Submitted:
26 September 2024
Posted:
27 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. State of the Art: VR Systems
1.2. Aim of the Paper
2. Materials and Methods
2.1. VR System
2.1.1. VAE Reproduction System
2.1.2. VVE Reproduction System
2.1.3. Software Framework for the Overall AV Playback
2.2. Intra-Lab Validation
2.2.1. Measurement Procedure
2.3. Inter-Lab Validation against a Real Lecture Room
2.3.1. Case Study
2.3.2. Objective Acoustical Evaluation
2.3.3. Subjective AudioVisual Evaluation
3. Results
3.1. Intra-Lab Validation
3.2. Inter-Lab Validation against a Real Lecture Room
3.2.1. Objective Acoustical Evaluation
3.2.2. Subjective AudioVisual Evaluation
4. Discussion & Conclusions
4.1. Intra-Lab Validation
4.2. Inter-Lab Validation
4.2.1. Objective Acoustical Evaluation
4.2.2. Subjective AudioVisual Evaluation
4.3. Limitations and Future Perspectives
4.4. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 3D | Three-Dimensional |
| 3OA | 3rd-Order Ambisonics |
| 5OA | 5th-Order Ambisonics signals |
| AllRAD | All-Round Ambisonic Decoding |
| ASL | Audio Space Lab |
| AV | AudioVisual |
| BRIR | Binaural Room Impulse Response |
| C50, C80 | Clarity |
| CAVE | Cave Automatic Virtual Environment |
| CTC | Cross-Talk Cancellation |
| DAW | Digital Audio Workstation |
| DBAP | Distance-Based Amplitude Panning |
| DRR | Direct-to-Reverberant Ratio |
| EDT | Early Decay Time |
| HA | Hearing Aid |
| HATS | Head&Torso Simulator |
| HOA | High-Order Ambisonics |
| HRTF | Head-Related Transfer Function |
| HVAC | Heating, Ventilation and Air Conditioning |
| IACC | InterAural Cross Correlation |
| IIR | Infinite Impulse Response |
| ILD | Interaural Level Difference |
| IPQ | Igroup Presence Questionnaire |
| ITD | Interaural Time Difference |
| JND | Just Noticeable Difference |
| MDAP | Multiple Direction Amplitude Panning |
| NSP | Nearest Speaker Panning |
| OSC | Open Sound Control |
| RIR | Room Impulse Response |
| RSS | Real Sound Source |
| SD | Standard Deviation |
| SMA | Spherical Microphone Array |
| SLM | Sound Level Meter |
| SRT | Speech Reception Threshold |
| STI | Speech Transmission Index |
| STIPA | Speech Transmission Index for Public Addresses |
| T60, T30, T20 | Reverberation Time |
| VAE | Virtual Acoustic Environment |
| VBAP | Vector-Base Amplitude Panning |
| VE | Virtual Environment |
| VSS | Virtual Sound Source |
| VVE | Virtual Visual Environment |
| VR | Virtual Reality |
| WFS | Wave Field Synthesis |
| WOW | Window On World |
Appendix A
| Items | Subscales | English question | English anchors | Italian question | Italian anchors |
|---|---|---|---|---|---|
| 1 | Sense of being there | In the computer generated world I had a sense of "being there" | Not at all - Very much | Nel mondo virtuale, avevo la sensazione di "essere lì". | Per niente - Moltissimo |
| 2 | Spatial presence | Somehow I felt that the virtual world surrounded me | Fully disagree - Fully agree | In qualche modo ho avvertito che il mondo virtuale mi circondasse. | Completamente in disaccordo - Completamente d’accordo |
| 3 | Spatial presence | I felt like I was just perceiving pictures | Fully disagree - Fully agree | Mi sembrava come se stessi solo percependo delle immagini. | Completamente in disaccordo - Completamente d’accordo |
| 6 | Spatial presence | I felt present in the virtual space. | Fully disagree - Fully agree | Mi sono sentito come se fossi stato realmente presente nell’ambiente virtualizzato. | Completamente in disaccordo - Completamente d’accordo |
| 7 | Involvement | How aware were you of the real world surrounding while navigating in the virtual world? (i.e. sounds, room temperature, other people, etc.)? | Extremely aware - Moderately aware - Not aware at all | Quanto eri consapevole del mondo reale circostante mentre navigavi nel mondo virtuale? (ad esempio, suoni, temperatura dell’ambiente, altre persone, ecc.)? | Completamente consapevole - Moderatamente consapevole - Completamente inconsapevole |
| 8 | Involvement | I was not aware of my real environment. | Fully disagree - Fully agree | Non ero consapevole del mio ambiente reale | Completamente in disaccordo - Completamente d’accordo |
