Submitted:
06 October 2024
Posted:
07 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Natural Sources of Antioxidants
2.1. Marine Resources of Antioxidants
2.2. Fruit and Vegetable Products
2.3. Medicinal Plants
2.4. Agro-Industry Waste
3. Extraction Techniques of Antioxidants
| Sources | Origin | Phytochemical class | Antioxidants | References |
|---|---|---|---|---|
|
Marine sources |
-Brown algae | -Polyphenols | - Phlorotannins | [31] |
| - Undaria pinnatifida - Laminaria japonica - Sargassum siliquastrum |
- Carotenoids | - Fucoxanthin |
[39; 40] |
|
| - Brown algae (Phaeophyceae) -Red algae (Rhodophyceae) -Green algae (Chlorophyceae) |
Sulfated polysaccharides (SPs) | - Fucoidan - Carrageenan -Ulvan |
[18] |
|
|
Medicinal plants |
Cistus monspeliensis | Phenolics acid | Caffeoyl shikimic acid, 3,4- dihydroxybenzoic acid-O- hexoside |
[64] |
| Flavonoids | Amentoflavone | |||
| Globularia alypum | Phenolics acid | Sinapic acid derivative |
[64] |
|
| Flovonoids | Myricetin, Kaempfreol glucoside, Liquiritin, Amentoflavone | |||
| Aspilia africana | Phenolics acid | Chlorogenic acid | [98] | |
| Vitamins | ascorbic acid, riboflavin, thiamine | |||
|
fruit |
Apple | Sterols | Campesterol, β-sitosterol |
[99,100,101,102,103] |
| Anthocyanins | Cyanidin, delphinidin | |||
| Flavanols | Catechin | |||
| Flavanols | Quercetin, kaemferol | |||
| Dihydrochalcones | Phloretin | |||
| Hydroxycinnamic acids | Ferulic acid, chlorogenic acid | |||
| Salicylates | ||||
| Berries | Hydroxybenzoic acids | Gallic acid |
[54,99] |
|
| Flavanols | Catechin | |||
| Flavonols | Quercetin, kaempferol | |||
| Anthocyanins | Cyanidin, delphinidin | |||
| Stilbenoids | Resveratrol, pterostilbene, piceatannol | |||
| Banana | Hydroxybenzoic acids | Gallic acid |
[54,99,100,101,102,103] |
|
| Flavanols | Catechin, epicatechin, epigallocatechin | |||
| Flavonols | Myricetin | |||
| Lignans | Pinoresinol | |||
| Sterols | Campesterol | |||
| vegetable | Broccoli | Sterols | Campesterol, β-sitosterol |
[99,100,104,105,106] |
| Carotenoids | α-carotene, β-carotene, lycopene, xanthophylls | |||
| Quinones | Phylloquinone, menadione | |||
| Tocopherols & tocotrienols |
α-tocopherol, β-tocopherol, α-T3, β-T3, α-tocotrienol, β- tocotrienols | |||
| Sterols | Sitosterol, β-sitosterol, sitostanol, campesterol, brassicaterol, stigmasterol, campestanol | |||
| Anthocyanins | Cyanidin, | |||
| Condensed tannins | Procyanidin A1, procyanidin B2 | |||
| Glucosinolates | Progoitrin, sinigrin, glucoiberin, glucoraphanin, glucoalyssin, gluconasturtiin, gluconapin | |||
| Onion | Glycoalkaloids | α-solamargine, α-solasonine |
[99] |
|
| Sterols | Campesterol, β-sitosterol | |||
| Thiosulfinates | Allicin | |||
| Anthocyanins | Cyanidin, delphinidin | |||
| Flavonols | Quercetin, kaempferol | |||
| Spinach | Phenolic terpenes | Vitamin E | [99] | |
| Carotenoids | α-carotene, β-carotene, lycopene | |||
| Brussels sprouts | Carotenoid | β-carotene |
[104,105,106,107,108,109,110,111] |
|
| Tocopherols and tocotrienols | α-tocopherol, β-tocopherol, α-T3, β-T3, α-tocotrienol, β- tocotrienols | |||
| Glucosinolates | Progoitrin, sinigrin, glucoiberin, glucoraphanin, glucoalyssin, gluconapin, gluconasturtiin | |||
| Agro-industry waste | Coffee | Anthocyanins | Delphinidin 3-O-(6′′-acetyl-glucoside), Peonidin 3-O-(6′′-acetyl-glucoside), Cyanidin 3-O-(6′′-malonyl-glucoside) |
[63] |
| Catechins | (+)-Catechin | |||
| Flavones | Apigenin | |||
| Hydroxybenzoic acids | Gallic acid 4-O-glucoside, Gallic acid 3-O-gallate, Gallic acid | |||
| Hydroxycinnamic acids | Caffeoyl aspartic acid, Caffeic acid 4-O-glucoside, Chlorogenic acid | |||
| Onion husks | Flavonols | Quercetin, 3′-Methoxy-4′,5,7-trihydroxyflavonol, Laricitrin |
[112] |
|
| Flavanonols | Taxifolin | |||
| Flavonoid-O-glycosides | Quercetin-3,4′-O-di--glucoside, Isoquercitrin | |||
| Isoflavones | Tectorigenin |
4. Antioxidant Properties
5. Use of Antioxidants in Livestock Production and Their Effect on Animal Health, Performance, and Product Quality
5.1. Ruminants
5.2. Poultry
5.3. Pigs
5.4. Horses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Manuelian, Carmen L., Pitino, Rosario, Simoni, Marica, et al. Plant feed additives as natural alternatives to the use of synthetic antioxidant vitamins on livestock mammals’ performances, health, and oxidative status: A review of the literature in the last 20 years. Antioxidants, 2021, 10 (9):1461. [CrossRef]
- Rituparna Banerjee, Arun K. Verma, Mohammed Wasim Siddiqui, Natural Antioxidants: Applications in Foods of Animal Origin. Agriculture & Allied Sciences. 2017, E-Book ISBN: 978-1-315-36591-6.
