Submitted:
12 June 2023
Posted:
13 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Analysis of Physical Traits of Meat
2.3. Chemical Composition of Meat
2.4. Fatty Acid Determination
2.5. Peroxidation of Lipids
2.6. L-Carnitine, Carnosine and Taurine Analysis
2.7. Statistical Analysis
3. Results
3.1. Physical Traits of Meat
| Item |
Muscle | Aging time | ||
|---|---|---|---|---|
| Fresh meat | Meat aged 7d | Meat aged 14d | ||
| pH | GM | 5.53a 0.17 | 5.60 0.11 | 5.68b 0.18 |
| LL | 5.55 0.23 | 5.60 0.15 | 5.65 0.23 | |
| L* | GM | 33.68* 2.00 | 33.60* 2.07 | 32.31 3.06 |
| LL | 31.48* 2.39 | 31.54* 2.83 | 30.72 3.01 | |
| a* | GM | 11.72a 0.74 | 12.33 0.86 | 12.70b 0.99 |
| LL | 11.70 1.18 | 12.30 0.87 | 12.26 1.28 | |
| b* | GM | 2.82a* 1.46 | 1.65b 0.43 | 1.97b 0.79 |
| LL | 3.86a* 0.90 | 1.87b 1.07 | 1.80b 1.02 | |
| C* | GM | 12.12a 0.94 | 12.45 0.87 | 12.87b 1.06 |
| LL | 12.33 1.33 | 12.49 0.90 | 12.44 1.19 | |
| H* | GM | 13.21a* 6.29 | 7.61b 1.92 | 8.69b 3.04 |
| LL | 18.10a* 3.12 | 8.61b 4.80 | 8.44b 5.41 | |
| Expressed juice (cm2/g-1) | GM | 24.07a 4.47 | 18.32b 5.32 | 15.40b 3.00 |
| LL | 24.27a 2.69 | 19.01b 2.97 | 15.54c 2.22 | |
3.2. Chemical Composition of Meat and Peroxidation of Lipids
| Item | Muscle | Aging time | ||
|---|---|---|---|---|
| Fresh meat | Meat aged 7d | Meat aged 14d | ||
| Moisture | GM | 75.68 ±0.81 | 75.56* ±1.23 | 75.06 ±1.04 |
| LL | 75.41a ±0.66 | 74.26b* ±1.69 | 74.79 ±1.18 | |
| Fat | GM | 3.15a ±0.79 | 4.20b* ±1.86 | 3.46 ±1.07 |
| LL | 3.02 ±0.84 | 2.78* ±0.99 | 3.03 ±0.87 | |
| Protein | GM | 20.61a ±0.46 | 20.94 ±0.45 | 21.12b ±0.33 |
| LL | 20.71a ±0.46 | 20.87 ±0.68 | 21.10b ±0.45 | |
| Total collagen |
GM | 1.14 ±0.14 | 1.23* ±0.19 | 1.24* ±0.22 |
| LL | 1.26a ±0.15 | 1.41b* ±0.19 | 1.40b* ±0.22 | |
| Item | Muscle | Aging time | ||
|---|---|---|---|---|
| Fresh meat | Meat aged 7d | Meat aged 14d | ||
| Σ SFA | GM | 46.92 ±2.20 | 47.40 ±2.09 | 48.27 ±2.14 |
| LL | 46.96 ±1.91 | 47.62 ±2.87 | 47.48 ±1.63 | |
| Σ MUFA | GM | 46.01 ±2.03 | 45.84 ±1.80 | 44.95 ±1.51 |
| LL | 46.70 ±1.33 | 46.43 ±1.46 | 46.41 ±1.89 | |
| Σ PUFA | GM | 6.59 ±1.14 | 6.23 ±1.55 | 6.22 ±1.40 |
| LL | 6.04 ±1.89 | 5.82 ±1.54 | 5.42 ±0.91 | |
| Σ n6 | GM | 4.53 ±0.99 | 4.06 ±1.40 | 4.14 ±1.30 |
| LL | 3.98 ±1.31 | 3.77 ±1.25 | 3.49 ±0.72 | |
| Σ n3 | GM | 1.29 ±0.26 | 1.28 ±0.19 | 1.32 ±0.33 |
| LL | 1.33 ±0.33 | 1.26 ±0.26 | 1.25 ±0.31 | |
| n6/n3 | GM | 3.55 ±0.60 | 3.15 ±0.89 | 3.20 ±0.93 |
| LL | 2.99 ±0.61 | 2.97 ±0.62 | 2.86 ±0.63 | |
| C18:2c9t11 | GM | 0.63 ±0.17 | 0.58 ±0.18 | 0.57 ±0.13 |
| LL | 0.54 ±0.09 | 0.59 ±0.14 | 0.48 ±0.05 | |
| TBARS |
GM | 0.28a* ±0.08 | 0.51b* ±0.07 | 0.60c ±0.24 |
| LL | 0.19a* ±0.08 | 0.43b* ±0.08 | 0.46b ±0.08 | |
3.3. L-Carnitine, Carnosine and Taurine Contents
| Item |
Muscle | Aging time | ||
|---|---|---|---|---|
| Fresh meat | Meat aged 7d | Meat aged 14d | ||
| L-carnitine | GM | 169.32a ±5.88 | 192.01b ±6.40 | 224.70c* ±9.91 |
| LL | 165.16a ±4.10 | 191.14b ±7.57 | 204.15c* ±9.30 | |
| Carnosine | GM | 206.28a* ±9.97 | 103.71b ±10.12 | 111.80b* ±9.04 |
| LL | 226.15a* ±13.42 | 101.99b ±9.10 | 96.26b* ±13.13 | |
