Submitted:
29 September 2024
Posted:
01 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Animals and Their Habitat
2.2. Chemical Analysis
2.3. Assessment of Protein Nutritional Value
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
References
- Kożuch, A. Strategic analysis of the venison market in Poland. Sylwan (in Polish in English abstract). 2020, 164, 254–264. [Google Scholar]
- Niewiadomska, K.; Kosicka-Gębska, M.; Gębski, J.; Gutkowska, K.; Jeżewska-Zychowicz, M.; Sułek, M. Game meat consumption-conscious choice or just a game? Foods 2020, 9(10), 1357. [Google Scholar] [CrossRef] [PubMed]
- Czarniecka-Skubina, E.; Stasiak, D.M.; Latoch, A.; Owczarek, T.; Hamulka, J. Consumers’ Perception and Preference for the Consumption of Wild Game Meat among Adults in Poland. Foods 2022, 11, 830. [Google Scholar] [CrossRef] [PubMed]
- Wach, J.; Komosa, M.; Serwańska-Leja, K.; Nowicki, W.; Babiński, B. COMPARISON OF THE NUTRITIONAL VALUE OF MEAT FROM FARM-RAISED AND WILD FALLOW DEER (DAMA DAMA). Anim. Sci. Genet. 2023, 19, 81–90. [Google Scholar] [CrossRef]
- Flis, M. Dziczyzna jako źródło żywności, prawno-ekonomiczne aspekty wprowadzania na rynek. Prz. Hod. 2016, 6, 29 − 31. [Google Scholar]
- Zhao, Y.; Long, W.; Huang, S.; et al. Removal mechanism of oxide film on 304 stainless steel surface by silver brazing flux containing fluoride. Rare Metal. Mat. Eng. 2023, 51, 4502–07. [Google Scholar] [CrossRef]
- Kilar, J.; Kasprzyk, A. Fatty Acids and Nutraceutical Properties of Lipids in Fallow Deer (Dama dama) Meat Produced in Organic and Conventional Farming Systems. Foods 2021, 10, 2290. [Google Scholar] [CrossRef]
- Brox, J.; Bjørnstad, E.; Olaussen, K.; Østerud, B.; Almdahl, S.; Løchen, M. Blood lipids, fatty acids, diet and lifestyle parameters in adolescents from a region in northern Norway with a high mortality from coronary heart disease. Eur. J. Clin. Nutr. 2002, 56, 694–700. [Google Scholar] [CrossRef]
- Brustad, M.; Parr, C.; Melhus, M.; Lund, E. Childhood diet in relation to Sámi and Norwegian ethnicity in northern and mid-Norway – the SAMINOR study. Public Health Nutr 2008, 11, 168–175. [Google Scholar] [CrossRef]
- Barański, M.; Rempelos, L.; Iversen, P.O.; Leifert, C. Effects of organic food consumption on human health; the jury is still out! Food Nutr. Res. 2017, 61, 1287333. [Google Scholar] [CrossRef]
- Leroy, F.; Smith, N.W.; Adesogan, A.T.; Beal, T.; Iannotti, L.; Moughan, P.J.; Mann, N. The role of meat in the human diet: evolutionary aspects and nutritional value. Anim. Front. 2023, 13, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Sánchez-García, C. Nutritional Composition of Game Meat from Wild Species Harvested in Europe. Meat Nutr. 2021. Available online: https://www.intechopen.com/online-first/nutritional-composition-of-game-meat-from-wild-species-harvested-in-europe (accessed on 17 May 2021). [CrossRef]
- Sevillano-Morales, J.; Sevillano-Caño, J.; Amaro-López, M.A.; Cámara-Martos, F. Probabilistic Assessment of the Intake of Trace Elements by Consumption of Red Deer (Cervus elaphus) and Wild Boar (Sus scrofa) Meat. Appl. Sci. 2023, 13, 13263. [Google Scholar] [CrossRef]
- Green, J.; Schmidt-Burbach, J.; Elwin, A. Taking stock of wildlife farming: A global perspective. Glob. Ecol. Conserv. 2023, 43. [Google Scholar] [CrossRef]
- Triumf, E.C.; Purchas, R.W.; Mielnik, M.; Maehre, H.K.; Elvevoll, E.; Slinde, E.; Egelandsdal, B. Composition and some quality characteristics of the longissimus muscle of reindeer in Norway compared to farmed New Zealand red deer. Meat Sci. 2012, 90, 122–129. [Google Scholar] [CrossRef]
- Smith, N.W.; Fletcher, A.J.; Hill, J.P.; McNabb, W.C. Modeling the Contribution of Meat to Global Nutrient Availability. Front. Nutr. 2022, 9, 766796. [Google Scholar] [CrossRef]
- Mały Rocznik Stat. (CSY); Concise Statistical Yearbook of Poland. GUS. 2023. Retrieved from http://www.stat.gov.pl/ (accessed on 5 May 2024).
- Gurung, N.K.; Rush, J.; Pugh, D. Feeding and Nutrition. In Sheep, Goat, and Cervid Medicine, 3rd ed.; Ed. Pugh, D.G; Baird, A.N.; Edmondson M.A.; Passler, T. Elsevier, 2021, pp. 15 – 44.