- Abuajah CI, Ogbonna AC, Osuji CM. Functional components and medicinal properties of food: a review. J Food Sci Technol. 2015, 52:2522–2529. [CrossRef]
- Corino C, Rossi R. Antioxidants in Animal Nutrition. Antioxidants (Basel). 2021 Nov 25;10(12):1877. [CrossRef]
- Zehiroglu C, Ozturk Sarikaya SB. The importance of antioxidants and place in today’s scientific and technological studies. J Food Sci Technol. 2019 Nov, 56(11):4757-4774. [CrossRef]
- Guo Z., Gao S., Ouyang J., Ma L., Bu D. Impacts of Heat Stress-Induced Oxidative Stress on the Milk Protein Biosynthesis of Dairy Cows. Animals. 2021, 11:726. [CrossRef]
- Poljšak B, Dahmane R. Free radicals, and extrinsic skin aging. Dermatol Res Pract. 2012, 135206. [CrossRef]
- Christaki, E.; Giannenas, I.; Bonos, E.; Bonos, E.; Florou-Paneri, P. Innovative uses of aromatic plants as natural supplements in nutrition. In Feed Additives: Aromatic Plants and Herbs in Animal Nutrition and Health; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2019, ISBN 9780128147016.
- Buchet A., Belloc C., Leblanc-Maridor M., Merlot E. Effects of age and weaning conditions on blood indicators of oxidative status in pigs. PLoS ONE. 2017,12: e0178487. [CrossRef]
- Ostapchuk P.S., Zubochenko D.V., Kuevda T.A. The role of antioxidants and their use in animal breeding and poultry farming (review). Agricultural Science Euro-Northeast. 2019, 20(2):103-117. [CrossRef]
- Asif, M. “Chemistry and antioxidant activity of plants containing some phenolic compounds.” (2015).
- Corino C, Rossi R. Antioxidants in Animal Nutrition. Antioxidants (Basel). 2021, Nov 25; 10(12):1877. [CrossRef]
- Díaz, S., & Malhi, Y. Biodiversity: Concepts, patterns, trends, and perspectives. Annual Review of Environment and Resources, 2022, 47.
- Martins, A., Vieira, H., Gaspar, H., & Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Marine drugs, 2014, 12(2), 1066-1101. [CrossRef]
- Li, Y.; Ai, Q.; Mai, K.; Xu, W.; Cheng, Z. Effects of the partial substitution of dietary fish meal by two types of soybean meals on the growth performance of juvenile Japanese seabass, Lateolabrax japonicus (Cuvier 1828). Aquactic. Research 2012, 43, 458–466. [CrossRef]
- Wijesekara, I., Senevirathne, M., Li, Y. X., & Kim, S. K. Functional ingredients from marine algae as potential antioxidants in the food industry. Handbook of Marine Macroalgae, 2012. 398-402.
- Pereira, L. Biological, and therapeutic properties of the seaweed polysaccharides. International Biology Review, 2018. 2(2). [CrossRef]
- Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Camara, R. B. G., Nobre, L.T.D.B. Costa, M.S.S.P. Almeida-Lima, J., Farias, E.H.C., Leite, E.L., Rocha, H.A.O. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine and Pharmacotherapy, 2010, 64, 21−28. [CrossRef]
- Qi, H.; Huang, L.; Liu, X.; Liu, D.; Zhang, Q.; Liu, S. Antihyperlipidemic activity of high sulfate content derivative of polysaccharide extracted from Ulva pertusa (Chlorophyta). Carbohydrate Polymer, 2012, 87, 1637–1640. [CrossRef]
- Samar, J., Butt, G. Y., Shah, A. A., Shah, A. N., Ali, S., Jan, B. L., Hussaan, M. Physicochemical and biological activities from Different Extracts of Padina antillarum (Kützing) Piccone. Frontiers in Plant Science, 2022. 13.
- Yao, W., Qiu, H. M., Cheong, K. L., & Zhong, S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. International Journal of Biological Macromolecules. 2022, 221, 472-485. [CrossRef]
- Mourao, P. A. A carbohydrate-based mechanism of species recognition in sea urchin fertilization. Brazilian Journal of Medical and Biological Research, 2007, 40, 5−17. [CrossRef]
- Chevolot, L., Foucault, A., Chaubet, F., Kervarec, N., Sinquin, C., Fisher, A. M., & Boisson-Vidal, C. Further data on the structure of brown seaweed fucans: Relationships with anticoagulant activity. Carbohydrate Research, 1999. 319, 154−165. [CrossRef]
- Schaeffer, D. J., Krylov, V. S. Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicology and Environmental Safety, 2000, 45, 208−227. [CrossRef]
- Leiro, J. M., Castro, R., Arranz, J. A., & Lamas, J. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. International Immunopharmacology, 2007, 7, 879−888. [CrossRef]
- Rocha, H. A., Franco, C. R., Trindade, E. S., Veiga, S. S., Leite, E. L., Nader, H. B., & Dietrich, C. P.. Fucan inhibit Chinese hamster ovary cell (CHO) adhesion to fibronectin by binding to the extracellular matrix. Planta Medica, 2005. 71,:628−633. [CrossRef]
- Ragan, M.A., & Glombitza, K.W. Handbook of physiological methods (pp. 129−241). Cambridge: Cambridge University Press. 1986.