| 9 | Involvement | I still paid attention to the real environment. | Fully disagree - Fully agree | Continuavo ancora a prestare attenzione all’ambiente reale. | Completamente d’accordo - Completamente in disaccordo |
| 10 | Involvement | I was completely captivated by the virtual world. | Fully disagree - Fully agree | Ero completamente affascinato dal mondo virtuale. | Completamente in disaccordo - Completamente d’accordo |
| 11 | Experienced-Realism | How real did the virtual world seem to you? | Completely real - Not real at all | Quanto reale ti è sembrato il mondo virtuale? | Per niente reale - Moderatamente reale - Completamente reale |
| 12 | Experienced-Realism | How much did your experience in the VE seem consistent with your real world experience? | Not consistent - Moderately consistent - Very consistent | In che misura la tua esperienza nell’ambiente virtuale sembrava coerente con la tua esperienza del mondo reale? | Non coerente - Moderatamente coerente - Molto coerente |
| 13 | Experienced-Realism | How real did the virtual auditory-visual world seem to you? | About as real as an imagined world - Indistinguishable from the real world | Quanto reale ti è sembrato il mondo virtuale audiovisivo? | All’incirca reale quanto un mondo immaginato - Indistinguibile dal mondo reale |
| 13a* | Experienced Acoustical-Realism | How real did the virtual acoustical world seem to you? | About as real as an imagined world - Indistinguishable from the real world | Quanto reale ti è sembrato il mondo virtuale acustico? | All’incirca reale quanto un mondo immaginato - Indistinguibile dal mondo reale |
| 13b* | Experienced-Visual Realism | How real did the virtual visual world seem to you? | About as real as an imagined world - Indistinguishable from the real world | Quanto reale ti è sembrato il mondo virtuale visivo? | All’incirca reale quanto un mondo immaginato - Indistinguibile dal mondo reale |
References
- Astolfi, A.; others. Premises for Effective Teaching and Learning: State of the Art, New Outcomes and Perspectives of Classroom Acoustics. Int. J. Acoust. Vib 2023, 28, 86–97. [CrossRef]
- Peelle, J.E. Listening effort: How the cognitive consequences of acoustic challenge are reflected in brain and behavior. Ear and hearing 2018, 39, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, G.E.; Warzybok, A.; Astolfi, A.; Kollmeier, B. Effect of reverberation and noise type on speech intelligibility in real complex acoustic scenarios. Building and Environment 2021, 204, 108137. [Google Scholar] [CrossRef]
- Goldsworthy, R.L.; Markle, K.L. Pediatric hearing loss and speech recognition in quiet and in different types of background noise. Journal of Speech, Language, and Hearing Research 2019, 62, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, G.E.; Di Iulio, M.; Bottalico, P.; Murgia, S.; Consolino, P.; Bisetti, M.S.; Pittà, G.; Shtrepi, L.; Astolfi, A. Challenges for Children with Cochlear Implants in Everyday Listening Scenarios: The Competitive Effect of Noise and Face Masks on Speech Intelligibility. Applied Sciences 2023, 13, 8715. [Google Scholar] [CrossRef]
- Seeber, B.U.; Kerber, S.; Hafter, E.R. A system to simulate and reproduce audio–visual environments for spatial hearing research. Hearing research 2010, 260, 1–10, Publisher: Elsevier. [Google Scholar] [CrossRef]
- Pausch, F.; Aspöck, L.; Vorländer, M.; Fels, J. An extended binaural real-time auralization system with an interface to research hearing aids for experiments on subjects with hearing loss. Trends in Hearing 2018, 22, 2331216518800871, Publisher: SAGE Publications Sage CA: Los Angeles, CA. [Google Scholar] [CrossRef]
- Brimijoin, W.O.; Boyd, A.W.; Akeroyd, M.A. The contribution of head movement to the externalization and internalization of sounds. PloS one 2013, 8, e83068. [Google Scholar] [CrossRef]
- Simon, L.S.; Wuethrich, H.; Dillier, N. Comparison of higher-order Ambisonics, vector-and distance-based amplitude panning using a hearing device beamformer 2017. [CrossRef]
- Nykänen, A.; Zedigh, A.; Mohlin, P. Effects on localization performance from moving the sources in binaural reproductions. International Congress and Exposition on Noise Control Engineering. ÖAL Österreichischer Arbeitsring für Lärmbekämpfung, 2013, pp. 3193–3201.