- Zin, M.; Mroczek, J.R.; Mroczek, K. Walory surowca mięsnego pozyskiwanego od jeleniowatych. Gosp. Mięsna 2019, 9, 23–25. [Google Scholar]
- Moughan, P.J. Population protein intakes and food sustainability indices: The metrics matter. Glob. Food Secur. 2021, 29, 100548. [Google Scholar] [CrossRef]
- Smith, K.; Watson, A.W.; Lonnie, M.; Peeters, W.M.; Oonincx, D.; Tsoutsoura, N.; Simon-Miquel, G.; Szepe, K.; Cochetel, N.; Pearson, A.G.; et al. Meeting the global protein supply requirements of a growing and ageing population. Eur. J. Nutr. 2024, 63, 1425–1433. [Google Scholar] [CrossRef]
- Moughan, P.J.; Fulgoni, V.L.; Wolfe, R.R. The Importance of Dietary Protein Quality in Mid- to High-Income Countries. J. Nutr. 2024, 154, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Am. J. Clin. Nutr. 2018,, 107, 155–164; [CrossRef]
- Chander, M.P.; Kartick, C.; Gangadhar, J.; Vijayachari, P. Ethno medicine and healthcare practices among Nicobarese of Car Nicobar - an indigenous tribe of Andaman and Nicobar Islands. J. Ethnopharmacol. 2014, 158, 18–24. [Google Scholar] [CrossRef]
- FAO/WHO/UNU. Protein and Amino Acid Requirements in Human Nutrition. Report of a Joint FAO/WHO/UNU Expert Consultation; Technical Report Series 935; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Ling, Z.-N.; Jiang, Y.-F.; Ru, J.-N.; Lu, J.-H.; Ding, B.; Wu, J. Amino acid metabolism in health and disease. Signal Transduct. Target. Ther. 2023, 8, 1–32. [Google Scholar] [CrossRef]
- Cloyd, J. The Role of Amino Acids in Mood Regulation: A Functional Medicine Perspective. Mental Health 2023, November 16; https://www.rupahealth.com/post/the-role-of-amino-acids-in-mood-regulation-a-functional-medicine-perspective. (accessed on 30 July 2024).
- Siddiqui, S.A.; Bhowmik, S.; Afreen, M.; Ucak, I.; Ikram, A.; Gerini, F.; Castro-Munoz, R. Bodybuilders and high-level meat consumers’ behavior towards rabbit, beef, chicken, turkey, and lamb meat: A comparative review. Nutr. 2024, 119, 112305. [Google Scholar] [CrossRef]
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.W.; Bonham, M.P.; Fearon, A.M. Red meat consumption: An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef]
- Cawthorn, D.-M.; Fitzhenry, L.B.; Kotrba, R.; Bureš, D.; Hoffman, L.C. Chemical Composition of Wild Fallow Deer (Dama Dama) Meat from South Africa: A Preliminary Evaluation. Foods 2020, 9, 598. [Google Scholar] [CrossRef]
- Kudrnáčová, E.; Bureš, D.; Bartoň, L.; Kotrba, R.; Ceacero, F.; Hoffman, L.C.; Kouřimská, L. The effect of barley and lysine supplementation of pasture-based diet on growth, carcass composition and physical quality attributes of meat from farmed fallow deer (Dama dama). Animals 2019, 9(2), 33. [Google Scholar] [CrossRef]
- Bureš, D.; Bartoň, L.; Kudrnáčová, E.; Kotrba, R.; Hoffman, L.C. The Effect of Barley and Lysine Supplementation on the longissimus lumborum Meat Quality of Pasture-Raised Fallow Deer (Dama dama). Foods 2020, 9, 1255. [Google Scholar] [CrossRef]
- Stanisz, M.; Skorupski, M.; Bykowska-Maciejewska, M.; Składanowska-Baryza, J.; Ludwiczak, A. Seasonal Variation in the Body Composition, Carcass Composition, and Offal Quality in the Wild Fallow Deer (Dama dama L.). Animals 2023, 13, 1082. [Google Scholar] [CrossRef]
- Ivanović, S.; Pisinov, B.; Pavlović, M.; Pavlović, I. Quality of Meat from Female Fallow Deer (Dama Dama) and Roe Deer (Capreolus Capreolus) Hunted in Serbia. Ann. Anim. Sci. 2020, 20, 245–262. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Kłys, W.; Czarnowska-Misztal, E. Zastosowanie analizy aminokwasów do oceny wartości odżywczej białka produktów spożywczych. Roczn. PZH. 1977, 28, 321–330. [Google Scholar]
- AOAC. Official methods of analysis of AOAC International, 18th ed; AOAC International: Washington, DC, USA, 2000. [Google Scholar]
- Landry, J.; Delhaye, S.; Jones, D.G. Determination of tryptophan in feedstuffs: comparison of two methods of hydrolysis prior to HCLP analysis. J. Sci. Food Agric. 1992, 58, 439–441. [Google Scholar] [CrossRef]
- FAO/WHO Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation. Food Nutr. Paper 1991, 51, 1–66.
- USA. Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. Food and Nutrition Board. National Academy Press, Washington, DC, 2002.