- Wijesekara, I., Yoon, N. Y., & Kim, S. K. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. Biofactors, 2010. 36(6): 408-414. [CrossRef]
- Kim, S. K., & Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. Journal of Functional Foods. 2010; 2(1):1-9. [CrossRef]
- Heo, S. J., Park, E. U., Lee, K. W., & Jeon, Y. J. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresource Technology, 96, 1613−1623 potential health benefits. Biofactors, 2005. 36, 408−414 . [CrossRef]
- Li, Y., Qian, Z. J., Ryu, B. M., Lee, S. H., Kim, M. M., & Kim, S. K. Chemical components and its antioxidant properties in vitro: An edible marine brown alga, Ecklonia cava. Bioorganic and Medicinal Chemistry, 2009. 17, 1963−1973. [CrossRef]
- Artan, M., Li, Y., Karadeniz, F., Lee, S. H., Kim, M. M., & Kim, S. K. Anti-HIV-1 activity of phloroglucinol derivative, 6, 6′-bieckol, from Ecklonia cava. Bioorganic and Medicinal Chemistry, 2008. 16, 7921−7926. [CrossRef]
- Kong, C. S., Kim, J. A., Yoon, N. Y., & Kim, S. K. Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food and Chemical Toxicology, 2009. 47:1653−1658 . [CrossRef]
- Jung, W. K., Ahn, Y. W., Lee, S. H., Choi, Y. H., Kim, S. K., Yea, S. S., Choi, I., Park S.G., Seo, S.k., Lee, S.W. & Choi, I.W. Ecklonia cava ethanolic extracts inhibit lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV2 microglia via the MAP kinase and NF-kB pathways. Food and Chemical Toxicology, 2009. 47:410−417.
- Zhang, R., Kang, K. A., Piao, M. J., Ko, D. O., Wang, Z. H., Lee, I. K., Kim. B.J., Jeong, I.Y., Shin, T., Park, J.W., Lee, N.H., & Hyun, J.w. Eckol protects V79-4 lung fibroblast cells against ύ-ray radiation-induced apoptosis via the scavenging of reactive oxygen species and inhibiting of the c-Jun NH2-terminal kinase pathway. European Journal of Pharmacology, 2008. 591:114−123.
- Jung, H. A., Hyun, S. K., Kim, H. R., & Choi, J. S. Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fisheries Science, 2006. 72:1292−1299 . [CrossRef]
- Rao, A. V., & Rao, L. G. Carotenoids, and human health. Pharmacological Research, 2007. 55:207−216.
- Nishida, Y., Yamashita, E., & Miki, W. Quenching activities of common hydrophilic and lipophilic antioxidants against singlet oxygen using chemiluminescence detection system. Carotenoid Science, 2007. 11:16−20.
- Sachindra, N. M., Sato, E., Maeda, H., Hosokawa, M., Niwano, Y., Kohno, M., et al. (2007). Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. Journal of Agricultural and Food Chemistry, 2007. 55:8516−8522 . [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols, and Human Health: The Role of Bioavailability. Nutrients, 2021, 13:273. [CrossRef]
- Sawicki, T.; B ˛aczek, N.; Wiczkowski, W. Betalain profile, content, and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Foods, 2016. 27:249–261.
- Kazimierczak, R.; Górka, K.; Hallmann, E.; Srednicka-Tober, D.; Lempkowska-Gocman, M.; Rembiałkowska, E. The comparison of the bioactive compounds in selected leafy vegetables coming from organic and conventional production. Journal Agricultural Engineering Research, 2016, 61:218–223.
- Eastwood, M. A. Interaction of Dietary Antioxidants in Vivo: How Fruit and Vegetables Prevent Disease? Q. J. Med., 1999. 92:527–530.
- WHO. Fruit and Vegetables for Health; Report of a Joint FAO/WHO Workshop; Geneva, Switzerland: World Health Organization, 2004, 7–9.
- Serna-Saldivar, S. O. Cereal Grains: Properties, Processing and Nutritional Attributes; Taylor and Francis Group: Boca Raton, FL, 2010. 606–609.
- Radovich, T. J. K. Biology and Classification of Vegetables. In Handbook of Vegetables and Vegetable Processing; Sinha, N. K., Hui, Y. H., Evranuz, E. O., Siddiq, M., Ahmed, J., Eds.; Blackwell Publishing: Iowa, 2011. 43–47.
- Pisoschi, A. M., & Negulescu, G. P. Methods for Total Antioxidant Activity Determination: A Review. Biochemistry & Analytical Biochemistry, 2012; 01(01). [CrossRef]
- Landete, J. M. Dietary Intake of Natural Antioxidants: Vitamins and Polyphenols. Crit. Rev. Food. Sci. Nutr. 2013, 53(7), 706–721. [CrossRef]
- Barret, D. M.; Somogyi, L.; Ramaswamy, H. Processing Fruits Science Technology; CRC Press: Florida, 2005; pp 5–6.