| Taurine | GM | 75.10* ±8.87 | 70.92a* ±9.69 | 80.71b* ±8.38 |
| LL | 61.63* ±11.87 | 56.22a* ±5.75 | 67.01b* ±11.16 | |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- McGregor, Nelson, M.E.; Hamm, M.W.; Hu, F.B.; Abrams, S.A.; Griffin, T.S. Alignment of Healthy Dietary Patterns and Environmental Sustainability: A Systematic Review. Adv. Nutr. 2016, 15;7(6), 1005-1025. doi: 10.3945/an.116.012567. [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; Jonell, M.; Clark, M.; Gordon, L.J.; Fanzo, J.; Hawkes, C.; Zurayk, R; Rivera, J.A.; De Vries, W.; Majele Sibanda, L.; Afshin, A.; Chaudhary, A.; Herrero, M.; Agustina, R.; Branca, F.; Lartey, A.; Fan, S.; Crona, B.; Fox, E.; Bignet, V.; Troell, M.; Lindahl, T.; Singh, S.; Cornell, SE.; Srinath, Reddy, K.; Narain, S.; Nishtar, S.; Murray, C.J.L. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019 Feb 2;393(10170), 447-492. doi: 10.1016/S0140-6736(18)31788-4. [CrossRef]
- Peraza-Mercado, G.; Jaramillo-Lopez, E.; Alarcon-Rojo, A. D. Breed effect upon carcass characteristics and meat quality of Pelibuey and Polypy x Rambouillet lambs, Am. Eurasian. J. Agr. Environ. Sci., 2010, 8, 508–513.
- Esenbuga, N.; Macit, M.; Karaoglu, M.; Aksakal, V.; Aksu, M. I.; Yoruk, M. A.; Gul, M. Effect of breed on fattening performance, slaughter and meat quality characteristics of Awassi and Morkaraman lambs, Livestock Sci. 2009, 123, 255–260. doi:10.1016/j.livsci.2008.11.014. [CrossRef]
- Radzik-Rant A.; Rant, W.; Sosnowiec, G.; Świątek, M.; Niżnikowski, R.; Szymańska, Ż. The effect of genotype and muscle type on the physico-chemical characteristics and taurine, carnosine and L-carnitine concentration in lamb meat. Arch. Anim. Breed. 2020, 63, 423–430. https://doi.org/10.5194/aab-63-423-2020. [CrossRef]
- Martinez-Cerezo, S.; Sanudo, C.; Panea, B., Medel, I.; Delfa, R.; Sierra, I.; Beltrain, J. A.; Cepero, R.; and Olleta, J. L. Breed, slaughter weight and ageing time effect on physico-chemical characteristics of lamb meat. Meat Sci. 2005, 69, 325–333. DOI: 10.1016/j.meatsci.2004.08.002. [CrossRef]
- Abdullah, A. Y.; Qudsieh, R. I. Effect of slaughter weight and aging time on the quality of meat from Awassi ram lamb. Meat Sci. 2009, 82, 309–316. doi: 10.1016/j.meatsci.2009.01.027. [CrossRef]
- Ablikim, B.; Liu, Y.; Kerim, A.; Ping, S.; Abdurerim, P.; Zhou, G. H. Effect of breed, muscle type and frozen storage on physico-chemical characteristics of lamb meat and its relationship with tenderness. CyTA – Journal of Food 2016, 14, 109–116. https://doi.org/10.1080/19476337.2015.1054885. [CrossRef]
- Dou, L.; Jin, Y.; Li, H.; Liu, C.; Yang, Z.; Chen, X.; Sun, L.; Zhao, L.; Su, L. Effect of Feeding System on Muscle Fiber Composition, Antioxidant Capacity, and Nutritional and Organoleptic Traits of Goat Meat. Animals 2023, 13, 172. https://doi.org/10.3390/ani13010172. [CrossRef]
- Martín, A.; Giráldez, F. J.; Cremonesi, P.; Castiglioni, B.; Biscarini, F.; Ceciliani, F.; Santos, N.; Andrés, S. Dietary Administration of L-Carnitine During the Fattening Period of Early Feed Restricted Lambs Modifies Ruminal Fermentation but Does Not Improve Feed Efficiency. Front. Physiol. 2022 13, 840065. https://doi.org/10.3389/fphys.2022.840065. [CrossRef]
