Submitted:
20 September 2024
Posted:
23 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Discussion
2.1. Optimized OCDs with Narrow FWHM
2.2. Structure and Composition of OCDs
2.3. Optical Properties of OCDs
2.4. Optical Properties of OCDs/PVA films
3. Experimental
3.1. Materials
3.2. Characterization
3.3. Synthesis of OCDs with Narrow FWHM
3.4. Preparation of OCD Fluorescent Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Y.; Yu, G. Application and research status of long-wavelength fluorescent carbon dots. Molecules 2023, 28, 7473. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, X.; Liu, M.; Liu, M.; Wang, W. Blue, yellow, and red carbon dots from aromatic precursors for light-emitting diodes. Molecules 2023, 28, 2957. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zeng, F.; Han, Q.; Peng, Z. Recent advancements of solid-state emissive carbon dots: A review. Coordination Chemistry Reviews 2024, 498, 215469. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, J.; Yang, Y.; Liu, X.; Qiu, J.; Tian, Y. Tunable full-color solid-state fluorescent carbon dots for light emitting diodes. Carbon 2022, 190, 22–31. [Google Scholar] [CrossRef]
- Wang, H.; Ai, L.; Song, H.; Song, Z.; Yong, X.; Qu, S.; Lu, S. Innovations in the solid-state fluorescence of carbon dots: strategies, optical manipulations, and applications. Advanced Functional Materials 2023, 33, 2303756. [Google Scholar] [CrossRef]
- Yuan, T.; Teng, Q.; Li, C.; Li, J.; Su, W.; Song, X.; Shi, Y.; Xu, H.; Han, Y.; Wei, S.; Zhang, Y.; Li, X.; Li, Y.; Fan, L.; Yuan, F. The emergence and prospects of carbon dots with solid-state photoluminescence for light-emitting diodes. Materials Horizons 2023, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, S. Lasing of carbon dots: chemical design, mechanisms, and bright future. Chem 2023, 10, 134–141. [Google Scholar] [CrossRef]
- Zhao, B.; Ma, H.; Zheng, M.; Xu, K.; Zou, C.; Qu, S.; Tan, Z. Narrow-bandwidth emissive carbon dots: a rising star in the fluorescent material family. Carbon Energy 2022, 4, 88–114. [Google Scholar] [CrossRef]
- Liu, J.; Geng, Y.; Li, D.; Yao, H.; Huo, Z.; Li, Y.; Zhang, K.; Zhu, S.; Wei, H.; Xu, W.; Jiang, J.; Yang, B. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Advanced Materials 2020, 32, 1906641. [Google Scholar] [CrossRef]
- Yoshinaga, T.; Shinoda, M.; Isoi, Y.; Isobe, T.; Ogura, A.; Takao, K. Glycothermally synthesized carbon dots with narrow-bandwidth and color-tunable solvatochromic fluorescence for wide-color-gamut displays. ACS Omega 2021, 6, 1741–1750. [Google Scholar] [CrossRef]
- Yuan, F.; He, P.; Xi, Z.; Li, X.; Li, Y.; Zhong, H.; Fan, L.; Yang, S. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Research 2019, 12, 1669–1674. [Google Scholar] [CrossRef]
- Xu, J.; Liang, Q.; Li, Z.; Osipov, V. Y.; Lin, Y.; Ge, B.; Xu, Q.; Zhu, J.; Bi, H. Rational synthesis of solid-state ultraviolet B emitting carbon dots via acetic acid-promoted fractions of sp3 bonding strategy. Advanced Materials 2022, 34, 2200011. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Xi, Z.; Shi, X.; Li, Y.; Li, X.; Wang, Z.; Fan, L.; Yang, S. Ultrastable and low-threshold random lasing from narrow-bandwidth-emission triangular carbon quantum dots. Advanced Optical Materials 2019, 7, 1801202. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, X.; Wang, Z.; Song, H.; Wang, L.; Zheng, J.; Wang, H.; Yan, L.; Wei, C.; Yang, Y. Robust and reliable organic dye-embedded zinc oxide nanocomposite phosphor with a broad spectrum and high efficiency enables an eco-friendly white laser lighting diode. ACS Sustainable Chemistry & Engineering 2024, 12, 6738–6747. [Google Scholar]
- Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z.; Chen, A.; Jin, M.; Yang, S. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications 2018, 9, 2249. [Google Scholar] [CrossRef]
- Ding, H.; Wei, J.; Zhang, P.; Zhou, Z.; Gao, Q.; Xiong, H. Solvent controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 2018, 14, 1800612. [Google Scholar] [CrossRef]
- Mei, Q.; Zhang, K.; Guan, G.; Liu, B.; Wang, S.; Zhang, Z. Highly efficient photoluminescent graphene oxide with tunable surface properties. Chemical communications 2010, 46, 7319–7321. [Google Scholar] [CrossRef]
- Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C.; Zeng, S.; Hao, J.; Lau, S. P. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 2012, 6, 5102–5110. [Google Scholar] [CrossRef]