- Kaur, C. and Kapoor, H.C. Antioxidants in Fruits and Vegetables—The Millennium’s Health. International Journal of Food Science and Technology, 2001, 36,:703-725. [CrossRef]
- Niki, E.; Noguchi, N. Evaluation of Antioxidant Capacity. What Capacity Is Being Measured by Which Method? IUBMB Life. 2000, 50(4–5), 323–329. [CrossRef]
- Cook, N. C.; Samman, S. Flavonoids—chemistry, Metabolism, Cardioprotective Effects, and Dietary Sources. Nutr Biochem. 1996, 7, 66–76. [CrossRef]
- Hollman, P. C. H.; Hertog, M. G. L.; Katan, M. B. Analysis and Health Benefits of Flavonoids. Food Chem. 1996. 57:43–46. [CrossRef]
- Lu Y, Zhao† YP, Wang ZC, Chen SY, Fu* CX. Composition and antimicrobial activity of the essential oil of Actinidia macrosperma from China. Nat Prod Res. 2007, 21:227–233.
- Lewis K, Ausubel FM. Prospects for plant-derived antibacterials. Nat Biotechnol. 2006. 24:1504–1507. [CrossRef]
- Kukula-Koch W, Aligiannis N, Halabalaki M, Skaltsounis AL, Glowniak K, Kalpoutzakis E. Influence of extraction procedures on phenolic content and antioxidant activity of Cretan barberry herb. Food Chem. 2013,138(1):406-13. [CrossRef]
- Hickl J, Argyropoulou A, Sakavitsi ME, Halabalaki M, Al-Ahmad A, Hellwig E, Aligiannis N, Skaltsounis AL, Wittmer A, Vach K. Mediterranean herb extracts inhibit microbial growth of representative oral microorganisms and biofilm formation of Streptococcus mutans. PLoS ONE. 2018. 13: e0207574. [CrossRef]
- Agnieszka Stępień A, David Aebisher D, Dorota Bartusik-Aebisher D. Biological properties of Cistus species. Eur J Clin Exp Med. 2018. 2:27–132. [CrossRef]
- Nefzi, K., Charfi, K., Maaroufi, A., Hosni, K., Msaada, K., Baraket, M., & Nasr, Z. Biological activities and determination of the mode of action of Tunisian Globularia alypum and Cistus monspeliensis ethanolic extracts. International Journal of Environmental Health Research, 2022. 1-11. [CrossRef]
- Ogbuehi, G. U. I. and J. B. O. Echeme, “Chemical constituents of methanol leaf extract of Aspilia africana C.D. Adams by GC MS,” International Journal of Advanced Research in Chemical Science, 2018. vol. 5, no. 10, pp. 21–29.
- Okello, D. and Y. Kang, “Exploring antimalarial herbal plants across communities in Uganda based on electronic data,” Evidence-Based Complementary and Alternative Medicine, v2019, Article ID 3057180,. [CrossRef]
- Okello, D., J. Lee, and Y. Kang, “Ethnopharmacological potential of Aspilia africana for the treatment of inflammatory diseases,” Evidence-Based Complementary and Alternative Medicine, 2020, Article ID 8091047, 11 pages, 2020.
- Yaashikaa, P. R., Kumar, P. S., & Varjani, S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresource Technology, 2022. 343:126126. [CrossRef]
- Macías-Garbett, R., Sosa-Hernández, J. E., Iqbal, H. M., Contreras-Esquivel, J. C., Chen, W. N., Melchor-Martínez, E. M., & Parra-Saldívar, R. Combined Pulsed Electric Field and Microwave-Assisted Extraction as a Green Method for the Recovery of Antioxidant Compounds with Electroactive Potential from Coffee Agro-Waste. Plants, 2022. 11(18), 2362. [CrossRef]
- Rodrigues, F.; Gaspar, C.; Palmeira-de-Oliveira, A.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B.P.P. Application of Coffee Silverskin in Cosmetic Formulations: Physical/Antioxidant Stability Studies and Cytotoxicity Effects. Drug Dev. Ind. Pharm. 2016, 42, 99–106. [CrossRef]
- Widiputri, D.I.; Wijaya, S.; Kusumocahyo, S.P. Development of Skin Lotion Containing Antioxidant Extract from Coffee Pulp and Study on Its Stability. IOP Conf. Ser. Mater. Sci. Eng. 2020, 742, 012020. [CrossRef]
- Hejna, A.; Barczewski, M.; Kosmela, P.; Mysiukiewicz, O.; Kuzmin, A. Coffee Silverskin as a Multifunctional Waste Filler for High-Density Polyethylene Green Composites. J. Compos. Sci. 2021, 5, 44. [CrossRef]
- Malara, A.; Paone, E.; Frontera, P.; Bonaccorsi, L.; Panzera, G.; Mauriello, F. Sustainable Exploitation of Coffee Silverskin in Water Remediation. Sustainability, 2018, 10, 3547. [CrossRef]
- Torres Castillo, N.E.; Ochoa Sierra, J.S.; Oyervides-Muñoz, M.A.; Sosa-Hernández, J.E.; Iqbal, H.M.N.; Parra-Saldívar, R.; Melchor-Martínez, E.M. Exploring the Potential of Coffee Husk as Caffeine Bio-Adsorbent—A Mini-Review. CSCEE 2021, 3, 100070. [CrossRef]
- Echeverria, M.C.; Nuti, M. Valorisation of the Residues of Coffee Agro-Industry: Perspectives and Limitations. Open Waste Manag. J. 2017, 10, 13–22. [CrossRef]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Barbero, G.F.; Palma, M. Development of Optimized Ultrasound-Assisted Extraction Methods for the Recovery of Total Phenolic Compounds and Anthocyanins from Onion Bulbs. Antioxidants, 2021a, 10, 1755. [CrossRef]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Carrera, C.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Flavonol Composition and Antioxidant Activity of Onions (Allium cepa L.) Based on the Development of New Analytical Ultrasound-Assisted Extraction Methods. Antioxidants, 2021b, 10, 273. [CrossRef]
- Celano, R.; Docimo, T.; Piccinelli, A.L.; Gazzerro, P.; Tucci, M.; Di Sanzo, R.; Carabetta, S.; Campone, L.; Russo, M.; Rastrelli, L. Onion Peel: Turning a Food Waste into a Resource. Antioxidants, 2021, 10, 304. [CrossRef]
- Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological Properties and Bioactive Components of Allium cepa L.: Focus on Potential Benefits in the Treatment of Obesity and Related Comorbidities. Molecules, 2019, 24, 119. [CrossRef]
- Benito-Román, Ó.; Blanco, B.; Sanz, M.T.; Beltrán, S. Subcritical Water Extraction of Phenolic Compounds from Onion Skin Wastes (Allium cepa cv. Horcal): Effect of Temperature and Solvent Properties. Antioxidants 2020, 9, 1233.