- Yang, Z.; Liu, C.; Dou, L.; Chen, X.; Zhao, L.; Su, L.; Jin, Y. Effects of Feeding Regimes and Postmortem Aging on Meat Quality, Fatty Acid Composition, and Volatile Flavor of Longissimus Thoracis Muscle in Sunit Sheep. Animals 2022, 12, 3081. https://doi.org/10.3390/ani12223081. [CrossRef]
- Warner, R. Meat: Conversion of muscle into meat. In Encyclopedia of Food and Health 2016, 677–684. https://doi.org/10.1016/B978-0-12-384947-2.00452-9. [CrossRef]
- Gramatina, I.; Krasnobajs, R.; Skudra, L,; Sazonova S. Changes of physical parameters of meat during wet ageing, FOODBALT 2019. 13th Baltic Conference on Food Science and Technology “Food. Nutrition. Well-being”, Jelgava, Latvia, 2019, 61-65. doi: 1022616/FoodBalt.2019.043. [CrossRef]
- Huang, C.; Hou, Ch.; Ijaz, M.; Yan, T.; Li, X.; Li, Y.; Zhang, D. Proteomics discovery of protein biomarkers linked to meat quality traits in post-mortem muscles: Current trends and future prospects: A review. Trends Food Sci. Technol. 2020, 105, 416–432. https://doi.org/10.1016/j.tifs.2020.09.030. [CrossRef]
- Wu, G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020, 52, 329–360. https://doi.org/10.1007/s00726-020-02823-6. [CrossRef]
- Hipkiss, A.R.; Gaunitz, F. Inhibition of tumor cell growth by carnosine: some possible mechanisms. Amino Acids 2014, 46, 327–337. doi: 10.1007/s00726-013-1627-5. [CrossRef]
- Hill, C. A.; Harris, R. C.; Kim, H. J.; Harris, B. D.; Sale, C.; Boobis, L. H.; Kim, C. K.; Wise, J. A. Infuence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 2007, 32, 225–233. doi:10.1007/s00726-006-0364-4. [CrossRef]
- Sale, C.; Saunders, B.; Harris, R. C. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids, 2010, 39, 321–333. doi:10.1007/s00726-009-0443-4. [CrossRef]
- Joo, S. H.; Lee, K. W.; Hwang, Y. H.; Joo, S. T. Histochemical Characteristics in Relation to Meat Quality Traits of Eight Major Muscles from Hanwoo Steers. Korean J. Food Sci. Anim. Resour. 2017, 37, 716–725. doi:10.5851/kosfa.2017.37.5.716. [CrossRef]
- Ito, T.; Schafer, S.; Azuma, J. The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II. Amino Acids, 2014, 46, 111–119. doi 10.1007/s00726-013-1507-z.
- Shimada, K.; Jong, C. J.; Takahashi, K.; Schaffer, S. W. Role of ROS production and turnover in the antioxidant activity of taurine. Adv. Exp. Med. Biol. 2015, 803, 581–596. doi:10.1007/978-3-319-15126-7_47. [CrossRef]
- Seidel, U.; Huebbe, P.; Rimbach, G. Taurine: a regulator of cellular redox-homeostasis and skeletal muscle function. Mol. Nutr. Food Res. 2019, 63, 1800569. doi: 10.1002/mnfr.201800569. [CrossRef]
- Shimada, K.; Sakuma, Y.; Wakamatsu, J.; Fukushima, M.; Sekikawa, M.; Kuchida, K.; Mikami, M. Species and muscle differences in L-carnitine levels in skeletal muscles based on a new simple assay. Meat Sci. 2004 68, 357–362. doi:10.1016/j.meatsci.2004.04.003. [CrossRef]
- Osikowski, M.; Porębska, W.; Korman, K. Normy żywienia owiec, In Normy żywienia bydła i owiec systemem tradycyjnym, Instytut Zootechniki Kraków, 1998, 29–57.
- Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing (Text with EEA relevance) OJ L 303, 18.11.2009, p. 1–30.
- Grau, R.; Hamm, R. Eine einfache Methode zur Bestimmung der Wasserbindung im Muskel, Naturwiss. 1953, 40, 29–30.
- Folch, J.; Lees, M.; Stanley, S. G. H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957. 226, 497–509.
- Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. doi:10.1016/0003-2697(78)90342-1. [CrossRef]
- SPSS Base 23.0 Users Guide, SPSS Inc., 2016. available at: http://www. public.dhe.ibm.com (last access: 15 January 2023).
- Devine, C. E.; Graafhuis, A. E.; Muir, P. D.; Chrystall, B. B. The effect of growth rate and ultimate pH on meat quality of lambs. Meat Sci. 1993, 35, 63-77. doi:10.1016/0309-1740(93)90070-X. [CrossRef]
- Yanar, M.; Yetim, H. The effects of aging period and muscle type on the textural quality characteristics of mutton. Turk. J. Vet. Anim. Sci. 2001, 25, 203–207.
- Purchas, R.W.; Zou, M. Composition and quality differences between the longissimus and infraspinatus for several group of pasture-finished cattle. Meat Sci. 2008, 80, 470-479. doi: 10.1016/j.meatsci.2008.01.013. [CrossRef]
- Mancini, R. A.,; Hunt, M. C. Current research in meat color. Meat Sci. 2005, 71, 100–121. doi:10.1016/j.meatsci.2005.03.003. [CrossRef]
- McKenna, D. R.; Mies, P. D.; Baird, B. E.; Pfeiffer, K. D.; Ellebracht, J. W.; Savell, J. W. Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles. Meat Sci. 2005, 70, 665–682. doi:10.1016/j.meatsci.2005.02.016. [CrossRef]
- Suman, S. P.; Joseph, P. Myoglobin chemistry and meat color. Ann. Rev. Food Sci. Technol. 2013, 4, 79-99. doi: 10.1146/annurev-food-030212-182623. [CrossRef]
- Picard, B.; Lefaucheur, L.; Berri, C.; Duclos, M. Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 2002, 42, 415-31. doi: 10.1051/rnd:2002035. [CrossRef]
- Ithurralde, J.; Bianchi, G.; Feed, O.; Nan, F; Garibotto, G.; Bielli, A. Histochemical fiber types in 16 heavy-lamb skeletal muscles. Small Rum. Res. 2015, 125, 88–92. https://doi.org/10.1016/j.smallrumres.2015.02.006. [CrossRef]
- Rant, W.; Radzik-Rant, A.; Świątek, M.; Niżnikowski, R.; Szymańska, Ż.; Bednarczyk, M.; Orłowski, E.; Morales-Villavicencio, A.; Ślęzak, M. The effect of aging and muscle type on the quality characteristics and lipid oxidation of lamb meat. Arch. Anim. Breed. 2019, 62, 383–391. https://doi.org/10.5194/aab-62-383-2019. [CrossRef]
- Realini, C. E.; Vénien, A.; Gou, P.; Gatellier, P.; Perez-Juan, M.; Danon, J.; Astruc, T. Characterization of Longissimus thoracis, Semitendinosus and Masseter muscles and relationships with technological quality in pigs. 1. Microscopic analysis of muscles. Meat Sci. 2013, 94, 408–416. DOI: 10.1016/j.meatsci.2013.03.009. [CrossRef]
- Luca, A. D.; Hamill, R. M.; Mullen, A. M.; Slavov, N.; Elia, G. Comparative Proteomic Profiling of Divergent Phenotypes for Water Holding Capacity across the Post Mortem Ageing Period in Porcine Muscle Exudate. Plos One 2016, 11(30), e0150605. https://doi.org/10.1371/journal.pone.0150605. [CrossRef]
- Lee, S. H.; Joo, S. T.; Ryu, Y. C. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci. 2010, 86(1) 166-70. doi: 10.1016/j.meatsci.2010.04.040. [CrossRef]
- Franco, D.; Gonzalez, L.; Bispo, E.; Rodrigez, P.; Garabal, J. I.; Moreno, T. Study of hydrolyzed protein composition, free amino acid and taurine content in different muscles of Galician Blonde beef. J. Muscle Foods 2010, 21, 769–784. https://doi.org/10.1111/j.1745-4573.2010.00218.x. [CrossRef]
