Submitted:
01 October 2024
Posted:
02 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
- Written in English language.
- Full articles excluding reviews, perspectives, and communications.
- Full text available.
- Published from 2014 to June 2024.
- Any general surgery intervention performed in gynecology, urology or general surgery.
- Any robotic system which has a console
- Articles that contained simulation and tests.
- Papers centered on telesurgery, telementoring or telepresence.
- Studies which report only the procedure.
- Papers related to study on animals or cadavers.
- Articles which concern with the surgeon training.
3. Results
3.1. Studies Characteristics
3.2. Surgical Robotic Platforms
3.2.1. Senhance®
3.2.2. Revo-i®
2.3.3. Micro Hand S
2.3.4. HugoTM
2.3.5. HinotoriTM
2.3.6. KangDuo
2.3.7. Versius®
2.3.8. Avatera
2.3.9. Dexter
2.3.10. Mantra
2.3.11. Toumai®
2.3.12. Technical Comparison
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| Source | Year | Surgical platform | Surgical specialty | Country |
|---|---|---|---|---|
| Yi, B., et al.[19] | 2016 | Micro Hand S | General surgery | China |
| Ku, G., et al. [20] | 2020 | Revo-i | General surgery | South Korea |
| Kang, I., et al.[21,22] | 2020 | Revo-i | General surgery | South Korea |
| Kondo, H., et al. [22] | 2020 | Senhance | General surgery | Japan |
| Kanego, G., et at. [23] | 2021 | Senhance | Urology | Japan |
| Minagawa, Y., et al. [24] | 2021 | Senhance | General surgery | Japan |
| Sugita, H., et al. [25] | 2021 | Senhance | General surgery | Japan |
| Hirano, Y., et al. [26] | 2021 | Senhance | General surgery | Japan |
| Monterossi, G., et al. [27] | 2022 | Hugo | Gynecology | Italy |
| Böhlen, D., et al. [28] | 2023 | Dexter | Urology | Switzerland |
| Pavone, M., et al. [29] | 2023 | Hugo | Gynecology | Italy |
| Mottaran, A., et al. [30] | 2023 | Hugo | Urology | Belgium |
| Panico, G., et al. [31] | 2023 | Hugo | Urogynecology | Italy |
| Campagna, G., et al. [32] | 2023 | Hugo | Gynecology | Italy |
| Chen, S., et al. [33] | 2023 | KangDuo | Urology | China |
| Miura, R., et al. [34] | 2023 | Hinotori | General surgery | Japan |
| Miyo, M., et al. [35] | 2023 | Hinotori | General surgery | Japan |
| Alkatout, I., et al. [36] | 2024 | Dexter | Gynecology | Germany |
| Formisano, G., et al. [37] | 2024 | Hugo | General surgery | Italy |
| Komatsu, H., et al. [38] | 2024 | Hugo | Gynecology | Japan |
| Tomihara, K., et al. [39] | 2024 | Hinotori | General surgery | Japan |
| Hayashi, T., et al. [40] | 2024 | Hinotori | Urology | Japan |
| Spinelli, A., et al. [41] | 2017 | Senhance | General Surgery | Italy |
| Stephan, D., et al. [42] | 2018 | Senhance | General surgery | Germany |
| Montlouis-Calixte, J., et al. [43] | 2019 | Senhance | Gynecology and General surgery | France |
| Melling, N., et al. [44] | 2019 | Senhance | General surgery | Germany |
| Yao, Y., et al. [45] | 2020 | Micro Hand S | General surgery | China |
| Li, J., et al. [46] | 2020 | Micro Hand S | General surgery | China |
| Samalavicius, N.E., et al. [47] | 2020 | Senhance | General Surgery, Gynecology, Urology | Lithuania |
| Lim, J.H., et al. [48] | 2021 | Revo-I | General Surgery | South Korea |
| Fan, S., et al. [49] | 2021 | Kangduo | Urology | China |
| Puntamberkar, S.P., et al. [50] | 2021 | Versius | Gynecology | india |
| Collins, D., et al. [51] | 2021 | Versius | General surgery | UK |
| Kelkar, D., et al. [52] | 2021 | Versius | Gynecology and General surgery | India |
| Dixon, F., et al. [53] | 2021 | Versius | General surgery | UK |
| Kastelan, Z., et al. [54] | 2021 | Senhance | Urology | Croatia |
| Lin, C.C., at al. [55] | 2021 | Senhance | General surgery | Taiwan |
| Venckus, R., et al. [56] | 2021 | Senhance | Urology | Lithuania |
| Siaulys, R., et al. [57] | 2021 | Senhance | Gynecology | Lithuania |
| Bravi, C.A., et al. [58] | 2022 | Hugo | Urology | Belgium |
| Fan, S., et al. [59] | 2022 | Kangduo | Urology | China |
| Puntamberkar, S.P., et al. [60] | 2022 | Versius | General surgery | UK |
| Borse, M., et al. [61] | 2022 | Versius | Gynecology | India |
| Puntambekar, S., et al. [62] | 2022 | Versius | General surgery | India |
| Knežević, N., et al. [63] | 2022 | Senhance | Urology | Croatia |
| Sasaki, M., et al. [64] | 2022 | Senhance | General surgery | Japan |
| Samalavicius, N.E., et al. [65] | 2022 | Senhance | General surgery | Lithuania |
| Sassani, J.C., et al. [66] | 2022 | Senhance | Urology | USA |
| Samalavicius, N.E., et al. [67] | 2022 | Senhance | General surgery | Multiple (Europe: Germany, Belarus, Lithuania) |
| Kallidonis, P., et al. [68] | 2023 | Avatera | Urology | Grece |
| Hahnloser, D., et al. [69] | 2023 | Dexter | general surgery | Switzerland. |
| Monterossi, G., et al. [70] | 2023 | Hugo | Gynecology | Italy |
| Bravi, C.A., et al. [71] | 2023 | Hugo | Urology | Belgium |
| Gallioli, A., et al. [72] | 2023 | Hugo | Urology | Spain |
| Territo, A., et al. [73] | 2023 | Hugo | Urology | Spain |
| Bianchi, P.P., et al. [74] | 2023 | Hugo | General surgery | Italy |
| Paciotti, M., et al. [75] | 2023 | Hugo | Urology | Belgium |
| Marques-Monteiro, M., et al. [76] | 2023 | Hugo | Urology | Portugal |
| Ou, Y.C., et al. [77] | 2023 | Hugo | Urology | Taiwan |
| Elorrieta, V., et al. [78] | 2023 | Hugo | Urology | Chile |
| Belyaev, O., et al. [79] | 2023 | Hugo | General surgery | Germany |
| Alfano, C.G., et al. [80] | 2023 | Hugo | Urology | USA |
