacteria or purified flagella; IP/ Mice: 1 × 106 to 2 × 106 live vaccine | Mice and Rabbit | HI | [83] |
| optA, optB, LfliC, Lhly (Lawsonia intracellularis) | S. Typhimurium JOL912 | Δasd | O/1 × 107 | Mice | HI, MI | [84] |
| Sip (Streptococcus agalactiae) | S. Typhimurium SL7207 | ΔaroA | IG/107, 108 and 109 | Fish | HI | [32] |
| F1, I2 (Pseudomonas aeruginosa) | S. Typhimurium LH430 | phoP/phoQ,Δasd | O and SC/ 2.0 × 108 to 2.0 × 1010 | Mice | HI, CI, MI | [85] |
| CP39, FimA, PtfA,ToxA (Pasteurella multocida) F1P2 (Bordetella bronchiseptica) | S. Typhimurium JOL912 | Δlon, ΔcpxR, Δasd | IN/1 × 105 | Mice | HI, MI | [86] |
| CjaA (Campylobacter jejuni) | S. Typhimurium LB5010 | ΔaroA, fliM, spaS, ssaU | O/1 × 108 | Chicken | HI, MI | [87] |
| CjaA (C. jejuni) | S. Typhimurium χ9718 | Δasd | O/1 × 108 | Chicken | MI | [88] |
| BCSP31 (Brucella abortus) | S. Typhimurium chi 4064 | Δcya, Δcrp | O/2 × 108 to 4x108 | Mice | HI, MI, Blatogenisis | [89] |
| BCSP31 (B. abortus) | S. Typhimurium chi 4064 | Δcya, Δcrp | O/1 × 1010 to 2 × 1010 | Crossbred swine | HI, MI, Blatogenisis | [90] |
| L7/L12, BLS (B. abortus) | S. Typhimurium X4072 | Δasd | O/1 × 109 | Mice | HI, CI, MI | [91] |
| BCSP31, Omp3b, SOD (B. abortus) | S. Typhimurium JOL912 | Δlon, ΔcpxR, Δasd | IP/1.2 × 106; O/ 1.2 × 109 | Mice | HI, CI | [29] |
| SOD, BLS, PrpA, Omp19 (B. abortus) | S. Typhimurium JOL912 and JOL1800 | Δlon, ΔcpxR, Δasd | O and IP/2 × 107 | Mice | CI, MI | [92] |
| BCSP31, Omp3b, SOD (B. abortus) | S. Typhimurium JOL911 and JOL912 | Δlon, ΔcpxR, Δasd | IP/1.2 × 104, 1.2 × 105 and 1.2 × 106 | Mice | HI, CI | [93] |
| BCSP31, Omp3b, and SOD (B. abortus) | S. Typhimurium pMMP65 | Δlon, ΔcpxR, Δasd | SC/3 × 109 | Dog | HI, CI | [94] |
| PrpA (B. abortus) |
S. Typhimurium JOL1818 and JOL1881 | Δlon, ΔcpxR, Δasd, ΔrfaL | IP/1 × 107 | Mice | HI, CI | [92] |
| SOD, BLS, PrpA, Omp19 (B. abortus) | S. Typhimurium JOL1800 | ∆lon, ∆cpxR, ∆asd | SC/5 × 109 and 5 × 1010 | Goat | HI, CI | [24] |
| BCSP31, Omp3b, and SOD (B. abortus) | S. Typhimurium JOL912 | Δlon, ΔcpxR, Δasd | SC/3 × 109 | Goat | HI, CI | [95] |
| L7/L12 (B. abortus) | S. Typhimurium JOL1800 | ∆lon, ∆cpxR, ∆asd, ∆rfaL | IM/107 | Mice | HI, MI | [96] |
| BCSP31 (B. abortus) |
S. Choleraesuis chi 3781 | ∆cpxR, ∆cya | O/Mice: 4 ×1010; Swine: 4 × 108 to 6 × 108 | Mice and crossbred swine | HI, MI, | [97] |
| 6-PGD (Streptococcus suis) | S. Choleraesuis rSC0011 | Δasd | O/1 ± 0.3 × 109 | Mice | HI, MI | [98] |
| Serotypes 2 and 7 (S. suis) | S. Choleraesuis rSC0016 | ΔsopB | O/ Suis: 1 ± 0.3 × 109; Mice: 1 ± 0.3 × 109 | Mice and Swine | HI, MI | [28] |
| SaoA (S. suis) |
S. Choleraesuis rSC0012 |
Δfur | O/1 ± 0.2 × 109 | Mice | HI, MI, CI | [99] |
| Serotypes 1/2, 2, 3, 7, 9 (S. suis) | S. Choleraesuis rSC0016 | ΔsopB, Δasd, lacl | O/1 ± 0.2 × 109 | Mice | HI, CI | [100] |