- FAO Dietary protein quality evaluation in human nutrition. Report of an FAO Expert Consultation. Food Nutr. Paper 2013, 92, Rome, pp. 19 – 38.
- Alsmeyer, R.H.; Cunningham, A.E.; Happich, M.L. Equations predict PER from amino acid analysis. Food Technol. Chicago 1974, 28, 34–42. [Google Scholar]
- Lee, Y.B.; Elliot, J.G.; Rickansrud, D.A.; Mugberg, E.C. Predicting protein efficiency ratio by the chemical determinations of connective tissue content in meat. J Food Sci. 1978, 43, 1359–1362. [Google Scholar] [CrossRef]
- Oser, B.L. Protein and amino acid nutrition. Albanese Acad. Press New York, 1959, pp. 281 – 291.
- Wu, G. Amino acids: metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Kelly, B.; Pearce, E.L. Amino Assets: How Amino Acids Support Immunity. Cell Metab. 2020, 32, 154–175. [Google Scholar] [CrossRef]
- Drewnowski, A. Perspective: The Place of Pork Meat in Sustainable Healthy Diets. Adv. Nutr. Int. Rev. J. 2024, 15, 100213. [Google Scholar] [CrossRef]
- Elango, R.; A Humayun, M.; O Ball, R.; Pencharz, P.B. Evidence that protein requirements have been significantly underestimated. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 52–57. [Google Scholar] [CrossRef]
- Piaskowska, N.; Daszkiewicz, T.; Kubiak, D.; Janiszewski, P. The Effect of Gender on Meat (Longissimus LumborumMuscle) Quality Characteristics in the Fallow DeerDama DamaL.). Ital. J. Anim. Sci. 2015, 14. [Google Scholar] [CrossRef]
- Gan, M.; Shen, L.; Chen, L.; Jiang, D.; Jiang, Y.; Li, Q.; Chen, Y.; Ge, G.; Liu, Y.; Xu, X.; et al. Meat Quality, Amino Acid, and Fatty Acid Composition of Liangshan Pigs at Different Weights. Animals 2020, 10, 822. [Google Scholar] [CrossRef] [PubMed]
- Domaradzki, P.; Żółkiewski, P., Litwińczuk; Florek, M.; Dmoch, M. Profile and nutritional value of fatty acids in selected skeletal muscles of Polish Holstein-Friesian bulls. Med. Weter. (in Polish in English abstract). 2019, 75, 310–315.9. [Google Scholar]
- Li, W.-J.; Jiang, Y.-W.; Cui, Z.-Y.; Wu, Q.-C.; Zhang, F.; Chen, H.-W.; Wang, Y.-L.; Wang, W.-K.; Lv, L.-K.; Xiong, F.-L.; et al. Dietary Guanidine Acetic Acid Addition Improved Carcass Quality with Less Back-Fat Thickness and Remarkably Increased Meat Protein Deposition in Rapid-Growing Lambs Fed Different Forage Types. Foods 2023, 12, 641. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Falvo, M.J. Protein-which is best? J. Sport Sci. Med. 2004, 3, 118–130. [Google Scholar]
- Olaoye, O.A. Meat: An overview of its composition, biochemical changes and associated microbial agents. Int. Food Res. J. 2011, 18, 877–855. [Google Scholar]
- Mess, E.; Ornat, M.; Sławomirska, R. The role of dietary protein in progressing stage of cancer. Palliat. Med. 2017, 9, 133–138. [Google Scholar]
- Kasprzyk 2024. Amino acid content in the muscles of the red deer (Cervus elaphus) from three types of feeding grounds. Animals (in press).
- wietlicka, A. Synteza pochodnych ftalowych i analiza ich profilu aktywności biologicznej. PhD dissertation, Uniwersytet Śląski, Katowice, 2023.
- Drywień, M.E.; Dźwigała, J.; Staszewska- Skurczyńska, M. The importance of branched chain amino acids in human nutrition and prevention, and the course of certain diseases. Znaczenie aminokwasów rozgałęzionych w żywieniu człowieka oraz profilaktyce i przebiegu niektórych chorób. Med. Ogólna Nauki Zdr. (in Polish in English abstract). 2013, 19, 379–384. [Google Scholar]
- Simonson, M.; Boirie, Y.; Guillet, C. Protein, amino acids and obesity treatment. Rev. Endocr. Metab. Disord. 2020, 21, 341–353. [Google Scholar] [CrossRef]
- Obvintseva, O.; Erimbetov, K.; Mikhailov, V.; Sofronova, O.; Polyakova, L. The role and metabolic functions of the branched-chain amino acids: a review.CONFERENCE NAME, LOCATION OF CONFERENCE, COUNTRYDATE OF CONFERENCE; p. 03054.