| Panico, G., et al. [81] | 2023 | Hugo | Urogynecology | Italy |
| Raffaelli, M., et al. [82] | 2023 | Hugo | General surgery | Italy |
| Xiong, S., et al. [83] | 2023 | Kangduo | Urology | China |
| Dong, J., et al. [84] | 2023 | Kangduo | General surgery | China |
| Kelkar, D.S., et al. [85] | 2023 | Versius | General surgery | UK |
| Wehrmann, S., et al. [86] | 2023 | Versius | General surgery | Germany |
| El Dahdad, J., et al. [87] | 2023 | Versius | General surgery | United Arab Emirates |
| Togami, S., et al. [88] | 2023 | Hinotori | Gynecological Surgery | Japan |
| Motoyama, D., et al. [89] | 2023 | Hinotori | Urology | Japan |
| Hudolin, T., et al. [90] | 2023 | Senhance | Urology | Croatia |
| Sasaki, T., et al. [91] | 2023 | Senhance | General surgery | Japan |
| Thillou, D., et al. [92] | 2024 | Dexter | Urology | France |
| Mehrotra, M., et al. [93] | 2024 | Mantra | General surgery | India |
| Pokhrel, G., et al. [94] | 2024 | Toumai | Urology | China |
| Prata, F., et al. [95] | 2024 | Hugo | Urology | Italy |
| Dell’Oglio, P., et al. [96] | 2024 | Hugo | Urology | Italy |
| Totaro, A., et al. [97] | 2024 | Hugo | Urology | Italy |
| Takahara, K., et al. [98] | 2024 | Hugo | Urology | Japan |
| Prata, F., et al. [99] | 2024 | Hugo | Urology | Italy |
| Prata, F., et al. [142] | 2024 | Hugo | Urology | Italy |
| Caputo, D., et al. [100] | 2024 | Hugo | General surgery | Italy |
| Belyaev, O., et al. [101] | 2024 | Hugo | General surgery | Germany |
| Jebakumar, S.G.S, et al. [102] | 2024 | Hugo | General surgery | India |
| Caputo, D., et al. [103] | 2024 | Hugo | General surgery | Italy |
| Andrede, G.M., et al. [104] | 2024 | Hugo | Urology | Brazil |
| Salem, S.A., et al. [105] | 2024 | Hugo | General surgery | Israel |
| Gioè, A., et al. [106] | 2024 | Hugo | Gynecology | Italy |
| Quezada, N., et al. [107] | 2024 | Hugo | General surgery | Chile |
| Pavone, M., et al. [108] | 2024 | Hugo | Gynecology | Italy |
| Dibitetto, F., et al. [109] | 2024 | Versius | Urology | Italy |
| Meneghetti, I., et al. [110] | 2024 | Versius | Urology | Italy |
| De Maria, M., et al. [111] | 2024 | Versius | Urology | Italy |
| Inoue, S., et al. [112] | 2024 | Hinotori | General surgery | Japan |
| Kulis, T., et al. [113] | 2024 | Senhance | Urology | Lithuania, Croatia |
| Chang, K.D., et al. [114] | 2018 | Revo-I | Urology | South Korea |
| Aggarwal, R., et al. [115] | 2020 | Senhance | General surgery | UK |
| Zeng, Y., et al. [116] | 2021 | Micro Hand S | General Surgery | China |
| Wang, Y., et al. [118] | 2021 | Micro Hand S | General surgery | China |
| Jiang, J., et al. [117] | 2021 | Micro Hand S | General surgery | China |
| Wang, Y., et al. [120] | 2022 | Micro Hand S | General Surgery | China |
| Lei, Y., et al. [119] | 2022 | Micro Hand S | General surgery | China |
| Kulis, T., at al. [121] | 2022 | Senhance | Urology | Croatia |
| Collà Ruvolo, C., et al. [122] | 2023 | Hugo | Gynecology | Belgium |
| Li, X., et al. [123] | 2023 | Kangduo | Urology | China |
| Motoyama, D., et al. [124] | 2023 | Hinotori | general surgery | Japan |
| Motoyama, D., et al. [125] | 2023 | Hinotori | Urology | Japan |
| Motoyama, D., et al. [126] | 2023 | Hinotori | Urology | Japan |
| Glass Clark, S., et al. [127] | 2023 | Senhance | Urology | USA |
| Kim, J.S., et al. [128] | 2024 | Revo-I | General Surgery | South Korea |
| Bravi, C.A., et al. [129] | 2024 | Hugo | Urology | Belgium |
| Balestrazzi, E., et al. [130] | 2024 | Hugo | Urology | Belgium |
| Brime Menendez, R., et al. [131] | 2024 | Hugo | Urology | Spain |
| Ou, H.C., et al. [132] | 2024 | Hugo | Urology | Taiwan |
| Prata, F., et al. [133] | 2024 | Hugo | Urology | Italy |
| Grandi, C., et al. [134] | 2024 | Hugo | Urology | Italy |
| Antonelli, A., et al. [135] | 2024 | Hugo | Urology | Italy |
| Shen, C., et al. [136] | 2024 | Kangduo | Urology | China |
| Sun, Z., et al. [137] | 2024 | Kangduo | General surgery | China |
| Liu, Y., et al. [138] | 2024 | Kangduo | General surgery | China |
| Halabi, M., et al. [139] | 2024 | Versius | General surgery | United Arab Emirates |
| Kohjimoto, Y., et al. [140] | 2024 | Hinotori | Urology | Japan |
| Lin, Y.C., et al. [141] | 2024 | Senhance | Urology | Taiwan |
References
- Zhang, X.; Ma, X.; Zhou, J.; Zhou, Q. Summary of medical robot technology development. Proceedings of 2018 IEEE International Conference on Mechatronics and Automation, ICMA 2018, pp. 443–448, Oct. 2018. [CrossRef]
- Cepolina, F.; Razzoli, R.P. An introductory review of robotically assisted surgical systems. Int J Med Robot 2022, 18. [Google Scholar] [CrossRef]
- Chatterjee, S.; Das, S.; Ganguly, K.; Mandal, D. Advancements in robotic surgery: innovations, challenges and future prospects. Dec. 01, 2024, Springer Nature. [CrossRef]
- Reddy, K.; Gharde, P.; Tayade, H.; Patil, M.; Reddy, L.S.; Surya, D. Advancements in Robotic Surgery: A Comprehensive Overview of Current Utilizations and Upcoming Frontiers. Cureus, Dec. 2023. [CrossRef]
- Ashrafian, H.; Clancy, O.; Grover, V.; Darzi, A. The evolution of robotic surgery: Surgical and anaesthetic aspects. in British Journal of Anaesthesia, Oxford University Press, Dec. 2017, pp. i72–i84. [CrossRef]
- Kutana, S.; Bitner, D.P.; Addison, P.; Chung, P.J.; Talamini, M.A.; Filicori, F. Objective assessment of robotic surgical skills: review of literature and future directions. Jun. 01, 2022, Springer. [CrossRef]