- Cebin, A.V.; Šeremet, D.; Mandura, A.; Martinić, A.; Komes, D. Onion Solid Waste as a Potential Source of Functional Food Ingredients. Eng. Power, 2020, 15, 7–13.
- Milea, Ș.A.; Aprodu, I.; Enachi, E.; Barbu, V.; Râpeanu, G.; Bahrim, G.E.; Stănciuc, N. Whey Protein Isolate-Xylose Maillard-Based Conjugates with Tailored Microencapsulation Capacity of Flavonoids from Yellow Onions Skins. Antioxidants, 2021, 10, 1708. [CrossRef]
- Barba FJ, Zhu Z, Koubaa M, Sant’Ana AS, Orlien V. Green Alternative Methods for the Extraction of Antioxidant Bioactive Compounds from Winery Wastes and By-Products: A Review. Trends in Food Science & Technology, 2016 49:96e109. [CrossRef]
- Wang L., Weller C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006; 17:300–312. [CrossRef]
- Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants. 2021, 10(9):1465. [CrossRef]
- Rodrigues S., Fernandes F.A.N., de Brito E.S., Sousa A.D., Narain N. Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Ind. Crops Prod. 2015; 69:400–407, 2015, 02.059). [CrossRef]
- Shortle E., O’Grady M.N., Gilroy D., Furey A., Quinn N., Kerry J.P. Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates. Meat Sci. 2014; 98:828–834, 2014, 07.001. [CrossRef]
- Soquetta, M.B.; Terra, L.D.M.; Bastos, C.P. Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA-J. Food 2018, 16, 400–412. [CrossRef]
- Alrugaibah, M.; Yagiz, Y.; Gu, L. Use natural deep eutectic solvents as efficient green reagents to extract procyanidins and anthocyanins from cranberry pomace and predictive modeling by RSM and artificial neural networking. Sep. Purifi. Technol. 2021, 255, 117720 . [CrossRef]
- Harbourne, Niamh, Marete, Eunice, Jacquier, Jean Christophe, et al. Conventional extraction techniques for phytochemicals. Handbook of plant food phytochemicals: Sources, stability, and extraction, 2013, 397-411.
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci. Technol, 2016, 49, 96–109. [CrossRef]
- Heleno, Sandrina A., Diz, Patrícia, Prieto, M. A., et al. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chemistry, 2016, vol. 197, p. 1054-1063. [CrossRef]
- Chaisuwan, V., Dajanta, K., & Srikaeo, K. Effects of extraction methods on antioxidants and methoxyflavones of Kaempferia parviflora. Food Research, 2022. 6(3), 374-381. [CrossRef]
- Routray, W. and Orsat, V. Microwave-assisted extraction of flavonoids: A review. Food and Bioprocess Technology, 2012. 5(2), 409–424. https:// doi.org/10.1007/s11947-011-0573-z.
- Esclapez M.D., Garcia-Perez J.V., Mulet A., Carcel J.A. Ultrasound-assisted extraction of natural products. Food Eng. Rev, 2011, 3:108–120. [CrossRef]
- Paes J., Dotta R., Barbero G.F., Martínez J. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J. Supercrit. Fluids. 2014; 95:8–16. [CrossRef]
- Hidalgo GI, Almajano MP. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants. 2017,6(1):7. PMID: 28106822; PMCID: PMC5384171. [CrossRef]
- Kazemi M., Karim R., Mirhosseini H., Hamid A.A. Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: Punicalagin and hydroxybenzoic acids. Food Chem. 2016, 206:156–166. [CrossRef]
- Dahmoune F., Nayak B., Moussi K., Remini H., Madani K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. Leaves. Food Chem. 2015, 166:585–595. [CrossRef]
- Zhang H.F., Yang X.H., Wang Y. Microwave assisted extraction of secondary metabolites from plants: Status and future directions. Trends Food Sci. Technol. 2011, 22:672–688. [CrossRef]
- Alexandre, A. M. R. C., Serra, A. T., Matias, A. A., et al. Supercritical fluid extraction of Arbutus unedo distillate residues–Impact of process conditions on the antiproliferative response of extracts. Journal of CO2 Utilization, 2020, vol. 37, p. 29-38.