- Kudrnáčová, E.; Bartoň, L.; Bureš, D.; Hoffman, L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018, 141, 9–27. [Google Scholar] [CrossRef]
- Okuskhanova, E.; Assenova, B.; Rebezov, M.; Amirkhanov, K.; Yessimbekov, Z.; Smolnikova, F.; Nurgazezova, A.; Nurymkhan, G.; Stuart, M. Study of morphology, chemical, and amino acid composition of red deer meat. Veter- World 2017, 10, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Wyness, L. The role of red meat in the diet: nutrition and health benefits. Proc. Nutr. Soc. 2015, 75, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bermudez, J.; Baudrier, L.; La, K.; Zhu, X.G.; Fidelin, J.; Sviderskiy, V.O.; Papagiannakopoulos, T.; Molina, H.; Snuderl, M.; Lewis, C.A.; et al. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat. Cell Biol. 2018, 20, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, L.B.; Luengo, A.; Danai, L.V.; Bush, L.N.; Diehl, F.F.; Hosios, A.M.; Lau, A.N.; Elmiligy, S.; Malstrom, S.; Lewis, C.A.; et al. Aspartate is an endogenous metabolic limitation for tumour growth. Nat. Cell Biol. 2018, 20, 782–788. [Google Scholar] [CrossRef]
- Chen, S.-F.; Pan, M.-X.; Tang, J.-C.; Cheng, J.; Zhao, D.; Zhang, Y.; Liao, H.-B.; Liu, R.; Zhuang, Y.; Zhang, Z.-F.; et al. Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol. Brain 2020, 13, 1–13. [Google Scholar] [CrossRef]
- Cengiz, M.; Uysal, B.B.; Ikitimur, H.; Ozcan, E.; Islamoğlu, M.S.; Aktepe, E.; Yavuzer, H.; Yavuzer, S. Effect of oral l-Glutamine supplementation on Covid-19 treatment. Clin. Nutr. Exp. 2020, 33, 24–31. [Google Scholar] [CrossRef]
- Mohajeri, M.; Horriatkhah, E.; Mohajery, R. The effect of glutamine supplementation on serum levels of some inflammatory factors, oxidative stress, and appetite in COVID-19 patients: a case–control study. Inflammopharmacology 2021, 29, 1769–1776. [Google Scholar] [CrossRef]
- Gadomska, J.; Sadowski, S.; Buczkowska, M. Ekologiczna żywność jako czynnik sprzyjający zdrowiu. Probl. Hig. Epidemiol, 2014, 95, 556–560. [Google Scholar]
- Singhal, N.; Freeman, E.; Arning, E.; Wasek, B.; Clements, R.; Sheppard, C.; Blake, P.; Bottiglieri, T.; McDonough, J. Dysregulation of methionine metabolism in multiple sclerosis. Neurochem. Int. 2017, 112, 1–4. [Google Scholar] [CrossRef]
- Hardwick, S. Amino Acids and Brain Health. Publisher Mishaelia Bushman, July 24th, 2020; https://brainsciences.org/amino-acids-and-brain-health/.
- Shi, L.; Song, F.; Xing, S.; Zhang, W.; Liang, Y.; Zhang, K.; Sun, J.; Luo, J. The muscle nutritional components analysis of golden pompano (Trachinotus blochii) in different mariculture area, growth stages, and genders. Front. Nutr. 2023, 10, 1148687. [Google Scholar] [CrossRef]
- Geletu, U.S.; Usmael, M.A.; Mummed, Y.Y.; Ibrahim, A.M. Quality of Cattle Meat and Its Compositional Constituents. Veter- Med. Int. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Nevrkla, P.; Weisbauerová, E.; Horký, P.; Hadaš, Z.; Rozkot, M.; Knitlová, D. . Fatty acid and amino acid profiles in muscle longissimus lumborum et thoracis of the indigenous Prestice Black-Pied pig breed in comparison with a commercial pig hybrid. Ital. J. Anim. Sci. 2023, 22, 472–481. [Google Scholar] [CrossRef]