- Picozzi, P.; Nocco, U.; Puleo, G.; Labate, C.; Cimolin, V. Telemedicine and Robotic Surgery: A Narrative Review to Analyze Advantages, Limitations and Future Developments. Jan. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). [CrossRef]
- Almujalhem, A.; Rha, K.H. Surgical robotic systems: What we have now? A urological perspective. BJUI Compass, 2020. [CrossRef]
- Rao, R.; Nayyar, R.; Panda, S.; Hemal, A.K. Surgical techniques: Robotic bladder diverticulectomy with the da Vinci-S surgical system. J Robot Surg 2007, 1, 217–220. [Google Scholar] [CrossRef]
- Rivero-Moreno, Y.; et al. Robotic Surgery: A Comprehensive Review of the Literature and Current Trends. Cureus 2023. [Google Scholar] [CrossRef]
- Fairag, M.; et al. Robotic Revolution in Surgery: Diverse Applications Across Specialties and Future Prospects Review Article. Cureus 2024. [Google Scholar] [CrossRef]
- Trute, R.J.; Zapico, C.S.; Christou, A.; Layeghi, D.; Craig, S.; Erden, M.S. Development of a Robotic Surgery Training System. Front Robot AI 2022, 8. [Google Scholar] [CrossRef]
- Simorov, A.; Otte, R.S.; Kopietz, C.M.; Oleynikov, D. Review of surgical robotics user interface: What is the best way to control robotic surgery?. 2012, Springer New York LLC. [CrossRef]
- Guthart, P.G. JPMorgan Healthcare Conference 2023.” Accessed: Sep. 07, 2024. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://isrg.intuitive.com/static-files/6683d2bb-75e2-4fa0-b0cd-463ead7c30a4.
- Hughes, T.; Rai, B.; Madaan, S.; Chedgy, E.; Somani, B. The Availability, Cost, Limitations, Learning Curve and Future of Robotic Systems in Urology and Prostate Cancer Surgery. Mar. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). [CrossRef]
- Rassweiler, J.J.; et al. Future of robotic surgery in urology. BJU Int 2017, 120, 822–841. [Google Scholar] [CrossRef]
- Biswas, P.; Sikander, S.; Kulkarni, P. Recent advances in robot-assisted surgical systems. Biomedical Engineering Advances 2023, 6, 100109. [Google Scholar] [CrossRef]
- Mehta, A.; et al. Embracing robotic surgery in low- and middle-income countries: Potential benefits, challenges, and scope in the future. Dec. 01, 2022, Elsevier Ltd. [CrossRef]
- Yi, B.; et al. The first clinical use of domestically produced Chinese minimally invasive surgical robot system ‘Micro Hand S,’” Surg Endosc 2016, 30, 2649–2655. [CrossRef]
- Ku, G.; Kang, I.; Lee, W.J.; Kang, C.M. Revo-i assisted robotic central pancreatectomy. Ann Hepatobiliary Pancreat Surg 2020, 24, 547–550. [Google Scholar] [CrossRef]
- Kang, I.; Hwang, H.K.; Lee, W.J.; Kang, C.M. First experience of pancreaticoduodenectomy using Revo-i in a patient with insulinoma. Ann Hepatobiliary Pancreat Surg 2020, 24, 104. [Google Scholar] [CrossRef]
- Kondo, H.; et al. A first case of ileocecal resection using a Senhance Surgical System in Japan. Surg Case Rep 2020, 6. [Google Scholar] [CrossRef]
- Kaneko, G.; Shirotake, S.; Oyama, M.; Koyama, I. Initial experience of laparoscopic radical nephrectomy using the Senhance® robotic system for renal cell carcinoma. Int Cancer Conf J 2021, 10, 228–232. [Google Scholar] [CrossRef]
- Minagawa, Y.; et al. The first single-incision plus one-port transverse colon resection using Senhance Digital Laparoscopy System: a case report. Surg Case Rep 2021, 7. [Google Scholar] [CrossRef]
- Sugita, H.; et al. First experience using the Senhance surgical system in laparoscopic local gastrectomy for gastrointestinal stromal tumor. Asian J Endosc Surg 2021, 14, 790–793. [Google Scholar] [CrossRef]
- Hirano, Y.; Kondo, H.; Miyawaki, Y.; Sugita, H.; Sakuramoto, S.; Yamaguchi, S. Single-incision plus two-port robotic surgery for sigmoid colon cancer using the Senhance robotic system. Asian J Endosc Surg 2021, 14, 94–96. [Google Scholar] [CrossRef]
- Monterossi G; Anchora L, P. ; Alletti S, G.; Fagotti A; Fanfani F; Scambia G, “The first European gynaecological procedure with the new surgical robot HugoTM RAS. A total hysterectomy and salpingo-oophorectomy in a woman affected by BRCA-1 mutation. Facts Views Vis Obgyn 2022, 14, 91–94. [Google Scholar] [CrossRef]
- Böhlen, D.; Gerber, R. First Ever Radical Prostatectomy Performed with the New Dexter Robotic SystemTM. May 01, 2023, Elsevier B.V. [CrossRef]
- Pavone M; Goglia M; Campolo F; Scambia G; MM, I. En-block butterfly excision of posterior compartment deep endometriosis: The first experience with the new surgical robot HugoTM RAS. Facts Views Vis Obgyn 2023, 15, 359–362. [Google Scholar] [CrossRef]
- Mottaran, A.; et al. Robot-assisted simple prostatectomy with the novel HUGOTM RAS System: feasibility, setting, and perioperative outcomes. Minerva Urology and Nephrology 2023, 75, 235–239. [Google Scholar] [CrossRef]
- Panico, G; et al. HUGO(TM) RAS System in urogynaecology: the first nerve sparing Sacral Colpopexy for Pelvic Organ Prolapse. Facts Views Vis Obgyn 2023, 15, 83–87. [Google Scholar] [CrossRef]
- Campagna, G.; et al. Robotic sacrocolpopexy plus ventral rectopexy as combined treatment for multicompartment pelvic organ prolapse using the new Hugo RAS system. Jun. 01, 2023, Springer Science and Business Media Deutschland GmbH. [CrossRef]
- Chen, S.; et al. The application of internal suspension technique in retroperitoneal robot-assisted laparoscopic partial nephrectomy with a new robotic system KangDuo Surgical Robot-01: Initial experience. Asian J Urol 2023, 10, 482–487. [Google Scholar] [CrossRef]