- Geldenhuys, G.; Muller, N.; Hoffman, L. C. The infuence of post-mortem conditioning on the tenderness of Egyptian goose (Alopochen aegyptiacus) brest meat (M. pectoralis major). J. Sci. Food Agric. 2016, 96(5), 1828-1835. doi:10.1002/jsfa.7344. [CrossRef]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How Muscle Structure and Composition Influence Meat and Flesh Quality. Sci. World J. 2016, 3182746. https://doi.org/10.1155/2016/3182746. [CrossRef]
- Han, G.; Zhang, L.; Li, Q.; Wang, Y.; Chen, Q.; Kong, B. Impacts of Different Altitudes and Natural Drying Times on Lipolysis, Lipid Oxidation and Flavour Profile of Traditional Tibetan Yak Jerky. Meat Sci. 2020, 162, 108030. doi: 10.1016/j.meatsci.2019.108030. [CrossRef]
- Yang, A.; Lanari, M. C.; Brewster, M.; Tume, R. K. Lipid stability and meat colour of beef from pasture- and grain-fed cattle with or without vitamin E supplement. Meat Sci. 2002, 60, 41–50. doi: 10.1016/s0309-1740(01)00103-6. [CrossRef]
- Luciano, G.; Moloney, A. P.; Priolo, A.; Röhrle, F. T.; Vasta, V.; Biondi, L.; López-Andrés, P.; Grasso, S.; Monahan, F. J. Vitamin E and polyunsaturated fatty acids in bovine muscle and the oxidative stability of beef from cattle receiving grass or concentrate-based rations. J. Anim. Sci. 2011, 89(11), 3759-68. doi: 10.2527/jas.2010-3795. [CrossRef]
- Torrecilhas, J. A.; Vito, E. S.; Fiorentini, G.; Castagnino, P.; Simioni, T.A.; Lage, J.F; Baldi, F.; Duarte, J.M; da Silva L.G.; Reis, R.A.; Berchielli, T. T. Effects of supplementation strategies during the growing phase on meat quality of beef cattle finished in different systems. Livest. Sci. 2021, 247, 104465. https://doi.org/10.1016/j.livsci.2021.104465. [CrossRef]
- Kim, Y. H. B.; Kemp, R.; Samuelsson, L. M. Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins. Meat Sci. 2016, 111, 168-76. doi: 10.1016/j.meatsci.2015.09.008. [CrossRef]
- Bischof, G.; Witte, F.; Terjung, N.; Januschewski, E.; Heinz, V.; Juadjur, A.; Gibis, M. NMR based comparison of the metabolome of beef from Simmental and black and white young bulls during wet and dry aging. Eur. Food Res. Technol. 2023. https://doi.org/10.1007/s00217-023-04283-0. [CrossRef]
- Kim, H.C.; Baek, K.H.; Ko, Y.-J.; Lee, H.J.; Yim, D.-G.; Jo, C. Characteristic Metabolic Changes of the Crust from Dry-Aged Beef Using 2D NMR Spectroscopy. Molecules 2020, 25, 3087. https://doi.org/10.3390/molecules25133087. [CrossRef]
- Jung, S.; Bae, Y. S.; Yong, H. I.; Lee, H. J.; Seo, D. W.; Park, H. B.; Lee, J. H.; Jo, C. Proximate Composition, and l-Carnitine and Betaine Contents in Meat from Korean Indigenous Chicken. Asian-Australas. J. Anim. Sci. 2015, 28(12), 1760-1766. doi:10.5713/ajas.15.0250. [CrossRef]
- Purchas, R. W.; Rutherfurd, S. M.; Pearce, P. D.; Vather, R.; Wilkinson, B. H. P. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10, and creatine. Meat Sci. 2004, 66(3), 629-637. doi:10.1016/S0309-1740(03)00181-5. [CrossRef]
- Aristoy, M. C.; Toldrá, F. Concentration of free amino acids and dipeptides in porcine skeletal muscles with different oxidative patterns. Meat Sci. 1998, 50(3), 327-332. https://doi.org/10.1016/S0309-1740(98)00037-0. [CrossRef]
- Kralik, G.; Sak-Bosnar, M.; Grčević, M.; Kralik, Z. Effect of Amino Acids on Growth Performance, Carcass Characteristics, Meat Quality, and Carnosine Concentration in Broiler Chickens. J. Poult. Sci. 2018, 55(4), 239-248. doi: 10.2141/jpsa.0170083. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