- Bifari, F.; Nisoli, E. Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. Br. J. Pharmacol. 2016, 174, 1366–1377. [Google Scholar] [CrossRef] [PubMed]
- Adeyeye, E.I.; Oseni, O.A.; Popoola, K.O.; Gbolagade, Y.A.; Olatoye, A.R.; Idowu, K. Amino Acid Composition of Kilishi - Nigerian (Beef Jerky) Meat. Sustain. Food Prod. 2020, 8, 1–16. [Google Scholar] [CrossRef]
- Khatataev, S.A. Amino acid composition of muscle tissue proteins of buck lambs of Precoce breed and hybrids of their crosses with the Texel and Poll Dorset breeds. Russ. Agric. Sci. 2007, 33, 50–53. [Google Scholar] [CrossRef]
- Brzostowski, H.; Niżnikowski, R.; Tański, Z. Quality of goat meat from purebred French Alpine kids and Boer crossbreeds. Arch. Anim. Breed. 2008, 51, 381–388. [Google Scholar] [CrossRef]
- Han, Y.; Liang, C.; Manthari, R.K.; Yu, Y.; Zhang, J.; Wang, J.; Cao, J. Distribution characteristics and regulation of amino acids and fatty acids in muscle and adipose tissues of sheep grown in natural grazing environment. Anim. Sci. J. 2022, 93, e13769. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Machado, S.; Pimentel, F.B.; Freitas, V.; Alves, R.C.; Oliveira, M.B.P.P. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods 2020, 9, 1382. [Google Scholar] [CrossRef]
- Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S.; Chartrand, M.S.; Bjørklund, G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr. 2019, 59, 72–88. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sarriés, M.V.; Tateo, A.; Polidori, P.; Franco, D.; Lanza, M. Carcass characteristics, meat quality and nutritional value of horsemeat: A review. Meat Sci. 2014, 96, 1478–1488. [Google Scholar] [CrossRef]
- Biel, W. Skład chemiczny i jakość białka konwencjonalnej i genetycznie zmodyfikowanej poekstrakcyjnej śruty sojowej. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2011, 290, 17–24. [Google Scholar]
- Hodgkinson, S.M.; A Montoya, C.; Scholten, P.T.; Rutherfurd, S.M.; Moughan, P.J. Cooking Conditions Affect the True Ileal Digestible Amino Acid Content and Digestible Indispensable Amino Acid Score (DIAAS) of Bovine Meat as Determined in Pigs. J. Nutr. 2018, 148, 1564–1569. [Google Scholar] [CrossRef]
| Specification | Longissimus lumborum (LL) | Semimembranosus (SM) | Impact of factors | ||||||||||
| OFG | CFG | P-value | OFG | CFG | P-value | FG | M | FG x M | |||||
| SE | SE | SE | SE | P-value | |||||||||
| Protein | 23.17 | 0.57 | 23.19 | 0,66 | 0,987 | 23,88 | 0.74 | 23.90 | 0.61 | 0,984 | 0.970 | 0.216 | 0.986 |
| Essential amino acids | |||||||||||||
| Threonine | 8.58 | 0.29 | 7.94 | 0.17 | 0.021 | 8.80 | 0.33 | 8.09 | 0.26 | 0.050 | 0.004 | 0.412 | 0.879 |
| Valine | 9.08 | 0.32 | 8.46 | 0.24 | 0.151 | 9.65 | 0.37 | 8.88 | 0.27 | 0.083 | 0.024 | 0.106 | 0.798 |
| Methionine | 4.89 | 0.11 | 4.39 | 0.11 | 0.003 | 4.87 | 0.14 | 4.51 | 0.18 | 0.072 | 0.001 | 0.693 | 0.554 |
| Isoleucine | 7.69 | 0.28 | 7.20 | 0.12 | 0.061 | 7.99 | 0.32 | 7.36 | 0.29 | 0.083 | 0.012 | 0.282 | 0.748 |
| Leucine | 14.78 | 0.31 | 13.94 | 0.24 | 0.064 | 15.44 | 0.55 | 13.99 | 0.33 | 0.036 | 0.005 | 0.364 | 0.443 |
| Phenylalaine | 7.31 | 0.20 | 6.82 | 0.15 | 0.032 | 7.65 | 0.30 | 6.98 | 0.11 | 0.047 | 0.004 | 0.206 | 0.654 |