- Chaves, Jaísa Oliveira, De Souza, Mariana Corrêa, DA SILVA, Laise Capelasso, et al. Extraction of flavonoids from natural sources using modern techniques. Frontiers in Chemistry, 2020, vol. 8, p. 507887.
- Okello, D., Chung, Y., Kim, H., Lee, J., Rahmat, E., Komakech, R., ... & Kang, Y. (2021). Antioxidant activity, polyphenolic content, and FT-NIR analysis of different aspilia africana medicinal plant tissues. Evidence-Based Complementary and Alternative Medicine, 2021. [CrossRef]
- Van Breda, S. G. J.; de Kok, T. M. C. M. Smart Combinations of Bioactive Compounds in Fruits and Vegetables May Guide New Strategies for Personalized Prevention of Chronic Diseases. Mol. Nutr. Food Res. 2018, 62, 1700597.
- Kaur, C.; Kapoor, H. C. Antioxidants in Fruits, and Vegetables-the Millennium’s Health. Int. J. Food Sci. Technol. 2001, 36, 703–725. 10.1046/j.1365-2621.2001. 00513.x.
- Arts, I. C. W.; van de Putte, B.; Hollman, P. C. H. Catechin Contents of Foods Commonly Consumed in the Netherlands. 1. Fruits, Vegetables, Staple Foods, and Processed Foods. J. Agr. Food Chem. 2000, 48, 1748–1751.
- Pascual-teresa de, S.; Santos-Buelga, C.; Rivas-Gonzalo, J. C. Quantitative Analysis of Flavan-3-ols in Spanish Foodstuff and Beverages. J. Agr. Food Chem. 2000, 48, 5331–5337.
- Del Verde-Mendez, C. M.; Forster, M. P.; Rodriguez-Delgado, M. A.; Rodriguez-Rodriguez, E. M.; Diaz-Romero, C. Content of Free Phenolic Compounds in Banana from Tenerife (Canary Islands) and Ecuador. Eur. Food Res. Technol. 2003, 217, 287–290. [CrossRef]
- Harnly, J. M.; Doherty, R. F.; Beecher, G. R.; Holden, J. M.; Haytowitz, D. B.; Bhagwat, S.; Gebhardt, S. Flavonoid Content of U.S. Fruits, Vegetables, and Nuts. J. Agr. Food Chem. 2006, 54(26), 9966–9977. [CrossRef]
- Bennet, R. N.; Shiga, T. M.; Hassimotto, N. M. A.; Rosa, E. A. S.; Lajolo, F. M.; Cordenunsi, B. R. Phenolics and Antioxidant Properties of Fruit Pulp and Cell Wall Fractions of Postharvest Banana (Musa Acuminata Juss.) Cultivars. J. Agr. Food Chem. 2010, 58, 7991–8003. [CrossRef]
- Anyasi, T. A.; Jideani, A. I. O.; Mchau, G. R. A. Functional Properties and Postharvest Utilization of Commercial and Noncommercial Banana Cultivars. Compr. Rev. Food Sci. F. 2013, 12(5), 509–522 . [CrossRef]
- Damon, M.; Zhang, N. Z.; Haytowitz, D. B.; Booth, S. L. Phylloquinone (Vitamin K1) Content of Vegetables. J. Food Compound Anal. 2005, 18(8), 751–758. [CrossRef]
- Rhodes, C. J.; Dintinger, T. C.; Moynihan, H. A.; Reid, I. D. Radio Labelling Studies of Free Radical Reactions Using Muonium (The Second Hydrogen Radioisotope): Evidence of a Direct Antioxidant Role for Vitamin K in Repair of Oxidative Damage to Lipids. Magn. Reson. Chem. 2000, 38(8), 646–649.
- Yoshida, Y.; Niki, E. Antioxidant Effects of Phytosterol and Its Component. J. Nutr. Sci. Vitaminol. 2003, 49(4), 277–280. [CrossRef]
- Fahey, J. W.; Zalcmann, A. T.; Talalay, P. The Chemical Diversity and Distribution of Glucosinolates and Isothiocyanates among Plants. Phytochem. 2001, 56(1), 5–51. [CrossRef]
- Johnson, I. T. Glucosinolates in the Human Diet. Bioavailability and Implication for Health. Phytochem. Rev. 2002, 1(2), 183–188.
- Chernukha, I., Kupaeva, N., Kotenkova, E., & Khvostov, D. (2022). Differences in Antioxidant Potential of Allium cepa Husk of Red, Yellow, and White Varieties. Antioxidants, 11(7), 1243.