- Ding, H.; Xu, J.; Jiang, L.; Dong, C.; Meng, Q.; Rehman, S.; Wang, J.; Ge, Z.; Osipov, V. Y.; Bi, H. Fluorine-defects induced solid-state red emission of carbon dots with an excellent thermosensitivity. Chinese Chemical Letters 2021, 32, 3646–3651. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Lin, J.; Fan, Y.; Li, Y.; Lv, Y.; Liu, X. Excitation wavelength independence: toward low-threshold amplified spontaneous emission from carbon nanodots. ACS Applied Materials & Interfaces 2016, 8, 25454–25460. [Google Scholar]
- Ding, H.; Yu, S.; Wei, J.; Xiong, H. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Advanced Materials 2018, 30, 1704740. [Google Scholar] [CrossRef] [PubMed]
- Shim, H. S.; Kim, J. M.; Jeong, S.; Ju, Y.; Won, S. J.; Choi, J.; Nam, S.; Molla, A.; Kim, J.; Song, K. Distinctive optical transitions of tunable multicolor carbon dots. Nanoscale Advances 2022, 4, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, F.; Wang, Y.; Yang, Y.; Liu, X. Efficient resistance against solid-state quenching of carbon dots towards white light emitting diodes by physical embedding into silica. Carbon 2018, 126, 426–436. [Google Scholar] [CrossRef]
- Wang, B.; Song, H.; Tang, Z.; Yang, B.; Lu, S. Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation. Nano Research 2022, 15, 942–949. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, T.; Yan, L.; Liu, X.; Zheng, J.; Ren, F.; Yang, Y.; Liu, B.; Liu, X.; Xu, B. One-step synthesis of white-light-emitting carbon dots for white LEDs with a high color rendering index of 97. Advanced Science 2023, 10, 2206386. [Google Scholar] [CrossRef]
- Sun, M.; Qu, S.; Hao, Z.; Ji, W.; Jing, P.; Zhang, H.; Zhang, L.; Zhao, J.; Shen, D. Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites. Nanoscale 2014, 6, 13076–13081. [Google Scholar] [CrossRef]
- Alsaad, A. M.; Al-bataineh, Q. M.; Ahmad, A. A.; Jum'h, I.; Alaqtash, N.; Bani-Salameh, A. A. Optical properties of transparent PMMA PS/ZnO NPs polymeric nanocomposite films: UV-shielding applications. Materials Research Express 2019, 6, 1–17. [Google Scholar] [CrossRef]
- Urino, Y.; Hatori, N.; Akagawa, T.; Shimizu, T.; Okano, M.; Ishizaka, M.; Yamamoto, T.; Okayama, H.; Onawa, Y.; Takahashi, H.; Shimura, D.; Yaegashi, H.; Nishi, H.; Fukuda, H.; Yamada, K.; Miura, M.; Fujikata, J.; Akiyama, S.; Baba, T.; Usuki, T.; Noguchi, Y.; Noguchi, M.; Imai, M.; Hirayama, N.; Saitou, S.; Yamagishi, M.; Takahashi, M.; Saito, E.; Okamoto, D.; Mori, M.; Horikawa, T.; Nakamura, T.; Arakawa, Y. Athermal silicon optical interposers with quantum dot lasers operating from 25 to 125 ℃. Electronics Letters 2014, 50, 1377–1378. [Google Scholar] [CrossRef]
- Shao, J.; Li, J.; Li, G.; Zhang, Z.; Hu, Z.; Zhang, Z.; Wang, S.; Wu, Z.; Ye, J. Temperature measurement based on fluorescence intensity in hydroxyl tagging velocimetry (HTV). AIP Advances 2020, 10, 105326. [Google Scholar] [CrossRef]
- Dey, T.; Mukherjee, S.; Ghorai, A.; Das, S.; Ray, S. K. Surface state selective tunable emission of graphene quantum dots exhibiting novel thermal quenching characteristics. Carbon 2018, 140, 394–403. [Google Scholar] [CrossRef]
- Wu, S.; Li, W.; Zhou, W.; Zhan, Y.; Hu, C.; Zhuang, J.; Zhang, H.; Zhang, X.; Lei, B.; Liu, Y. Large-scale one-step synthesis of carbon dots from yeast extract powder and construction of carbon dots/PVA fluorescent shape memory material. Advanced Optical Materials 2018, 6, 1701150. [Google Scholar] [CrossRef]
- Hu, M.; Gu, X.; Hu, Y.; Deng, Y.; Wang, C. PVA/carbon dot nanocomposite hydrogels for simple introduction of Ag nanoparticles with enhanced antibacterial activity. Macromolecular Materials & Engineering 2016, 301, 1352–1362. [Google Scholar]
- El-Shamy, A. G.; Zayied, H. S. S. New polyvinyl alcohol/carbon quantum dots (PVA/CQDs) nanocomposite films: structural, optical and catalysis properties. Synthetic Metals 2020, 259, 116218. [Google Scholar] [CrossRef]
- Narayanan, R.; Deepa, M.; Srivastava., A.K. Förster resonance energy transfer and carbon dots enhance light harvesting in a solid-state quantum dot solar cell. Journal of Materials Chemistry A 2013, 1, 3907–3918. [Google Scholar] [CrossRef]














| Precursor | Reaction solvents | Emission (nm) |
FWHM (nm) | Solid state QY (%) | Refs |
|---|---|---|---|---|---|
| Phloroglucinol | 1,2-Pentanediol | 474 | 33 | / | [10] |
| 494 | 35 | / | |||
| Resorcinol | Ethanol | 520 | 31 | / | [11] |
| 610 | 33 | / | |||
| o-Phenylenediamine | Acetic acid, Deionized water |
308 | 24 | 20.20 | [12] |
| p-phenylenediamine | Ethanol | 600 | 100 | 41.72 | [24] |
| Phloroglucinol Rhodamine B |
Ethanol | 580 | 47 | 84.74 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).