| Lysine | 17.80 | 0.47 | 16.72 | 0.36 | 0.073 | 18.57 | 0.61 | 16.87 | 0.37 | 0.032 | 0.005 | 0.328 | 0.511 |
| Tryptophan | 7.74 | 0.10 | 7.92 | 0.20 | 0.368 | 7.98 | 0.16 | 8.16 | 0.25 | 0.487 | 0.269 | 0.145 | 0.996 |
| Histidine | 7.26 | 0.20 | 6.74 | 0.16 | 0.069 | 8.44 | 0.37 | 7.44 | 0.25 | 0.034 | 0.005 | 0.001 | 0.358 |
| Non-essential AA | |||||||||||||
| Arginine | 15.20 | 0.54 | 13.75 | 0.30 | 0.020 | 15.24 | 0.47 | 14.32 | 0.32 | 0.201 | 0.012 | 0.503 | 0.561 |
| Serine | 7.34 | 0.25 | 6.75 | 0.21 | 0.022 | 7.42 | 0.32 | 6.94 | 0.20 | 0.146 | 0.010 | 0.514 | 0.774 |
| Aspartic acid | 16.70 | 0.37 | 15.58 | 0.30 | 0.036 | 17.14 | 0.62 | 15.88 | 0.42 | 0.093 | 0.009 | 0.401 | 0.879 |
| Glutamic acid | 26.43 | 0.55 | 24.51 | 0.58 | 0.022 | 26.41 | 1.04 | 23.74 | 0.71 | 0.045 | 0.003 | 0.597 | 0.614 |
| Proline | 8.34 | 0.58 | 6.09 | 0.34 | 0.008 | 8.24 | 0.44 | 7.58 | 0.22 | 0.185 | 0.003 | 0.132 | 0.089 |
| Glycine | 9.12 | 0.41 | 7.70 | 0.21 | 0.008 | 8.58 | 0.31 | 8.73 | 0.31 | 0.731 | 0.046 | 0.456 | 0.020 |
| Alanine | 10.94 | 0.34 | 9.91 | 0.24 | 0.013 | 10.86 | 0.46 | 10.10 | 0.22 | 0.127 | 0.006 | 0.868 | 0.659 |
| Cysteine | 0.29 | 0.02 | 0.33 | 0.03 | 0.228 | 0.33 | 0.03 | 0.27 | 0.04 | 0.218 | 0.677 | 0.718 | 0.090 |
| Tyrosine | 6.83 | 0.26 | 6.25 | 0.13 | 0.009 | 7.08 | 0.27 | 6.42 | 0.22 | 0.033 | 0.001 | 0.238 | 0.827 |
| Total amino acids | 190.67 | 7.76 | 176.24 | 4.45 | 0.009 | 186.32 | 5.44 | 170.99 | 3.42 | 0.064 | 0.002 | 0.299 | 0.923 |
| EAA | 89.38 | 2.98 | 82.26 | 2.48 | 0.044 | 85.13 | 2.33 | 80.12 | 2.13 | 0.050 | 0.006 | 0.132 | 0.617 |
| NEAA | 101.29 | 3.91 | 93.97 | 2.23 | 0.004 | 101.18 | 3.47 | 90.87 | 2.55 | 0.082 | 0.051 | 0.535 | 0.562 |
| % EAA | 49.89 | 0.23 | 46.67 | 0.25 | 0.005 | 45.73 | 0.33 | 46.85 | 0.20 | 0.461 | 0.052 | 0.035 | 0.005 |
| %NEAA | 55.10 | 0.23 | 53.32 | 0.25 | 0.005 | 54.26 | 0.33 | 53.14 | 0.20 | 0.461 | 0.052 | 0.035 | 0.005 |
| EAA:NEAA | 0.98 | 0.007 | 0.87 | 0.020 | 0.005 | 0.84 | 0.015 | 0.88 | 0.020 | 0.466 | 0.057 | 0.038 | 0.006 |
| EAA:TAA | 0.56 | 0.002 | 0.46 | 0.007 | 0.005 | 0.45 | 0.010 | 0.46 | 0.007 | 0.461 | 0.052 | 0.035 | 0.005 |
| Specification | Longissimus lumborum (LL) | Semimembranosus (SM) | Impact of factors | ||||||||||
| OFG | CFG | P-value | OFG | CFG | P-value | FG | M | FG x M | |||||
| SE | SE | SE | SE | P-value | |||||||||
| Met+Cys | 5.19 | 0.29 | 4.77 | 0.16 | 0.003 | 5.18 | 0.16 | 4.71 | 0.10 | 0.064 | 0.999 | 0.617 | 0.879 |
| Phe+Tyr | 14.73 | 0.57 | 13.39 | 0.33 | 0.016 | 14.14 | 0.34 | 13.06 | 0.26 | 0.039 | 0.998 | 0.228 | 0.989 |
| AcAA | 43.54 | 5.50 | 39.62 | 1.68 | 0.022 | 43.12 | 1.13 | 40.08 | 0.72 | 0.052 | 0.004 | 0.984 | 0.699 |
| ArAA | 22.70 | 0.16 | 21.55 | 0.61 | 0.080 | 21.88 | 0.34 | 20.98 | 0.35 | 0.153 | 0.031 | 0.138 | 0.787 |
| %AcAA | 22.81 | 0.24 | 22.46 | 0.26 | 0.431 | 23.17 | 0.22 | 23.44 | 0.30 | 0.242 | 0.051 | 0.206 | 0.654 |
| %ArAA | 11.93 | 0.11 | 12.23 | 0.13 | 0.009 | 11.77 | 0.15 | 12.28 | 0.11 | 0.066 | 0.050 | 0.138 | 0.511 |
| BCAA | 33.07 | 1.09 | 30.23 | 1.44 | 0.069 | 31.55 | 0.91 | 29.59 | 0.65 | 0.051 | 0.001 | 0.214 | 0.604 |
| %BCAA | 17.33 | 0.25 | 17.15 | 0.17 | 0.070 | 16.93 | 0.27 | 17.29 | 0.13 | 0.347 | 0.513 | 0.350 | 0.049 |