- Miura, R.; et al. World-first report of low anterior resection for rectal cancer with the hinotoriTM Surgical Robot System: a case report. Surg Case Rep 2023, 9. [Google Scholar] [CrossRef]
- Miyo, M.; et al. Right hemicolectomy for ascending colon cancer using the hinotori surgical robot system: The first ever case report for colon cancer. Asian J Endosc Surg 2023, 16, 604–607. [Google Scholar] [CrossRef]
- Alkatout, I; et al. The first robotic-assisted hysterectomy below the bikini line with the Dexter robotic system. Facts Views Vis Obgyn 2024, 16, 87–91. [Google Scholar] [CrossRef]
- Formisano, G.; Ferraro, L.; Salaj, A.; Bianchi, P.P. First report of robotic retromuscular incisional hernia repair with Hugo RasTM surgical system. Updates Surg 2024. [Google Scholar] [CrossRef]
- Komatsu H; Wada I; Harada T; Taniguchi F, “First report of robotic-assisted total hysterectomy using the HugoTM RAS system. Updates Surg 2024, 76, 315–318. [CrossRef]
- Tomihara, K.; Ide, T.; Ito, K.; Tanaka, T.; Noshiro, H. Robotic spleen-preserving distal pancreatectomy using the first domestic surgical robot platform (the hinotoriTM Surgical Robot System): a case report. Surg Case Rep 2024, 10. [Google Scholar] [CrossRef]
- Hayashi, T.; Kitano, H.; Hieda, K.; Hinata, N. First case report of robot-assisted radical cystectomy and intracorporeal urinary diversion using the hinotori Surgical Robot System. Transl Cancer Res 2024, 13, 471–479. [Google Scholar] [CrossRef]
- Spinelli, A.; et al. First experience in colorectal surgery with a new robotic platform with haptic feedback. Colorectal Disease 2018, 20, 228–235. [Google Scholar] [CrossRef]
- Stephan, D.; Sälzer, H.; Willeke, F. First Experiences with the New Senhance® Telerobotic System in Visceral Surgery. Feb. 01, 2018, S. Karger AG. [CrossRef]
- Montlouis-Calixte, J.; Ripamonti, B.; Barabino, G.; Corsini, T.; Chauleur, C. Senhance 3-mm robot-assisted surgery: experience on first 14 patients in France. Oct. 01, 2019, Springer London. [CrossRef]
- Melling, N.; et al. Robotic cholecystectomy: first experience with the new Senhance robotic system. J Robot Surg 2019, 13, 495–500. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, Y.; Li, Z.; Yi, B.; Wang, G.; Zhu, S. Chinese surgical robot micro hand S: A consecutive case series in general surgery. International Journal of Surgery 2020, 75, 55–59. [Google Scholar] [CrossRef]
- Li, J.; Zhu, S.; Juan, J.; Yi, B. Preliminary exploration of robotic complete mesocolic excision for colon cancer with the domestically produced Chinese minimally invasive Micro Hand S surgical robot system. International Journal of Medical Robotics and Computer Assisted Surgery 2020, 16, 1–8. [Google Scholar] [CrossRef]
- Samalavicius, N.E.; et al. Robotic surgery using Senhance® robotic platform: single center experience with first 100 cases. J Robot Surg 2020, 14, 371–376. [Google Scholar] [CrossRef]
- Lim, J.H.; Lee, W.J.; Choi, S.H.; Kang, C.M. Cholecystectomy using the Revo-i robotic surgical system from Korea: the first clinical study. Updates Surg 2021, 73, 1029–1035. [Google Scholar] [CrossRef]
- Fan, S.; et al. Robot-Assisted Radical Prostatectomy Using the KangDuo Surgical Robot-01 System: A Prospective, Single-Center, Single-Arm Clinical Study. Journal of Urology 2022, 208, 119–127. [Google Scholar] [CrossRef]
- Puntambekar, S.P.; et al. Feasibility of robotic radical hysterectomy (RRH) with a new robotic system. Experience at Galaxy Care Laparoscopy Institute. J Robot Surg 2021, 15, 451–456. [Google Scholar] [CrossRef]
- Collins, D.; Paterson, H.M.; Skipworth, R.J.E.; Speake, D. Implementation of the Versius robotic surgical system for colorectal cancer surgery: First clinical experience. Colorectal Disease 2021, 23, 1233–1238. [Google Scholar] [CrossRef]
- Kelkar, D.; Borse, M.A.; Godbole, G.P.; Kurlekar, U.; Slack, M. Interim safety analysis of the first-in-human clinical trial of the Versius surgical system, a new robot-assisted device for use in minimal access surgery. Surg Endosc 2021, 35, 5193–5202. [Google Scholar] [CrossRef]
- Dixon, F.; O’Hara, R.; Ghuman, N.; Strachan, J.; Khanna, A.; Keeler, B.D. Major colorectal resection is feasible using a new robotic surgical platform: the first report of a case series. Tech Coloproctol 2021, 25, 285–289. [Google Scholar] [CrossRef]
- Kastelan, Z.; et al. Upper urinary tract surgery and radical prostatectomy with Senhance® robotic system: Single center experience—First 100 cases. International Journal of Medical Robotics and Computer Assisted Surgery 2021, 17. [Google Scholar] [CrossRef]
- Lin, C.C.; Huang, S.C.; Lin, H.H.; Chang, S.C.; Chen, W.S.; Jiang, J.K. An early experience with the Senhance surgical robotic system in colorectal surgery: a single-institute study. International Journal of Medical Robotics and Computer Assisted Surgery 2021, 17. [Google Scholar] [CrossRef]
- Venckus, R.; et al. Robotic-assisted radical prostatectomy with the Senhance® robotic platform: single center experience. World J Urol 2021, 39, 4305–4310. [Google Scholar] [CrossRef]
- Siaulys, R.; Klimasauskiene, V.; Janusonis, V.; Ezerskiene, V.; Dulskas, A.; Samalavicius, N.E. Robotic gynaecological surgery using Senhance® robotic platform: Single centre experience with 100 cases. J Gynecol Obstet Hum Reprod 2021, 50. [Google Scholar] [CrossRef]
- Bravi, C.A.; et al. Robot-assisted Radical Prostatectomy with the Novel Hugo Robotic System: Initial Experience and Optimal Surgical Set-up at a Tertiary Referral Robotic Center. Eur Urol 2022, 82, 233–237. [Google Scholar] [CrossRef]