- Völk, F.; Heinemann, F.; Fastl, H. Externalization in binaural synthesis: Effects of recording environment and measurement procedure. Proc. Acoustics 08, Paris, France, 2008, pp. 6419–6424.
- Berkhout, A.J.; de Vries, D.; Vogel, P. Acoustic control by wave field synthesis. The Journal of the Acoustical Society of America 1993, 93, 2764–2778. [Google Scholar] [CrossRef]
- Grimm, G.; Ewert, S.; Hohmann, V. Evaluation of spatial audio reproduction schemes for application in hearing aid research. Acta Acustica United with Acustica 2015, 101, 842–854, Publisher: S. Hirzel Verlag. [Google Scholar] [CrossRef]
- Gerken, M.; Hohmann, V.; Grimm, G. Comparison of 2D and 3D Multichannel Audio Rendering Methods for Hearing Research Applications using Technical and Perceptual Measures. Acta Acustica 2024. [Google Scholar] [CrossRef]
- Favrot, S.; Buchholz, J.M. LoRA: A loudspeaker-based room auralization system. Acta acustica united with Acustica 2010, 96, 364–375. [Google Scholar] [CrossRef]
- Pulkki, V. Virtual sound source positioning using vector base amplitude panning. Journal of the Audio Engineering Society 1997, 45, 456–466. [Google Scholar]
- Simon, L.S.; Dillier, N.; Wüthrich, H. Comparison of 3D audio reproduction methods using hearing devices. Journal of the Audio Engineering Society 2021, 68, 899–909. [Google Scholar] [CrossRef]
- Kostadinov, D.; Reiss, J.D.; Mladenov, V.M. Evaluation of Distance Based Amplitude panning for spatial audio. ICASSP, 2010, pp. 285–288.
- Pulkki, V. Uniform spreading of amplitude panned virtual sources. Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA’99 (Cat. No. 99TH8452). IEEE, 1999, pp. 187–190. [CrossRef]
- Frank, M. Localization using different amplitude-panning methods in the frontal horizontal plane. Proc. of the EAA Joint Symposium on Auralization and Ambisonics,(Berlin), 2014.
- Oreinos, C.; Buchholz, J.M. Objective analysis of ambisonics for hearing aid applications: Effect of listener’s head, room reverberation, and directional microphones. The Journal of the Acoustical Society of America 2015, 137, 3447–3465, Publisher: Acoustical Society of America. [Google Scholar] [CrossRef]
- Oreinos, C. Virtual acoustic environments for the evaluation of hearing devices. PhD thesis, Macquarie University, 2015.
- Frank, M. How to make Ambisonics sound good. Forum Acusticum,(Krakow), 2014.
- Daniel, J. Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, new ambisonic format. Audio Engineering Society Conference: 23rd International Conference: Signal Processing in Audio Recording and Reproduction. Audio Engineering Society, 2003.
- Gerken, M.; Hohmann, V.; Grimm, G. Comparison of 2D and 3D multichannel audio rendering methods for hearing research applications using technical and perceptual measures. Acta Acustica 2024, 8, 17. [Google Scholar] [CrossRef]
- Llorach, G.; Grimm, G.; Hendrikse, M.M.; Hohmann, V. Towards realistic immersive audiovisual simulations for hearing research: Capture, virtual scenes and reproduction. Proceedings of the 2018 Workshop on Audio-Visual Scene Understanding for Immersive Multimedia, 2018, pp. 33–40. [CrossRef]
- Pausch, F.; Behler, G.; Fels, J. SCaLAr–A surrounding spherical cap loudspeaker array for flexible generation and evaluation of virtual acoustic environments, 2020. [CrossRef]
- Nachbar, C.; Zotter, F.; Deleflie, E.; Sontacchi, A. Ambix-a suggested ambisonics format. Ambisonics Symposium, 2011, Vol. 2011.