| P42, P97 (M. hyopneumoniae) | S. Choleraesuis rSC0016 | Δasd | O/109 | Mice | HI, MI, CI | [101] |
| F18+ Shiga toxin (E. coli) | S. Choleraesuis C520 |
crp, Δasd |
O/2 × 10 9 | Swine | HI, MI, CI | [102] |
| Antigen (Organism) |
Salmonella Strain or plasmid |
Attenuation | Route/dose (CFU) |
Model | Immunity | Reference |
|---|---|---|---|---|---|---|
| HA (AIV H5N1) | S. Typhimurium BRD509 |
ΔaroA, ΔaroD |
O/10 9 | Chicken | Hemagglutination inhibition | [103] |
| chIFN-a, chIL-18 (AIV H9N2) | S. Typhimurium χ8501 | hisG, Δcrp-28, ΔasdA16 | O/ 109 and 1011 | Chicken | CI, Hemagglutination inhibition, PCR | [105] |
| HA, NA, NP (AIV H5N1) |
S. Typhimurium SV4089 | Dam, ΔPhoP | O/109 | Chicken | PCR; FISH, and culturing on XLT4 | [104] |
| HA (AIV H5N1) | S. Typhimurium SV4089 | Dam, ΔPhoP | O, IM/ 109 | Chicken | CI, Hemagglutination inhibition, PCR | [106] |
| HA (AIV H9N2) | S. Typhimurium JOL912, JOL1800 | Δlon, ΔcpxR, Δasd | O/ 108 | Chicken | HI, Hemagglutination inhibition | [30] |
| HA (AIV H7N1) | S. Typhimurium JOL1863 | Δlon, ΔcpxR, Δasd | O, IN, IM/ 109 | Chicken | HI, MI, Hemagglutination inhibition | [107] |
| HA, M2, NA (LPAI H7N9) | S. Typhimurium JOL1800 | O antigen deficient | O/109 | Chicken | HI, CI, MI | [108] |
| H9N2 haemagglutinin, M2 (AIV H9N2) | S. Gallinarum JOL967 | Δlon, ΔcpxR, Δasd | O, IM/ 109 | Chicken | HI, CI, MI | [109] |
| swIFN-α, swIL-18 (TGEV) | S. Typhimurium 8501 |
hisG, Δcrp-28, ΔasdA16 |
O/ 1011 | Swine | Gross lesion; histopathological; qRT-PCR | [110] |
| Glycoprotein B (PrV) | S. Typhimurium SL7207 | ΔaroA | O/5 to 10 107 | Mice | HI, MI | [111] |
| swIL-18, swIFN-α (PrV) | S. Typhimurium χ8501 | hisG, Δcrp-28, ΔasdA16 | O/1011 | Swine | HI, CI | [112] |
| UL24 (DEV) | S. Typhimurium SL7207 | hisG46, DEL407, ΔaroA | O/1011, 1010 or 109 | Duck | HI, CI, MI | [113] |
| tgB, UL24 (DEV) | S. Typhimurium S739 | Δasd-66, Δcrp-24, Δcya-25 | O/1010; 1011 or 1012 | Duck | MI | [114] |
| CD2v/CTL/9GL, p54/p12/p72(ASFV) | S. Typhimurium JOL912 | Δlon, ΔcpxR, Δasd | IM/ 108 | Swine | HI, CI, MI | [115] |
| S1, N (IBV) | S. Typhimurium SL7207 | ΔaroA | O, IN/ 1 × 109, 5 × 109 or 1 × 1010 | Chicken | HI, MI | [116] |
| VP2/4/3 (IBVD) | S. Typhimurium | Dam, Phop | O/ 109, 108 or 107 | Chicken | HI | [117] |
| prM-E (TMUV) | S. Typhimurium SL7207 + adenovirus adjuvant with duck IL-2 | ΔaroA | O, IM/ 107, 1010 | Duck | HI, CI | [118] |
| N (TGEV) | S. Typhimurium SL7207 | ΔaroA | IG/107, 108 or 109 | Mice | HI, MI | [119] |
| swIFN-α (TGEV) | S. Typhimurium χ8501 | hisG, Δcrp-28, ΔasdA16 | O/ 109 or 1011 | Swine | qRT-PCR | [120] |
| S (TGEV, PEDV) | S. Typhimurium SL7207 | ΔaroA | O/ 1.6 × 1011 | Swine | HI, CI, MI | [121] |
| N (TGEV) | S. Typhimurium SL7207 | ΔaroA | O/1012 | Swine | HI, CI, MI | [122] |