- Fan, S.; et al. Robot-assisted pyeloplasty using a new robotic system, the KangDuo-Surgical Robot-01: a prospective, single-centre, single-arm clinical study. BJU Int 2021, 128, 162–165. [Google Scholar] [CrossRef]
- Puntambekar, S.P.; et al. Colorectal cancer surgery: by Cambridge Medical Robotics Versius Surgical Robot System—a single-institution study. Our experience. J Robot Surg 2022, 16, 587–596. [Google Scholar] [CrossRef]
- Borse, M.; Godbole, G.; Kelkar, D.; Bahulikar, M.; Dinneen, E.; Slack, M. Early evaluation of a next-generation surgical system in robot-assisted total laparoscopic hysterectomy: A prospective clinical cohort study. Acta Obstet Gynecol Scand 2022, 101, 978–986. [Google Scholar] [CrossRef]
- Puntambekar, S.; Bharambe, S.; Pawar, S.; Chitale, M.; Panse, M. Feasibility of transthoracic esophagectomy with a next-generation surgical robot. Sci Rep 2022, 12. [Google Scholar] [CrossRef]
- Knezevic, N.; et al. Senhance robot-assisted adrenalectomy: a case series. Croat Med J 2022, 63, 197–201. [Google Scholar] [CrossRef]
- Sasaki, M.; et al. Short-term results of robot-assisted colorectal cancer surgery using Senhance Digital Laparoscopy System. Asian J Endosc Surg 2022, 15, 613–618. [Google Scholar] [CrossRef]
- Samalavicius, N.E.; et al. Robotic colorectal surgery using the Senhance® robotic system: a single center experience. Tech Coloproctol 2022, 26, 437–442. [Google Scholar] [CrossRef]
- Sassani, J.C.; Clark, S.G.; McGough, C.E.; Shepherd, J.P.; Bonidie, M. Sacrocolpopexy experience with a novel robotic surgical platform. Int Urogynecol J 2022, 33, 3255–3260. [Google Scholar] [CrossRef]
- Samalavicius, N.E.; et al. Inguinal hernia TAPP repair using Senhance® robotic platform: first multicenter report from the TRUST registry. Hernia 2022, 26, 1041–1046. [Google Scholar] [CrossRef]
- Kallidonis, P.; et al. Robot-assisted pyeloplasty for ureteropelvic junction obstruction: initial experience with the novel avatera system. World J Urol 2023, 41, 3155–3160. [Google Scholar] [CrossRef]
- Hahnloser, D.; Rrupa, D.; Grass, F. Feasibility of on-demand robotics in colorectal surgery: first cases. Surg Endosc 2023, 37, 8594–8600. [Google Scholar] [CrossRef]
- Monterossi, G; et al. The new surgical robot HugoTM RAS for total hysterectomy: a pilot study. Facts Views Vis Obgyn 2023, 15, 331–337. [Google Scholar] [CrossRef]
- Bravi, C.A.; et al. Outcomes of Robot-assisted Radical Prostatectomy with the Hugo RAS Surgical System: Initial Experience at a High-volume Robotic Center. Eur Urol Focus 2023, 9, 642–644. [Google Scholar] [CrossRef]
- Gallioli, A.; et al. Initial experience of robot-assisted partial nephrectomy with HugoTM RAS system: implications for surgical setting. World J Urol 2023, 41, 1085–1091. [Google Scholar] [CrossRef]
- Territo, A.; et al. Robot-assisted oncologic pelvic surgery with HugoTM robot-assisted surgery system: A single-center experience. Asian J Urol 2023, 10, 461–466. [Google Scholar] [CrossRef]
- Bianchi, P.P.; Salaj, A.; Rocco, B.; Formisano, G. First worldwide report on Hugo RASTM surgical platform in right and left colectomy. Updates Surg 2023, 75, 775–780. [Google Scholar] [CrossRef]
- Paciotti, M.; et al. Nerve-sparing robot-assisted radical prostatectomy with the HUGOTM robot-assisted surgery system using the ‘Aalst technique,’” Aug. 01, 2023, John Wiley and Sons Inc. [CrossRef]
- Marques-Monteiro, M.; et al. Extraperitoneal robot-assisted radical prostatectomy with the HugoTM RAS system: initial experience of a tertiary center with a high background in extraperitoneal laparoscopy surgery. World J Urol 2023, 41, 2671–2677. [Google Scholar] [CrossRef]
- Ou, Y.C.; et al. Robot-assisted radical prostatectomy using hugo RAS system: The pioneer experience in Taiwan and Northeast Asia. International Journal of Medical Robotics and Computer Assisted Surgery 2024, 20. [Google Scholar] [CrossRef]
- Elorrieta, V.; Villena, J.; Kompatzki, Á.; Velasco, A.; Salvadó, J.A. ROBOT Assisted Laparoscopic Surgeries For Nononcological Urologic Disease: Initial Experience With Hugo Ras System. Urology 2023, 174, 118–125. [Google Scholar] [CrossRef]
- Belyaev, O.; Fahlbusch, T.; Slobodkin, I.; Uhl, W. Safety and Feasibility of Cholecystectomy with the HugoTMRAS: Proof of Setup Guides and First-In-Human German Experience. Visc Med 2023, 39. [Google Scholar] [CrossRef]
- Alfano, C.G.; et al. Implementation and outcomes of HugoTM RAS System in robotic-assisted radical prostatectomy. International Braz J Urol 2023, 49, 211–220. [Google Scholar] [CrossRef]
- Panico, G.; et al. The first 60 cases of robotic sacrocolpopexy with the novel HUGO RAS system: feasibility, setting and perioperative outcomes. Front Surg 2023, 10, 75–217. [Google Scholar] [CrossRef]
- Raffaelli, M.; et al. The new robotic platform HugoTM RAS for lateral transabdominal adrenalectomy: a first world report of a series of five cases. Updates Surg 2023, 75, 217–225. [Google Scholar] [CrossRef]
- Xiong, S.; et al. Robotic urologic surgery using the KangDuo-Surgical Robot-01 system: A single-center prospective analysis. Chin Med J (Engl) 2023, 136, 2960–2966. [Google Scholar] [CrossRef]
- Dong, J.; et al. Feasibility, safety and effectiveness of robot-assisted retroperitoneal partial adrenalectomy with a new robotic surgical system: A prospective clinical study. Front Surg 2023, 10, 277–9. [Google Scholar] [CrossRef]