- Oreinos, C.; Buchholz, J.M.; Mejia, J. Effect of higher-order ambisonics on evaluating beamformer benefit in realistic acoustic environments. 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. IEEE, 2013, pp. 1–4. [CrossRef]
- Frank, M. Phantom sources using multiple loudspeakers in the horizontal plane; Dissertation, 2013.
- Cubick, J.; Dau, T. Validation of a virtual sound environment system for testing hearing aids. Acta Acustica united with Acustica 2016, 102, 547–557. [Google Scholar] [CrossRef]
- Oreinos, C.; Buchholz, J.M. Evaluation of Loudspeaker-Based Virtual Sound Environments for Testing Directional Hearing Aids. Journal of the American Academy of Audiology 2016, 27, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Daniel, J.; Moreau, S. Further study of sound field coding with higher order ambisonics. Audio Engineering Society Convention 116. Audio Engineering Society, 2004.
- Wierstorf, H.; Raake, A.; Spors, S. Assessing localization accuracy in sound field synthesis. The Journal of the Acoustical Society of America 2017, 141, 1111–1119. [Google Scholar] [CrossRef]
- Zotter, F.; Frank, M. All-round ambisonic panning and decoding. Journal of the audio engineering society 2012, 60, 807–820. [Google Scholar]
- Frank, M.; Marentakis, G.; Sontacchi, A. A simple technical measure for the perceived source width. Fortschritte der Akustik, DAGA 2011.
- Bertet, S.; Daniel, J.; Parizet, E.; Warusfel, O. Investigation on localisation accuracy for first and higher order ambisonics reproduced sound sources. Acta Acustica united with Acustica 2013, 99, 642–657. [Google Scholar] [CrossRef]
- EN ISO 3382-1. Acoustics - Measurement of Room Acoustic Parameters – Part 2: Performance Spaces. International Organization for Standardization, Genève 2009.
- Fargeot, S.; Vidal, A.; Aramaki, M.; Kronland-Martinet, R. Perceptual evaluation of an ambisonic auralization system of measured 3D acoustics. Acta Acustica 2023, 7, 56. [Google Scholar] [CrossRef]
- Yang, W.; Hodgson, M. Validation of the auralization technique: Comparative speech-intelligibility tests in real and virtual classrooms. Acta Acustica United with Acustica 2007, 93, 991–999. [Google Scholar]
- Hodgson, M.; York, N.; Yang, W.; Bliss, M. Comparison of predicted, measured and auralized sound fields with respect to speech intelligibility in classrooms using CATT-Acoustic and ODEON. Acta Acustica united with Acustica 2008, 94, 883–890. [Google Scholar] [CrossRef]
- Ahrens, A.; Marschall, M.; Dau, T. Evaluating the auralization of a small room in a virtual sound environment using objective room acoustic measures. 5th Joint Meeting of the Acoustical Society of America and Acoustical Society of Japan, 2016.
- Hládek, L.; Ewert, S.D.; Seeber, B.U. Communication conditions in virtual acoustic scenes in an underground station. 2021 Immersive and 3D Audio: from Architecture to Automotive (I3DA). IEEE, 2021, pp. 1–8. [CrossRef]
- Álvarez-Morales, L.; Galindo, M.; Girón, S.; Zamarreño, T.; Cibrián, R. Acoustic characterisation by using different room acoustics software tools: a comparative study. Acta Acustica united with Acustica 2016, 102, 578–591. [Google Scholar] [CrossRef]
- Simon, L.S.; Dillier, N.; Wüthrich, H. Comparison of 3D audio reproduction methods using hearing devices. Journal of the Audio Engineering Society 2021, 68, 899–909, Publisher: Audio Engineering Society. [Google Scholar] [CrossRef]
- Ahrens, A.; Lund, K.D.; Marschall, M.; Dau, T. Sound source localization with varying amount of visual information in virtual reality. PloS one 2019, 14, e0214603. [Google Scholar] [CrossRef]
- Sound system equipment - Part 16: Objective rating of speech intelligibility by speech transmission index, 2020.