| BCAA:ArAA | 1.44 | 0.02 | 1.41 | 0.02 | 0.284 | 1.45 | 0.02 | 1.40 | 0.01 | 0.074 | 0.052 | 0.865 | 0.593 |
| DAA | 62.98 | 2.71 | 58.44 | 1.17 | 0.009 | 63.18 | 2.38 | 57.70 | 1.86 | 0.105 | 0.004 | 0.870 | 0.775 |
| %DAA | 33.00 | 0.26 | 33.14 | 0.30 | 0.666 | 33.92 | 0.39 | 33.74 | 0.35 | 0.714 | 0.942 | 0.007 | 0.570 |
| DAA:TAA | 0.33 | 0.009 | 0.33 | 0.009 | 0.666 | 0.33 | 0.010 | 0.33 | 0.010 | 0.714 | 0.943 | 0.007 | 0.570 |
| LNAA | 47.80 | 2.79 | 43.62 | 1,42 | 0.038 | 45.69 | 1.71 | 42.66 | 1.07 | 0.043 | 0.004 | 0.202 | 0.632 |
| %LNAA | 25.05 | 0.12 | 24.75 | 0.16 | 0.053 | 24.53 | 0.25 | 24.94 | 0.19 | 0.113 | 0.698 | 0.212 | 0.012 |
| Trp:LNAA | 0.16 | 0.01 | 0.19 | 0.01 | 0.010 | 0.15 | 0.01 | 0.18 | 0.01 | 0.004 | 0.000 | 0.921 | 0.754 |
| LNAA:Trp | 5.98 | 0.25 | 5.36 | 0.16 | 0.012 | 5.89 | 0.15 | 5.41 | 0.20 | 0.004 | 0.000 | 0.872 | 0.618 |
| Specification | Longissimus lumborum (LL) | Semimembranosus (SM) | Impact of factors | ||||||||||
| OFG | CFG | P-value | OFG | CFG | P-value | FG | M | FG x M | |||||
| SE | SE | SE | SE | P-value | |||||||||
| CS 1 Isoleucine FAO/WHO 1991 | 285.38 | 10.33 | 262.91 | 6.98 | 0.061 | 274.64 | 8.44 | 257.08 | 6.65 | 0.083 | 0.012 | 0.282 | 0.748 |
| CS 2 Isoleucine USA 2002 | 320.14 | 11.88 | 294.93 | 6.54 | 0.061 | 308.09 | 8.41 | 288.39 | 6.92 | 0.083 | 0.012 | 0.282 | 0.748 |
| CS 3 Isoleucine FAO/WHO 2013 | 265.65 | 10.75 | 244.73 | 5.53 | 0.061 | 255.65 | 7.75 | 239.30 | 5.36 | 0.083 | 0.012 | 0.282 | 0.748 |
| CS 1 Leucine FAO/WHO 1991 | 234.16 | 9.69 | 212.25 | 5.38 | 0.064 | 224.16 | 5.67 | 211.40 | 4.23 | 0.036 | 0.005 | 0.364 | 0.443 |
| CS 2 Leucine USA 2002 | 280.44 | 14.36 | 254.20 | 6.02 | 0.064 | 268.47 | 7.16 | 253.19 | 15.05 | 0.036 | 0.005 | 0.364 | 0.443 |
| CS 3 Leucine FAO/WHO 2013 | 291.46 | 15.71 | 264.19 | 6.88 | 0.064 | 279.01 | 7.99 | 263.13 | 15.72 | 0.036 | 0.005 | 0.364 | 0.443 |
| CS 1 Lysine FAO/WHO 1991 | 320.68 | 17.73 | 291.26 | 6.84 | 0.073 | 307.27 | 8.60 | 288.61 | 6.62 | 0032 | 0.005 | 0.328 | 0.511 |
| CS 2 Lysine USA 2002 | 363.91 | 12.81 | 330.52 | 8.06 | 0.073 | 348.69 | 9.18 | 327.52 | 7.54 | 0.032 | 0.005 | 0.328 | 0.511 |
| CS 3 Lysine FAO/WHO 2013 | 413.12 | 28.60 | 375.22 | 10.72 | 0.073 | 395.85 | 10.27 | 371.81 | 9.86 | 0.032 | 0.005 | 0.328 | 0.511 |
| CS 1 Methionine+Cysteine FAO/WHO 1991 | 208.30 | 13.75 | 191.30 | 6.68 | 0.003 | 207.63 | 4.48 | 189.00 | 3.38 | 0.064 | 0.001 | 0.775 | 0.875 |
| CS 2 Methionine+Cysteine USA 2002 | 208.30 | 13.75 | 191.30 | 6.68 | 0.003 | 207.63 | 4.48 | 189.00 | 3.38 | 0.064 | 0.001 | 0.775 | 0.875 |
| CS 3 Methionine+Cysteine FAO/WHO 2013 | 235.47 | 16.85 | 216.25 | 7.12 | 0.003 | 234.71 | 5.37 | 213.65 | 4.99 | 0.064 | 0.001 | 0.775 | 0.875 |
| CS 1 Phenylolanine+Tyrosine FAO/WHO 1991 | 234.26 | 19.22 | 213.06 | 5.25 | 0.016 | 224.93 | 6.27 | 207.75 | 4.80 | 0.039 | 0.002 | 0.217 | 0.733 |
| CS 2 Phenylolanine+Tyrosine USA 2002 | 313.15 | 19.06 | 284.81 | 7.72 | 0.016 | 300.68 | 7.43 | 277.70 | 5.45 | 0.039 | 0.002 | 0.217 | 0.733 |
| CS 3 Phenylolanine+Tyrosine FAO/WHO 2013 | 386.83 | 18.25 | 351.82 | 8.83 | 0.016 | 371.43 | 9.17 | 343.05 | 7.79 | 0.039 | 0.002 | 0.217 | 0.733 |
| CS 1 Threonine FAO/WHO 1991 | 259.38 | 10.62 | 238.45 | 6.51 | 0.021 | 253.02 | 6.40 | 234.08 | 5.86 | 0.058 | 0.004 | 0.412 | 0.879 |