- Kelkar, D.S.; Kurlekar, U.; Stevens, L.; Wagholikar, G.D.; Slack, M. An Early Prospective Clinical Study to Evaluate the Safety and Performance of the Versius Surgical System in Robot-Assisted Cholecystectomy. Ann Surg 2023, 277, 9–17. [Google Scholar] [CrossRef]
- Wehrmann, S.; et al. Clinical implementation of the Versius robotic surgical system in visceral surgery-A single centre experience and review of the first 175 patients. Surg Endosc 2023, 37, 528–534. [Google Scholar] [CrossRef]
- El Dahdah, J.; Halabi, M.; Kamal, J.; Zenilman, M.E.; Moussa, H. Initial experience with a novel robotic surgical system in abdominal surgery. J Robot Surg 2023, 17, 841–846. [Google Scholar] [CrossRef]
- Togami, S.; et al. The first report of surgery for gynecological diseases using the hinotoriTM surgical robot system. Jpn J Clin Oncol 2023, 53, 1034–1037. [Google Scholar] [CrossRef]
- Nakayama, A.; et al. Robot-assisted radical prostatectomy using the novel hinotoriTM surgical robot system: initial experience and operation learning curve at a single institution. Transl Cancer Res 2024, 13, 57–64. [Google Scholar] [CrossRef]
- Hudolin, T.; et al. Senhance robotic radical prostatectomy: A single-centre, 3-year experience. International Journal of Medical Robotics and Computer Assisted Surgery 2023, 19. [Google Scholar] [CrossRef]
- Sasaki, T.; et al. Initial 30 cholecystectomy procedures performed with the Senhance digital laparoscopy system. Asian J Endosc Surg 2023, 16, 225–232. [Google Scholar] [CrossRef]
- Thillou, D.; et al. Robot-assisted Radical Prostatectomy with the Dexter Robotic System: Initial Experience and Insights into On-demand Robotics. Eur Urol 2024, 85, 185–189. [Google Scholar] [CrossRef]
- Mehrotra, M.; Kumar, C.G. Initial experience of SSI Mantra robot-assisted Transabdominal pre-peritoneal repair of primary ventral hernias. J Minim Access Surg, Jul. 2024. [CrossRef]
- Pokhrel, G.; et al. ASSESSING THE FEASIBILITY AND SAFETY OF THE TOUMAIÒ ROBOTIC SYSTEM IN UROLOGIC SURGERY: INITIAL EXPERIENCE.
- Prata, F.; et al. Surgical Outcomes of HugoTM RAS Robot-Assisted Partial Nephrectomy for Cystic Renal Masses: Technique and Initial Experience. J Clin Med 2024, 13. [Google Scholar] [CrossRef]
- Dell’Oglio, P.; et al. Retzius-sparing robot-assisted radical prostatectomy with the HugoTM robot-assisted surgery system: feasibility, operative setup and surgical outcomes. BJU Int 2024. [Google Scholar] [CrossRef]
- Totaro, A.; et al. Robot-Assisted Radical Prostatectomy Performed with the Novel Surgical Robotic Platform HugoTM RAS: Monocentric First Series of 132 Cases Reporting Surgical, and Early Functional and Oncological Outcomes at a Tertiary Referral Robotic Center. Cancers (Basel) 2024, 16. [Google Scholar] [CrossRef]
- Takahara, K.; et al. Robot-assisted radical prostatectomy with the HugoTM robot-assisted surgery system: A single-center initial experience in Japan. Asian J Endosc Surg 2024, 17. [Google Scholar] [CrossRef]
- Prata, F.; et al. Three-arms off-clamp robot-assisted partial nephrectomy with the new Hugo robot-assisted surgery system. Jan. 01, 2024, John Wiley and Sons Inc. [CrossRef]
- Caputo, D.; Farolfi, T.; Molina, C.; Coppola, R. Full robotic cholecystectomy: first worldwide experiences with HUGO RAS surgical platform. ANZ J Surg 2024, 94, 387–390. [Google Scholar] [CrossRef]
- Belyaev, O.; Fahlbusch, T.; Slobodkin, I.; Uhl, W. Use of HugoTM RAS in General Surgery: The First 70 Cases at a German Centre and a Systematic Review of the Literature. Jul. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). [CrossRef]
- Jebakumar, S.G.S.; et al. Robotic hernia repair with the novel HUGO robot system – An initial experience from a tertiary centre. J Minim Access Surg 2024. [Google Scholar] [CrossRef]
- Caputo, D.; Cammarata, R.; Farolfi, T.; Coppola, R.; La Vaccara, V. First worldwide report on rectal resections with HugoTM surgical system: description of docking angles and tips for an effective setup. ANZ J Surg 2024. [Google Scholar] [CrossRef]
- Andrade, G.M.; et al. Implementation of Robot-assisted Urologic Surgeries using HugoTM RAS System in a High-volume Robotic ‘Da vinci Xi’ Center: outcomes and initial experience. Urology 2024. [Google Scholar] [CrossRef]
- Salem, S.A.; et al. Robotic Heller’s myotomy using the new HugoTM RAS system: first worldwide report. Surg Endosc 2024, 38, 1180–1190. [Google Scholar] [CrossRef]
- Gioè, A.; et al. The new robotic system HUGO RAS for gynecologic surgery: First European experience from Gemelli Hospital. International Journal of Gynecology and Obstetrics 2024, 166, 258–265. [Google Scholar] [CrossRef]
- Quezada, N.; Irarrazaval, M.J.; Chen, D.C.; Grimoldi, M.; Pimentel, F.; Crovari, F. Robotic transversus abdominis release using HUGO RAS system: our initial experience. Surg Endosc 2024, 38, 3395–3404. [Google Scholar] [CrossRef]
- Pavone, M.; et al. Initial experience of robotically assisted endometriosis surgery with a novel robotic system: first case series in a tertiary care center. Updates Surg 2024, 76, 271–277. [Google Scholar] [CrossRef]
- Dibitetto, F.; et al. Extraperitoneal robot assisted laparoscopic prostatectomy with Versius system: single centre experience. Prostate Cancer Prostatic Dis 2024, 27, 323–326. [Google Scholar] [CrossRef]