- Cubick, J.; Dau, T. Validation of a virtual sound environment system for testing hearing aids. Acta Acustica united with Acustica 2016, 102, 547–557, Publisher: S. Hirzel Verlag. [Google Scholar] [CrossRef]
- Favrot, S.; Buchholz, J.M. Validation of a loudspeaker-based room auralization system using speech intelligibility measures. Audio Engineering Society Convention 126. Audio Engineering Society, 2009.
- Rychtáriková, M.; Van den Bogaert, T.; Vermeir, G.; Wouters, J. Perceptual validation of virtual room acoustics: Sound localisation and speech understanding. Applied Acoustics 2011, 72, 196–204. [Google Scholar] [CrossRef]
- Parsehian, G.; Gandemer, L.; Bourdin, C.; Kronland-Martinet, R. Design and perceptual evaluation of a fully immersive three-dimensional sound spatialization system. 3rd International Conference on Spatial Audio (ICSA 2015), 2015.
- Rychtáriková, M.; Bogaert, T.V.d.; Vermeir, G.; Wouters, J. Binaural sound source localization in real and virtual rooms. Journal of the Audio Engineering Society 2009, 57, 205–220. [Google Scholar]
- Favrot, S.; Buchholz, J.M. Distance perception in loudspeaker-based room auralization. Audio Engineering Society Convention 127. Audio Engineering Society, 2009.
- Huisman, T.; Ahrens, A.; MacDonald, E. Sound source localization in virtual reality with ambisonics sound reproduction 2021.
- Neidhardt, A.; Schneiderwind, C.; Klein, F. Perceptual matching of room acoustics for auditory augmented reality in small rooms-literature review and theoretical framework. Trends in Hearing 2022, 26, 23312165221092919. [Google Scholar] [CrossRef] [PubMed]
- Llorach, G.; Grimm, G.; Hendrikse, M.M.; Hohmann, V. Towards realistic immersive audiovisual simulations for hearing research: Capture, virtual scenes and reproduction. Proceedings of the 2018 Workshop on Audio-Visual Scene Understanding for Immersive Multimedia, 2018, pp. 33–40. [CrossRef]
- Hendrikse, M.M.; Llorach, G.; Grimm, G.; Hohmann, V. Influence of visual cues on head and eye movements during listening tasks in multi-talker audiovisual environments with animated characters. Speech Communication 2018, 101, 70–84. [Google Scholar] [CrossRef]
- Grimm, G.; Hendrikse, M.M.E.; Hohmann, V. Review of Self-Motion in the Context of Hearing and Hearing Device Research. Ear & Hearing 2020, 41, 48S–55S. [Google Scholar] [CrossRef]
- Hendrikse, M.M.; Eichler, T.; Hohmann, V.; Grimm, G. Self-motion with hearing impairment and (directional) hearing aids. Trends in Hearing 2022, 26, 23312165221078707. [Google Scholar] [CrossRef]
- Guastamacchia, A.; Riente, F.; Shtrepi, L.; Puglisi, G.E.; Pellerey, F.; Astolfi, A. Speech intelligibility in reverberation based on audio-visual scenes recordings reproduced in a 3D virtual environment. Building and Environment 2024, 258, 111554. [Google Scholar] [CrossRef]
- Grant, K.W. The effect of speechreading on masked detection thresholds for filtered speech. The Journal of the Acoustical Society of America 2001, 109, 2272–2275. [Google Scholar] [CrossRef]
- MacLeod, A.; Summerfield, Q. Quantifying the contribution of vision to speech perception in noise. British journal of audiology 1987, 21, 131–141, Publisher: Taylor & Francis. [Google Scholar] [CrossRef]
- Dwivedi, S.N.; Attarwala, P.J. Design for manufacture and assembly lean and product development through industrial case study. ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012, Vol. 45219, pp. 459–465. [CrossRef]