- Flora SJ. Structural, chemical, and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev. 2009,2(4):191-206. [CrossRef]
- Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment, and Resources. Int J Mol Sci. 2017 Jan 5;18(1):96. [CrossRef]
- Li A.N., Li S., Zhang Y.J., Xu X.R., Chen Y.M., Li H.B. Resources and biological activities of natural polyphenols. Nutrients. 2014; 6:6020–6047. [CrossRef]
- Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules. 2019 Nov 15;24(22):4132. [CrossRef]
- Abbas M., Saeed F., Anjum F.M., Afzaal M., Tufail T., Bashir M.S., Ishtiaq A., Hussain S., Suleria H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017; 20:1689–1699. [CrossRef]
- Mansour E.H., Khalil A.H. Evaluation of antioxidant activity of some plant extracts and their application to ground beef patties. Food Chem. 2000; 69:135–141. [CrossRef]
- Taghvaei M., Jafari S.M. Application, and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J. Food Sci. Technol. 2015; 52:1272–1282. [CrossRef]
- Lorenzo J.M., Pateiro M., Domínguez R., Barba F.J., Putnik P., Kovačević D.B., Shpigelman A., Granato D., Franco D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018; 106:1095–1104. [CrossRef]
- Surai, PF. Natural Antioxidants in Poultry Nutrition: New developments. Conference: 16th European Symposium on Poultry Nutrition. Avian Science Research center, SAC, Scotland, UK, 2007.
- Surai PF. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Physiol. Anim. Nutr. 2014. 98, 19–31. [CrossRef]
- Surai PF. Natural Antioxidants in Avian Nutrition and Reproduction. Nottingham University Press. Nottingham. 2003.
- Edens FW, Carter TA, Sefton AE. Influence of dietary selenium sources on postmortem drip loss from breast meat of broilers grown on different litters. Poult. Sci. 1996. 75, p. 60.
- Surai PF. Natural Antioxidants in Avian Nutrition and Reproduction. Nottingham University Press, Nottingham, UK. 2002.
- Biswas AM, Ahmed, Bharti VK, Singh SB. Effect of Antioxidants on Physio-biochemical and Hematological Parameters in Broiler Chicken at High Altitude. Asian-Aust. J. Anim. Sci. 2011. 24(2), 246-249.
- Hashem, N. M., Gonzalez-Bulnes, A., & Simal-Gandara, J. Polyphenols in Farm Animals: Source of Reproductive Gain or Waste? Antioxidants 2020, Vol. 9, Page 1023, 9(10), 1023. [CrossRef]
- Wang, J.; Si, W.; Du, Z.; Zhang, J.; Xue, M. Antioxidants in Animal Feed. Antioxidants 2022, 11, 1760. [CrossRef]
- Jiang, J., & Xiong, Y. L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Science, 2016. 120, 107–117. [CrossRef]
- EFSA, Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), safety and efficacy of butylated hydroxyanisole (BHA) as a feed additive for all animal species. EFSA J 16: e05215 (2018).
- Batiha, G.E. & Beshbishy, A.M. Gas chromatography-mass spectrometry analysis, phytochemical screening, and anti-protozoal effects of the methanolic Viola tricolor and acetonic Laurus nobilis extracts, BMC Complementary Medicine, and Therapies, 2020; 20(87). [CrossRef]
- Bellucci, E.R.B.; Bis-Souza, C.V.; Domínguez, R.; Bermúdez, R.; Barretto, A.C.d.S. Addition of Natural Extracts with Antioxidant Function to Preserve the Quality of Meat Products. Biomolecules 2022, 12, 1506. [CrossRef]
- Abbassi, M. A., Ghazanfari, S., Sharifi, S. D., & Ahmadi Gavlighi, H. Influence of dietary plant fats and antioxidant supplementations on performance, apparent metabolizable energy and protein digestibility, lipid oxidation and fatty acid composition of meat in broiler chicken. Veterinary Medicine and Science, 2020. 6(1), 54–68. [CrossRef]
- Kamboh AA, Leghari RA, Khan MA, Kaka U, Naseer M, Sazili AQ, et al. Flavonoids supplementation-An ideal approach to improve the quality of poultry products. World Poult Sci J., 2019. 75:115–126 . [CrossRef]
- Coma, V., Portes, E., Gardrat, C., Richard-Forget, F. and Castellan, A. 2011. In vitro inhibitory effect of tetrahydro curcuminoids on Fusarium proliferatum growth and Fumonisin B1 biosynthesis. Food Additives and Contaminants, 2011. 28: 218-225.
- Mehdi Y, Dufrasne I. Selenium in Cattle: A Review. Molecules. 2016. 21(4):545. [CrossRef]
- Wang Y.-Z., Li Y., Xu Q.-B., Zhang X.-Y., Zhang G.-N., Lin C., Zhang Y.-G. Effects of Acremonium terricola culture on production performance, antioxidant status, and blood biochemistry in transition dairy cows. Anim. Feed Sci. Technol. 2019; 256:114261.
- Malmuthuge N., Guan L.L. Understanding host-microbial interactions in rumen: Searching the best opportunity for microbiota manipulation. J. Anim. Sci. Biotechnol. 2017; 8:8.
- Kong F, Zhang Y, Wang S, Cao Z, Liu Y, Zhang Z, Wang W, Lu N, Li S. Acremonium terricola Culture’s Dose-Response Effects on Lactational Performance, Antioxidant Capacity, and Ruminal Characteristics in Holstein Dairy Cows. Antioxidants. 2022 Jan 17;11(1):175.