| CS 2 Threonine USA 2002 | 325.38 | 18.42 | 299.12 | 8.47 | 0.021 | 317.40 | 7.59 | 293.63 | 6.15 | 0.058 | 0.004 | 0.412 | 0.879 |
| CS 3 Threonine FAO/WHO 2013 | 381.87 | 15.09 | 351.05 | 8.72 | 0.021 | 372.50 | 10.03 | 344.61 | 7.82 | 0.058 | 0.004 | 0.412 | 0.879 |
| CS 1 Tryptophan FAO/WHO 1991 | 722.60 | 21.25 | 738.82 | 28.07 | 0.368 | 701.23 | 5.81 | 717.31 | 16.34 | 0.487 | 0.269 | 0.145 | 0.996 |
| CS 2 Tryptophan USA 2002 | 1133.16 | 24.70 | 1158.61 | 36.74 | 0.368 | 1099.66 | 12.05 | 1124.88 | 25.22 | 0.487 | 0.269 | 0.145 | 0.996 |
| CS 3 Tryptophan FAO/WHO 2013 | 1312.08 | 24.91 | 1341.55 | 36.60 | 0.368 | 1273.30 | 18.69 | 1302.49 | 28.68 | 0.487 | 0.269 | 0.145 | 0.996 |
| CS 1 Valine FAO/WHO 1991 | 276.68 | 16.05 | 254.53 | 7.13 | 0.151 | 260.41 | 11.26 | 242.66 | 8.00 | 0.083 | 0.024 | 0.106 | 0.798 |
| CS 2 Valine USA 2002 | 301.58 | 19.30 | 277.44 | 8.12 | 0.151 | 283.85 | 14.07 | 264.50 | 9.43 | 0.083 | 0.024 | 0.106 | 0.798 |
| CS 3 Valine FAO/WHO 2013 | 321.26 | 11.86 | 295.55 | 8.70 | 0.151 | 302.37 | 16.30 | 281.76 | 9.35 | 0.083 | 0.024 | 0.106 | 0.798 |
| CS 3 Histidine FAO/WHO 1991 | 484.00 | 10.47 | 449.33 | 9.62 | 0.028 | 562.66 | 12.48 | 496.00 | 13.56 | 0.030 | 0.001 | 0.775 | 0.875 |
| PER 1 | 5.80 | 0.28 | 5.21 | 0.20 | 0.090 | 5.53 | 0.29 | 5.20 | 0.18 | 0.039 | 0.007 | 0.390 | 0.414 |
| PER 2 | 7.43 | 0.30 | 6.56 | 0.20 | 0.161 | 6.92 | 0.24 | 6.48 | 0.29 | 0.050 | 0.016 | 0.259 | 0.405 |
| PER 3 | 5.78 | 0.28 | 5.28 | 0.12 | 0.033 | 5.56 | 0.14 | 5.18 | 0.17 | 0.039 | 0.003 | 0.258 | 0.650 |
| PER 4 | 6.40 | 0.28 | 5.84 | 0.17 | 0.025 | 6.13 | 0.11 | 5.67 | 0.10 | 0.046 | 0.003 | 0.184 | 0.751 |
| % EAAI 1 | 181.70 | 5.56 | 172.74 | 3.96 | 0.088 | 176.04 | 3.17 | 169.20 | 2.54 | 0.128 | 0.026 | 0.185 | 0.757 |
| % EAAI 2 | 226.65 | 5.49 | 216.87 | 5.01 | 0.126 | 219.64 | 4.08 | 212.31 | 3.42 | 0.169 | 0.045 | 0.170 | 0.768 |
| % EAAI 3 | 249.34 | 6.07 | 238.89 | 5.58 | 0.133 | 241.69 | 4.09 | 233.86 | 3.44 | 0.178 | 0.049 | 0.168 | 0.774 |
| Biological value 1 | 180.18 | 3.09 | 172.73 | 2.31 | 0.088 | 186.36 | 4.97 | 176.59 | 4.04 | 0.128 | 0.051 | 0.169 | 0.767 |
| Biological value 2 | 227.71 | 13.18 | 219.73 | 11.37 | 0.126 | 235.35 | 20.16 | 224.69 | 16.36 | 0.169 | 0.051 | 0.169 | 0.767 |
| Biological value 3 | 251.75 | 14.27 | 243.21 | 12.47 | 0.133 | 260.08 | 21.88 | 248.69 | 18.08 | 0.178 | 0.051 | 0.169 | 0.767 |
| Amino acids | LL | SM | Standard protein* [g/100 g protein] | Standard protein* [mg/kg per day] | ||
|---|---|---|---|---|---|---|
| OFG | CFG | OFG | CFG | |||
| Threonine | 3.72 | 3.42 | 3.72 | 3.38 | 2.30 | 15 |
| Valine | 3.94 | 3.72 | 4.08 | 3.78 | 3.90 | 26 |
| Methionine + Cysteine | 5.5 | 2.22 | 5.58 | 2.15 | 2.20 | 15 |
| Isoleucine | 3.33 | 3.11 | 3.38 | 3.08 | 3.00 | 20 |
| Leucine | 6.40 | 6.01 | 6.54 | 5.85 | 5.90 | 39 |
| Phenylalanine + Tyrosine | 6.14 | 9.19 | 6.23 | 9.34 | 3.80 | 25 |
| Lysine | 7.72 | 7.21 | 7.85 | 7.06 | 4.50 | 30 |
| Tryptophan | 3.35 | 3.42 | 3.38 | 3.41 | 0.60 | 4 |
| Histidine | 3.15 | 2.91 | 3.56 | 3.11 | 1.50 | 10 |
| Total essential amino acids | 43.10 | 41.13 | 44.18 | 41.12 | 27.70 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