- Feng, Y.; Duives, D.C.; Hoogendoorn, S.P. Wayfinding behaviour in a multi-level building: A comparative study of HMD VR and Desktop VR. Advanced Engineering Informatics 2022, 51, 101475. [Google Scholar] [CrossRef]
- Srivastava, P.; Rimzhim, A.; Vijay, P.; Singh, S.; Chandra, S. Desktop VR is better than non-ambulatory HMD VR for spatial learning. Frontiers in Robotics and AI 2019, 6, 50. [Google Scholar] [CrossRef]
- Šváb, P.; Korba, P.; Pastír, D.; Blaško, D. The potential of selected Industry 4.0 tools in the aerospace industry. 2022 New Trends in Aviation Development (NTAD). IEEE, 2022, pp. 229–232. [CrossRef]
- Van Dam, A.; Forsberg, A.S.; Laidlaw, D.H.; LaViola, J.J.; Simpson, R.M. Immersive VR for scientific visualization: A progress report. IEEE Computer Graphics and Applications 2000, 20, 26–52. [Google Scholar] [CrossRef]
- Mahmoud, K.; Harris, I.; Yassin, H.; Hurkxkens, T.J.; Matar, O.K.; Bhatia, N.; Kalkanis, I. Does immersive VR increase learning gain when compared to a non-immersive VR learning experience? International Conference on Human-Computer Interaction. Springer, 2020, pp. 480–498. [CrossRef]
- Maheshwari, I.; Maheshwari, P. Effectiveness of immersive VR in STEM education. 2020 Seventh International Conference on Information Technology Trends (ITT). IEEE, 2020, pp. 7–12. [CrossRef]
- Kwon, C. Verification of the possibility and effectiveness of experiential learning using HMD-based immersive VR technologies. Virtual Reality 2019, 23, 101–118. [Google Scholar] [CrossRef]
- Bolaños, J.G.; Pulkki, V. Immersive audiovisual environment with 3D audio playback. Audio Engineering Society Convention 132. Audio Engineering Society, 2012.
- Cruz-Neira, C.; Sandin, D.J.; DeFanti, T.A.; Kenyon, R.V.; Hart, J.C. The CAVE: Audio visual experience automatic virtual environment. Communications of the ACM 1992, 35, 64–73. [Google Scholar] [CrossRef]
- Muhanna, M.A. Virtual reality and the CAVE: Taxonomy, interaction challenges and research directions. Journal of King Saud University-Computer and Information Sciences 2015, 27, 344–361. [Google Scholar] [CrossRef]
- Shibata, T. Head mounted display. Displays 2002, 23, 57–64. [Google Scholar] [CrossRef]
- Rolland, J.P.; Cakmakci, O. The past, present, and future of head-mounted display designs. Optical Design and Testing II. SPIE, 2005, Vol. 5638, pp. 368–377. [CrossRef]
- Capron, D.W.; Norr, A.M.; Albanese, B.J.; Schmidt, N.B. Fear reactivity to cognitive dyscontrol via novel head-mounted display perceptual illusion exercises. Journal of affective disorders 2017, 217, 138–143. [Google Scholar] [CrossRef]
- van Heugten-van der Kloet, D.; Cosgrave, J.; van Rheede, J.; Hicks, S. Out-of-body experience in virtual reality induces acute dissociation. Psychology of Consciousness: Theory, Research, and Practice 2018, 5, 346. [Google Scholar] [CrossRef]
- Ramaseri Chandra, A.N.; El Jamiy, F.; Reza, H. A systematic survey on cybersickness in virtual environments. Computers 2022, 11, 51. [Google Scholar] [CrossRef]
- Thorp, S.; Sævild Ree, A.; Grassini, S. Temporal development of sense of presence and cybersickness during an immersive vr experience. Multimodal Technologies and Interaction 2022, 6, 31. [Google Scholar] [CrossRef]
- Lund, K.D.; Marschall, M.; Dau, T. Sound source localization with varying amount of visual information in virtual reality 2019.