- Meneghetti, I.; et al. Partial nephrectomy series using Versius robotic surgical system: technique and outcomes of an initial experience. J Robot Surg 2024, 18. [Google Scholar] [CrossRef]
- De Maria, M.; Meneghetti, I.; Mosillo, L.; Collins, J.W.; Catalano, C. Versius robotic surgical system: case series of 18 robot-assisted radical prostatectomies. BJU Int 2024, 133, 197–205. [Google Scholar] [CrossRef]
- Inoue, S.; et al. First clinical experiences of robotic gastrectomy for gastric cancer using the hinotoriTM surgical robot system. Surg Endosc 2024, 38, 1626–1636. [Google Scholar] [CrossRef]
- Kulis, T.; et al. Robotic-assisted radical prostatectomy: a multicenter experience with the Senhance Surgical System. World J Urol 2024, 42. [Google Scholar] [CrossRef]
- Alip, S.; Koukourikis, P.; Han, W.K.; Rha, K.H.; Na, J.C. Comparing Revo-i and da Vinci in Retzius-Sparing Robot-Assisted Radical Prostatectomy: A Preliminary Propensity Score Analysis of Outcomes. J Endourol 2022, 36, 104–110. [Google Scholar] [CrossRef]
- Aggarwal, R.; Beatty, J.W.; Kinross, J.; von Roon, A.; Darzi, A.; Purkayastha, S. Initial Experience With a New Robotic Surgical System for Cholecystectomy. Surg Innov 2020, 27, 136–142. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, G.; Li, Z.; Lin, H.; Zhu, S.; Yi, B. The Micro Hand S vs. da Vinci Surgical Robot-Assisted Surgery on Total Mesorectal Excision: Short-Term Outcomes Using Propensity Score Matching Analysis. Front Surg 2021, 8. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, S.; Yi, B.; Li, J. Comparison of the short-term operative, Oncological, and Functional Outcomes between two types of robot-assisted total mesorectal excision for rectal cancer: Da Vinci versus Micro Hand S surgical robot. International Journal of Medical Robotics and Computer Assisted Surgery 2021, 17. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Li, Z.; Ling, H.; Yi, B.; Zhu, S. Comparison of the operative outcomes and learning curves between laparoscopic and ‘Micro Hand S’ robot-assisted total mesorectal excision for rectal cancer: a retrospective study. BMC Gastroenterol 2021, 21. [Google Scholar] [CrossRef]
- Lei, Y.; Jiang, J.; Zhu, S.; Yi, B.; Li, J. Comparison of the short-term efficacy of two types of robotic total mesorectal excision for rectal cancer. Tech Coloproctol 2022, 26, 19–28. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Yi, B.; Zhu, S. Initial experience of Chinese surgical robot “Micro Hand S″-assisted versus open and laparoscopic total mesorectal excision for rectal cancer: Short-term outcomes in a single center. Asian J Surg 2022, 45, 299–306. [Google Scholar] [CrossRef]
- Kulis, T.; et al. Comparison of extraperitoneal laparoscopic and extraperitoneal Senhance radical prostatectomy. International Journal of Medical Robotics and Computer Assisted Surgery 2022, 18. [Google Scholar] [CrossRef]
- Ruvolo, C.C.; et al. A comparative analysis of the HUGOTM robot-assisted surgery system and the Da Vinci® Xi surgical system for robot-assisted sacrocolpopexy for pelvic organ prolapse treatment. International Journal of Medical Robotics and Computer Assisted Surgery 2024, 20. [Google Scholar] [CrossRef]
- Li, X.; et al. Robot-assisted Partial Nephrectomy with the Newly Developed KangDuo Surgical Robot Versus the da Vinci Si Surgical System: A Double-center Prospective Randomized Controlled Noninferiority Trial. Eur Urol Focus 2023, 9, 133–140. [Google Scholar] [CrossRef]
- Motoyama, D.; et al. Robot-assisted adrenalectomy using a hinotori surgical robot system: Report of first series of six cases. Asian J Endosc Surg 2023, 16, 489–495. [Google Scholar] [CrossRef]
- Motoyama, D.; et al. Robot-assisted radical nephrectomy using novel surgical robot platform, hinotori: Report of initial series of 13 cases. International Journal of Urology 2023, 30, 1175–1179. [Google Scholar] [CrossRef]
- Motoyama, D.; et al. Perioperative outcomes of robot-assisted partial nephrectomy using hinotori versus da Vinci surgical robot system: a propensity score-matched analysis. J Robot Surg 2023, 17, 2435–2440. [Google Scholar] [CrossRef]
- Clark, S.G.; Shepherd, J.P.; Sassani, J.C.; Bonidie, M. Surgical cost of robotic-assisted sacrocolpopexy: a comparison of two robotic platforms. Int Urogynecol J 2023, 34, 87–91. [Google Scholar] [CrossRef]
- Kim, J.S.; Choi, M.; Hwang, H.S.; Lee, W.J.; Kang, C.M. The Revo-i Robotic Surgical System in Advanced Pancreatic Surgery: A Second Non-Randomized Clinical Trial and Comparative Analysis to the da VinciTM System. Yonsei Med J 2024, 65, 148–155. [Google Scholar] [CrossRef]
- Bravi, C.A.; et al. Robot-assisted Radical Prostatectomy Performed with Different Robotic Platforms: First Comparative Evidence Between Da Vinci and HUGO Robot-assisted Surgery Robots. Eur Urol Focus 2024, 10, 107–114. [Google Scholar] [CrossRef]
- Balestrazzi, E.; et al. Comparative analysis of robot-assisted simple prostatectomy: the HUGOTM RAS system versus the DaVinci® Xi system. Prostate Cancer Prostatic Dis 2024, 27, 122–128. [Google Scholar] [CrossRef]
- Menendez, R.B.; et al. Da Vinci vs. Hugo RAS for robot-assisted radical prostatectomy: a prospective comparative single-center study. World J Urol 2024, 42. [Google Scholar] [CrossRef]
- Ou, H.C.; et al. Robot-Assisted Radical Prostatectomy by the Hugo Robotic-Assisted Surgery (RAS) System and the da Vinci System: A Comparison between the Two Platforms. Cancers (Basel) 2024, 16. [Google Scholar] [CrossRef]