| M (TGEV) | S. Typhimurium m SL7207 | ΔaroA | IG/109 | Mice | HI, CI, MI | [123] |
| Glycoprotein 5, TLR-5 (PRRSV) | S. Typhimurium SL7207, FljB | IP/ 50 μg | Mice | HI | [124] | |
| VP1 (FMDV) | S. Typhimurium KST0666 | Irradiated | IP/ 1 × 104 to 3 × 108 | Mice | HI, CI, MI, VN | [125] |
| p27 capsid (SIV) | S. Typhimurium PV4570 | ΔaroA | IM, IG/ 1010 | Rhesus macaques | HI, CI, MI | [126] |
| Glycoprotein (RV), LTB (E. coli) | S. Typhimurium LH430 | phoP, phoQ | O/5 × 1010 |
Mice | HI, CI | [127] |
| siRNA expressing 3D, VP4 and 2B (FMDV) |
S. Choleraesuis C500 |
IM/ Guinea pigs: 1.0 × 109; Swines: 5 × 109 | Guinea Pigs, Swine | SPB-ELISA | [128] | |
| Cap (PCV2) |
S. Choleraesuis rSC0016 |
ΔsopB, ΔasdA | O/109 | Mice | HI, CI, MI, qPCR, VN | [129] |
| HN (NDV) | S. Pullorum C79-13 | Δcrp, Δasd | O/109 | Chicken | HI, MI, Hemagglutination inhibition | [130]) |
| S1 (IBV) | S. Gallinarum JOL2068, JOL2077 | Δlon, ΔcpxR, Δasd | O/109 | Chicken | HI, MI | [23] |
| M2e, CD154 (AIV H5N1) | Salmonella enteritidis | ΔaroA, ΔhtrA | O/ 106 to 108 | Chicken | MI, Hemagglutination inhibition | [131] |
| Antigen (Organism) |
Salmonella Strain or plasmid |
Attenuation | Route/dose (CFU) |
Model | Immunity | Reference |
|---|---|---|---|---|---|---|
| Ts87 (Trichinella spiralis) | S. Typhimurium SL7207 | ΔaroA | O/108 | Mice | HI, CI, MI | [135] |
| Ag30 (T. spiralis) | S. Typhimurium SL3261 | ΔaroA | IN/109 | Mice | HI, CI, MI | [31] |
| TsNd (T. spiralis) | S. Typhimurium SL1344 | Δcya | O/108 | Mice | HI, CI, MI | [136] |
| DNase II (T. spiralis) | S. Typhimurium SL1344 | Δcya | O/108 | Mice | HI, CI, MI | [137] |
| rTsSP1.2 (T. spiralis) | S. Typhimurium SL1344 | Δcya | O/108 | Mice | HI, CI, MI | [138] |
| FABP (Echinococcus granulosus) | S. Typhimurium SL3261 | ΔaroA | IV/106, O/4 × 109 | Mice | HI, CI, MI | [134] |
| FABP (E. granulosus) | S. Typhimurium LVR01 | ΔaroC | O/ 5 × 1010 | Dog | HI, CI, MI | [48] |
| EmGAPDH (Echinococcus multilocularis) | S. Typhimurium | O/2 × 1010 or IP: 5 × 105 | Mice | Western blotting | [139] | |
| gp63 (Leishmania major) | S. Typhimurium BRD509 | ΔaroA, ΔaroD | O/ 1 × 1010 | Mice | HI, CI | [140] |
| SAG, SAG2 (Toxoplasma gondii) | S. Typhimurium BRD509 | ΔaroA, ΔaroD | IG/109 | Mice | HI, CI | [141] |
| Tachyzoite and bradyzoite proteins (T. gondii) | S. Typhimurium BRD509 | ΔaroA, ΔaroD | O, IN, IM/1 to 5 × 109 | Mice | HI, CI, MI | [22] |
| Cp23, Cp40 (Cryptosporidium parvum) |
S. Typhimurium SL3261 and LB5010 | ΔaroA, galE | IG/5 × 109 | Mice | HI, MI | [142] |
| Sj23LHD-GST (Schistosoma japonicum) | S. Typhimurium VNP20009 | purI, msbB | O/109 | Mice | HI, CI | [143] |
| EC-SOD (Acanthocheilonema viteae) | S. Typhimurium SL3261 | ΔaroA | O/5 × 108 | Jird | HI | [144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