- Privitera, A.G.; Fontana, F.; Geronazzo, M. On the Effect of User Tracking on Perceived Source Positions in Mobile Audio Augmented Reality. Proceedings of the 15th Biannual Conference of the Italian SIGCHI Chapter, 2023, pp. 1–9. [CrossRef]
- Marshall, L.G. An acoustics measurement program for evaluating auditoriums based on the early/late sound energy ratio. The Journal of the Acoustical Society of America 1994, 96, 2251–2261. [Google Scholar] [CrossRef]
- Campbell, C.; Nilsson, E.; Svensson, C. The same reverberation time in two identical rooms does not necessarily mean the same levels of speech clarity and sound levels when we look at impact of different ceiling and wall absorbers. Energy Procedia 2015, 78, 1635–1640. [Google Scholar] [CrossRef]
- Puglisi, G.E.; Prato, A.; Sacco, T.; Astolfi, A. Influence of classroom acoustics on the reading speed: A case study on Italian second-graders. The Journal of the Acoustical Society of America 2018, 144, EL144–EL149. [Google Scholar] [CrossRef] [PubMed]
- Katz, B.F.; Noisternig, M. A comparative study of interaural time delay estimation methods. The Journal of the Acoustical Society of America 2014, 135, 3530–3540. [Google Scholar] [CrossRef]
- Loiselle, L.H.; Dorman, M.F.; Yost, W.A.; Cook, S.J.; Gifford, R.H. Using ILD or ITD cues for sound source localization and speech understanding in a complex listening environment by listeners with bilateral and with hearing-preservation cochlear implants. Journal of Speech, Language, and Hearing Research 2016, 59, 810–818. [Google Scholar] [CrossRef]
- RECOMMENDATION ITU-R BS.1116-3 – Methods for the subjective assessment of small impairments in audio systems. R BS.
- Astolfi, A.; Riente, F.; Shtrepi, L.; Carullo, A.; Scopece, L.; Masoero, M. Speech quality improvement of commercial flat screen TV-sets. IEEE Transactions on Broadcasting 2021, 67, 685–695. [Google Scholar] [CrossRef]
- Spors, S.; Wierstorf, H.; Raake, A.; Melchior, F.; Frank, M.; Zotter, F. Spatial sound with loudspeakers and its perception: A review of the current state. Proceedings of the IEEE 2013, 101, 1920–1938. [Google Scholar] [CrossRef]
- Available online: https://audioplugins.iem.sh/website/docs/plugindescriptions/.
- Daniel, J.; Rault, J.B.; Polack, J.D. Ambisonics encoding of other audio formats for multiple listening conditions. Audio Engineering Society Convention 105. Audio Engineering Society, 1998.
- Steeneken, H.J.; Houtgast, T. Mutual dependence of the octave-band weights in predicting speech intelligibility. Speech communication 1999, 28, 109–123. [Google Scholar] [CrossRef]
- Hummersone, C. Impulse response acoustic information calculator, GitHub., 2023.
- Zahorik, P. Direct-to-reverberant energy ratio sensitivity. The Journal of the Acoustical Society of America 2002, 112, 2110–2117. [Google Scholar] [CrossRef]
- Tucker, A.J.; Martens, W.L.; Dickens, G.; Hollier, M.P. Perception of reconstructed sound-fields: The dirty little secret. Audio Engineering Society Conference: 52nd International Conference: Sound Field Control-Engineering and Perception. Audio Engineering Society, 2013.
- Santala, O.; Vertanen, H.; Pekonen, J.; Oksanen, J.; Pulkki, V. Effect of listening room on audio quality in Ambisonics reproduction. Audio Engineering Society Convention 126. Audio Engineering Society, 2009.
- Epic Games: Unreal Engine 5.
- Guastamacchia, A.; Ebri, M.; Bottega, A.; Armelloni, E.; Farina, A.; Puglisi, G.E.; Riente, F.; Shtrepi, L.; Masoero, M.C.; Astolfi, A.; others. Set up and preliminary validation of a small spatial sound reproduction system for clinical purposes. Forum Acusticum, 2023, pp. 4991–4998.
- Portable hearing lab headsets from BatAndCat Sound Labs.
- Available online: https://git.rwth-aachen.de/ita/toolbox.
- Middlebrooks, J.C. Sound localization. Handbook of clinical neurology 2015, 129, 99–116. [Google Scholar]
- Benichoux, V.; Rébillat, M.; Brette, R. On the variation of interaural time differences with frequency. The Journal of the Acoustical Society of America 2016, 139, 1810–1821. [Google Scholar] [CrossRef]
- EN ISO 3382-2. Acoustics - Measurement of Room Acoustic Parameters – Part 2: Reverberation Time in Ordinary Rooms. International Organization for Standardization, Genève 2008.