- Prata, F.; et al. Trifecta Outcomes of Robot-Assisted Partial Nephrectomy Using the New HugoTM RAS System Versus Laparoscopic Partial Nephrectomy. J Clin Med 2024, 13. [Google Scholar] [CrossRef]
- Gandi, C.; et al. Perioperative Outcomes of Robotic Radical Prostatectomy with HugoTM RAS versus daVinci Surgical Platform: Propensity Score-Matched Comparative Analysis. J Clin Med 2024, 13. [Google Scholar] [CrossRef]
- Antonelli, A.; et al. Intraoperative Performance of DaVinci Versus Hugo RAS During Radical Prostatectomy: Focus on Timing, Malfunctioning, Complications, and User Satisfaction in 100 Consecutive Cases (the COMPAR-P Trial). Eur Urol Open Sci 2024, 63, 104–112. [Google Scholar] [CrossRef]
- Shen, C.; et al. Robot-assisted Radical Prostatectomy with the KangDuo Surgical System Versus the da Vinci Si System: A Prospective, Double-center, Randomized Controlled Trial. Eur Urol Focus 2024. [Google Scholar] [CrossRef]
- Sun, Z.; et al. Robot-assisted radical resection of colorectal cancer using the KangDuo surgical robot versus the da Vinci Xi robotic system: short-term outcomes of a multicentre randomised controlled noninferiority trial. Surg Endosc 2024, 38, 1867–1876. [Google Scholar] [CrossRef]
- Liu, Y.; et al. Comparison of short-term outcomes of robotic-assisted radical colon cancer surgery using the Kangduo Surgical Robotic System and the Da Vinci Si Robotic System: a prospective cohort study. Int J Surg 2024, 110, 1511–1518. [Google Scholar] [CrossRef]
- Halabi, M.; et al. Operative efficiency: a comparative analysis of Versius and da Vinci robotic systems in abdominal surgery. J Robot Surg 2024, 18. [Google Scholar] [CrossRef]
- Kohjimoto, Y.; Yamashita, S.; Iwagami, S.; Muraoka, S.; Wakamiya, T.; Hara, I. hinotoriTM vs. da Vinci®: propensity score-matched analysis of surgical outcomes of robot-assisted radical prostatectomy. J Robot Surg 2024, 18. [Google Scholar] [CrossRef]
- Lin, Y.C.; et al. Comparison of senhance and da vinci robotic radical prostatectomy: short-term outcomes, learning curve, and cost analysis. Prostate Cancer Prostatic Dis 2024, 27, 116–121. [Google Scholar] [CrossRef]
- Sighinolfi, M.C.; et al. New robotic systems: first head-to-head comparison between Hugo RAS and Versius CMR in the pre-clinical setting. Feb. 01, 2024, Edizioni Minerva Medica. [CrossRef]
- https://www.asensus.com/senhance. (Accessed in June 2024).
- http://revosurgical.com/render/view/revo_i/discover_revo_i.html. (Accessed in June 2024).
- https://www.medtronic.com/covidien/en-ca/robotic-assisted-surgery/hugo-ras-system.html. (Accessed in June 2024).
- https://avatera.eu/en/avatera-system. (Accessed in June 2024).
- https://www.distalmotion.com/Dexter. (Accessed in June 2024).
- https://ssinnovations.com/ssi-mantra/. (Accessed in June 2024).









| Robotic platform | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Surgical Specialty | HugoTM | Versius® | Senhance® | Revo-i® | Micro Hand S | Avatera | Dexter | HinotoriTM | Mantra | KangDuo | Toumai® | |
| General Surgery | 126 | 607 | 764 | 27 | 277 | - | 12 | 33 | 10 | 101 | - | |
| Gynaecology | 253 | 204 | 114 | - | - | - | 1 | 12 | - | - | - | |
| Urology | 962 | 86 | 1036 | 48 | - | 9 | 11 | 105 | - | 175 | 20 | |
| Surgical platform | Company | Year | Country | CE Mark | FDA approval | Approved in the origine nation |
|---|---|---|---|---|---|---|
| Senhance® | TransEnterix Surgical which became Asensus Surgical in 2021 | 2017 | USA | yes | yes | yes |
| Revo-i® | Meerecompany Inc. | 2017 | South Korea | no | no | yes |
| Micro Hand S | Shandon Wego Surgical Robot Co | 2017 | China | no | no | yes |
| Toumai® | Shanghai MicroPort MedBot (Group) | 2018 | China | no | no | yes |
| Avatera | Avatera Medical | 2019 | Germany | yes | NAI | yes |
| Versius® | CMR Surgical | 2019 | UK | yes | no | yes |
| HinotoriTM | Medicaroid Inc | 2020 | Japan | no | yes | yes |
| KangDuo | Suzhou KangDuo Robot Co., Ltd. | 2020 | China | NAI | no | yes |
| HugoTM | Medtronic | 2021 | USA | yes | yes | yes |
| Dexter | Distalmotion | 2022 | Switzerland | yes | no | yes |
| Mantra | SS Innovation | 2023 | India | ongoing | ongoing | yes |
| Surgical platform | Single port or#break#Multiport | Chart | Number of arms | Console | Vision | Fluorescence | Haptic Feedback | Eye tracking | Instruments |
|---|---|---|---|---|---|---|---|---|---|
| Senhance® | Multiport | multiple | 4 | Semi-open | 3DHD | NAI | yes | NAI | Wristed, 5 mm, disposable |
| Revo-i® | Multiport | single | 4 | Open | 3DHD | yes | yes | yes | rigid with a kit of wristed, unlimited uses, 5 mm |
| Micro Hand S | Multiport | single | 4 | Close | 3D HD | no | yes | no | wristed, multi-uses (20) |
| Toumai® | Multiport | single | 4 | Open | 3DHD | yes | no | no | wristed, reusable |
| Avatera | Multiport | single | 4 | open | 3D HD | no | no | yes | wristed, Reusable |
| Versius® | Multiport | multiple | 4 | open | 3D HD | yes | no | yes | wristed, disposable |
| HinotoriTM | Multiport | single | 4 | semi-open | 3D HD | NAI | no | no | wristed, reusable used up to 10 times |
| Kangduo | Multiport | single | 3 | Open | 3D HD | yes | yes | NAI | Wristed, Reusable up to 10 uses |
| HugoTM | Multiport | multiple | 4 | Open | 3D 4k | NAI | NAI | Yes | NAI |
| Dexter | Multiport | multiple | 3 | Open | 3DHD | yes | No | NAI | reusable up to 10 times |
| Mantra | Multiport | multiple | 5 | open | 3DHD | NA | NAI | NAI | NAI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