- Nikmaram, N.; Budaraju, S.; Barba, F.J.; Lorenzo, J.M.; Cox, R.B.; Mallikarjunan, K.; Roohinejad, S. Application of Plant Extracts to Improve the Shelf-Life, Nutritional and Health-Related Properties of Ready-to-Eat Meat Products. Meat Sci. 2018, 145, 245–255. [CrossRef]
- Desbruslais, A.; Wealleans, A.L. Oxidation in Poultry Feed: Impact on the Bird and the Efficacy of Dietary Antioxidant Mitigation Strategies. Poultry 2022, 1, 246–277. [CrossRef]
- Wang, G.; Peng, K.; Hu, J.; Yi, C.; Chen, X.; Wu, H.; Huang, Y. Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets. Aquaculture 2019, 507, 144–154. [CrossRef]
- Adeyemi, K.D., Obaaro, B.M., Awoyeye, E.T., Edward, A.E., & Asogwa, T.N. Onion leaf and synthetic additives in broiler diet: Impact on splenic cytokines, serum immunoglobulins, caecal bacterial population, and muscle antioxidant status. Journal of the Science of Food and Agriculture. 2021. [CrossRef]
- Saracila, M.; Panaite, T.D.; Mironeasa, S.; Untea, A.E. Dietary Supplementation of Some Antioxidants as Attenuators of Heat Stress on Chicken Meat Characteristics. Agriculture 2021, 11, 638. [CrossRef]
- Mahrous S, Ali H. El-Far1*, Kadry M. Sadek1, Mervat A. Abdel-Latif. Effects of Different Levels of Clove Bud (Syzygium Aromaticum) Dietary Supplementation on Immunity, Antioxidant Status, and Performance in Broiler Chickens Heba, Alexandria Journal of Veterinary Sciences, 2017. 54(2): 29-39.
- Hussein, M., Abd El-Hack, M. E., Mahgoub, S. A., Saadeldin, I. M., & Swelum, A. A. Effects of clove (Syzygium aromaticum) oil on quail growth, carcass traits, blood components, meat quality, and intestinal microbiota. Poultry Science, 2019, 98(1), 319–329. [CrossRef]
- Moustafa, N., Aziza, A., Orma, O., & Ibrahim, T. Effect of supplementation of broiler diets with essential oils on growth performance, antioxidant status, and general health. Mansoura Veterinary Medical Journal, 2020. 21(1), 14-20. [CrossRef]
- Cong, J., Zhang, L., Li, J., Wang, S., Gao, F., & Zhou, G. Effects of dietary supplementation with carnosine on meat quality and antioxidant capacity in broiler chickens. British Poultry Science, 2017. 58(1), 69–75. [CrossRef]
- European Commission. European Union Register Offeed Additives. Available online: https://ec.europa.eu/food/safety/animalfeed/feed-additives/eu-register_en. (Accessed on 24 February 2023).
- Orengo, J., Hernández, F., Martínez-Miró, S., Sánchez, C. J., Peres Rubio, C., & Madrid, J. Effects of commercial antioxidants in feed on growth performance and oxidative stress status of weaned piglets. Animals, 2021. 11(2), 266. [CrossRef]
- Silva-Guillen, Y.V.; Arellano, C.; Boyd, R.D.; Martinez, G.; van Heugten, E. Growth performance, oxidative stress and immune status of newly weaned pigs fed peroxidized lipids with or without supplemental vitamin E or polyphenols. J. Anim. Sci. Biotechnol. 2020, 11, 1–11. [CrossRef]
- Lu, T.; Harper, A.F.; Zhao, J.; Estienne, M.J.; Dalloul, R.A. Supplementing antioxidants to pigs fed diets high in oxidants: I. Effects on growth performance, liver function, and oxidative status. J. Anim. Sci. 2014, 92, 5455–5463. [CrossRef]
- Lauridsen, C. From oxidative stress to inflammation: Redox balance and immune system. Poult. Sci. 2019, 98, 4240–4246. [CrossRef]
- Ponnampalam, E.N.; Sinclair, A.J.; Holman, B.W.B. The sources, synthesis and biological actions of omega-3 and omega-6 fatty acids in red meat: An overview. Foods 2021, 10, 1358. [CrossRef]
- Iqbal, Y.; Ponnampalam, E.N.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. Extraction and characterization of polyphenols from non-conventional edible plants and their antioxidant activities. Food Res. Int. 2022, 157, 111205. [CrossRef]
- Su, G., Zhou, X., Wang, Y., et al. Effects of plant essential oil supplementation on growth performance, immune function and antioxidant activities in weaned pigs. Lipids Health, Diseases.n2018. 17, 139. [CrossRef]
- Williams C.A. The effect of oxidative stress during exercise in the horse. J. Anim. Sci. 2016; 94:4067–4075. [CrossRef]
- Andriichuck A., Tkachenko H., Kurhaluk N. Gender Differences of Oxidative Stress Biomarkers and Erythrocyte Damage in Well-Trained Horses During Exercise. J. Equine Vet. Sci. 2014; 34:978–985. [CrossRef]
- Powers S.K., Talbert E.E., Adhihetty P.J. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J. Physiol. 2011; 589:2129–2138. doi: 10.1113/jphysiol.2010.201327.
- Rossi R, Lo Feudo CM, Zucca E, Vizzarri F, Corino C, Ferrucci F. Innovative Blood Antioxidant Test in Standardbred Trotter Horses. Antioxidants. 2021 Dec 18;10(12):2013. [CrossRef]
- Urso M.L., Clarkson P.M. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003; 189:41–54.
- Kirschvink N., De Moffarts B., Lekeux P. The oxidant/antioxidant equilibrium in horses. Vet. J. 2008; 177:178–191. [CrossRef]
- Bergero D., Assenza A., Caola G. Contribution to our knowledge of the physiology and metabolism of endurance horses. Livest. Prod. Sci. 2005; 92:167–176. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