- Farina, A.; Capra, A.; Chiesi, L.; Scopece, L. A spherical microphone array for synthesizing virtual directive microphones in live broadcasting and in post production. Audio Engineering Society Conference: 40th International Conference: Spatial Audio: Sense the Sound of Space. Audio Engineering Society, 2010.
- Dietrich, P.; Guski, M.; Klein, J.; Müller-Trapet, M.; Pollow, M.; Scharrer, R.; Vorländer, M. Measurements and room acoustic analysis with the ITA-Toolbox for MATLAB. 40th Italian (AIA) Annual Conference on Acoustics and the 39th German Annual Conference on Acoustics (DAGA), 2013, p. 50.
- Litovsky, R.Y.; Colburn, H.S.; Yost, W.A.; Guzman, S.J. The precedence effect. The Journal of the Acoustical Society of America 1999, 106, 1633–1654. [Google Scholar] [CrossRef]
- Bradley, J.S.; Soulodre, G.A. The influence of late arriving energy on spatial impression. The Journal of the Acoustical Society of America 1995, 97, 2263–2271. [Google Scholar] [CrossRef]
- Okano, T.; Beranek, L.L.; Hidaka, T. Relations among interaural cross-correlation coefficient (IACC E), lateral fraction (LF E), and apparent source width (ASW) in concert halls. The Journal of the Acoustical Society of America 1998, 104, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Okano, T. Judgments of noticeable differences in sound fields of concert halls caused by intensity variations in early reflections. The Journal of the Acoustical Society of America 2002, 111, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Guastamacchia, A.; Puglisi, G.; Bottega, A.; Shtrepi, L.; Riente, F.; Astolfi, A.; others. Influence of stand configurations on ecological validity of audiovisual recording systems; RWTH Publications, 2023; pp. 88–91.
- Igroup Presence Questionnaire (IPQ).
- Schubert, T.; Friedmann, F.; Regenbrecht, H. The experience of presence: Factor analytic insights. Presence: Teleoperators & Virtual Environments 2001, 10, 266–281. [Google Scholar]
- Katz, B.F. International round robin on room acoustical impulse response analysis software 2004. Acoustics Research Letters Online 2004, 5, 158–164. [Google Scholar] [CrossRef]
- Mossop, J.E.; Culling, J.F. Lateralization of large interaural delays. The Journal of the Acoustical Society of America 1998, 104, 1574–1579. [Google Scholar] [CrossRef]
- Hancock, K.E.; Delgutte, B. A physiologically based model of interaural time difference discrimination. Journal of Neuroscience 2004, 24, 7110–7117. [Google Scholar] [CrossRef]
- Klockgether, S.; van de Par, S. Just noticeable differences of spatial cues in echoic and anechoic acoustical environments. The Journal of the Acoustical Society of America 2016, 140, EL352–EL357. [Google Scholar] [CrossRef]
- Bradley, J.S.; Reich, R.; Norcross, S. A just noticeable difference in C50 for speech. Applied Acoustics 1999, 58, 99–108, Publisher: Elsevier. [Google Scholar] [CrossRef]
- Visentin, C.; Pellegatti, M.; Prodi, N. COGNITIVE EFFORT IN SCHOOL-AGED CHILDREN 2023.
- Murgia, S.; Webster, J.; Cutiva, L.C.C.; Bottalico, P. Systematic review of literature on speech intelligibility and classroom acoustics in elementary schools. Language, speech, and hearing services in schools 2023, 54, 322–335. [Google Scholar] [CrossRef]
- Puglisi, G.E.; di Berardino, F.; Montuschi, C.; Sellami, F.; Albera, A.; Zanetti, D.; Albera, R.; Astolfi, A.; Kollmeier, B.; Warzybok, A. Evaluation of Italian simplified matrix test for speech-recognition measurements in noise. Audiology research 2021, 11, 73–88. [Google Scholar] [CrossRef] [PubMed]



















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
