Submitted:
18 September 2024
Posted:
19 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Prospective Targeting of VEGF in Lung Cancer
1. Overview of VEGF/VEGFR Axis
2. Role of VEGF in Angiogenesis and Cancer
3. Role of VEGF in the Procedures of TME Cell Components in NSCLC
4. VEGF and Immune Checkpoints in NSCLC
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Johnson, D. H., Schiller, J. H., & Bunn, P. A. (2014). Recent Clinical Advances in Lung Cancer Management. Journal of Clinical Oncology, 32(10), 973–982. [CrossRef]
- Zhao, Y., & Adjei, A. A. (2015). Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. The Oncologist, 20(6), 660–673. [CrossRef]
- Jayson, G. C., Kerbel, R., Ellis, L. M., & Harris, A. L. (2016). Antiangiogenic therapy in oncology: current status and future directions. The Lancet, 388(10043), 518–529. [CrossRef]
- Weddell, J. C., Chen, S., & Imoukhuede, P. I. (2017). VEGFR1 promotes cell migration and proliferation through PLCγ and PI3K pathways. Npj Systems Biology and Applications, 4(1), 1-11. [CrossRef]
- Ceci, C., Atzori, M. G., Lacal, P. M., & Graziani, G. (2020). Role of VEGFs/VEGFR-1 Signaling and Its Inhibition in Modulating Tumor Invasion: Experimental Evidence in Different Metastatic Cancer Models. International Journal of Molecular Sciences, 21(4), 1388. [CrossRef]
- Zachary, I. (2003). VEGF signalling: integration and multi-tasking in endothelial cell biology. Biochemical Society Transactions, 31(6), 1171–1177. [CrossRef]
- Lal BK, Varma S, Pappas PJ, Hobson RW 2nd, Durán WN. VEGF increases permeability of the endothelial cell monolayer by activation of PKB/akt, endothelial nitric-oxide synthase, and MAP kinase pathways. Microvasc Res. 2001 Nov;62(3):252-62. PMID: 11678628. [CrossRef]
- Graupera M, Potente M. Regulation of angiogenesis by PI3K signaling networks. Exp Cell Res. 2013 May 15;319(9):1348-55. Epub 2013 Mar 13. PMID: 23500680. [CrossRef]
- Qi, J. H., & Claesson-Welsh, L. (2001). VEGF-Induced Activation of Phosphoinositide 3-Kinase Is Dependent on Focal Adhesion Kinase. Experimental Cell Research, 263(1), 173-182. [CrossRef]
- Ugurel, S., Rappl, G., Tilgen, W., & Reinhold, U. (2001). Increased Serum Concentration of Angiogenic Factors in Malignant Melanoma Patients Correlates With Tumor Progression and Survival. Journal of Clinical Oncology, 19(2), 577–583. [CrossRef]
- Claffey KP, Brown LF, del Aguila LF, Tognazzi K, Yeo KT, Manseau EJ, Dvorak HF. Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res. 1996 Jan 1;56(1):172-81. PMID: 8548760.
- Jinnin, M., Medici, D., Park, L., Limaye, N., Liu, Y., Boscolo, E., Bischoff, J., Vikkula, M., Boye, E., & Olsen, B. R. (2008). Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nature Medicine, 14(11), 1236-1246. [CrossRef]
- Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol. 2023 Apr;24(4):242-254. Epub 2022 Oct 13. PMID: 36229538. [CrossRef]
- Wang J, Wang C, Li L, Yang L, Wang S, Ning X, Gao S, Ren L, Chaulagain A, Tang J, Wang T. Alternative splicing: An important regulatory mechanism in colorectal carcinoma. Mol Carcinog. 2021 Apr;60(4):279-293. Epub 2021 Feb 25. PMID: 33629774. [CrossRef]
- Mehterov N, Kazakova M, Sbirkov Y, Vladimirov B, Belev N, Yaneva G, Todorova K, Hayrabedyan S, Sarafian V. Alternative RNA Splicing-The Trojan Horse of Cancer Cells in Chemotherapy. Genes (Basel). 2021 Jul 18;12(7):1085. PMID: 34356101; PMCID: PMC8306420. [CrossRef]
- Mabeta, P., & Steenkamp, V. (2022). The VEGF/VEGFR Axis Revisited: Implications for Cancer Therapy. International Journal of Molecular Sciences, 23(24), 15585. [CrossRef]
- Ribatti, D. (2022). Immunosuppressive effects of vascular endothelial growth factor (Review). Oncology Letters, 24(4). [CrossRef]
- Guimarães-Bastos D, Frony AC, Barja-Fidalgo C, Moraes JA. Melanoma-derived extracellular vesicles skew neutrophils into a pro-tumor phenotype. J Leukoc Biol. 2022 Mar;111(3):585-596. Epub 2021 May 27. PMID: 34043843. [CrossRef]
- McHale C, Mohammed Z, Gomez G. Human Skin-Derived Mast Cells Spontaneously Secrete Several Angiogenesis-Related Factors. Front Immunol. 2019 Jun 25;10:1445. PMID: 31293594; PMCID: PMC6603178. [CrossRef]
- Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, Luposella M, Maltese L, Currò G, Marone G, Ranieri G, Memeo R. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int J Mol Sci. 2019 Apr 29;20(9):2106. PMID: 31035644; PMCID: PMC6540185. [CrossRef]
- Zhao, Y., Guo, S., Deng, J., Shen, J., Du, F., Wu, X., Chen, Y., Li, M., Chen, M., Li, X., Li, W., Gu, L., Sun, Y., Wen, Q., Li, J., & Xiao, Z. (2022). VEGF/VEGFR-Targeted Therapy and Immunotherapy in Non-small Cell Lung Cancer: Targeting the Tumor Microenvironment. International Journal of Biological Sciences, 18(9), 3845–3858. [CrossRef]
- Frezzetti D, Gallo M, Maiello MR, D’Alessio A, Esposito C, Chicchinelli N, Normanno N, De Luca A. VEGF as a potential target in lung cancer. Expert Opin Ther Targets. 2017 Oct;21(10):959-966. Epub 2017 Aug 30. PMID: 28831824. [CrossRef]
- Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013 Dec;13(12):871-82. PMID: 24263190; PMCID: PMC4011842. [CrossRef]
- Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, Li J, Li F, Tan HB. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 2020 Feb 1;470:126-133. Epub 2019 Nov 12. PMID: 31730903. [CrossRef]
- Galassi C, Musella M, Manduca N, Maccafeo E, Sistigu A. The Immune Privilege of Cancer Stem Cells: A Key to Understanding Tumor Immune Escape and Therapy Failure. Cells. 2021 Sep 8;10(9):2361. PMID: 34572009; PMCID: PMC8469208. [CrossRef]
- Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, Latreche S, Bergaya S, Benhamouda N, Tanchot C, Stockmann C, Combe P, Berger A, Zinzindohoue F, Yagita H, Tartour E, Taieb J, Terme M. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015 Feb 9;212(2):139-48. Epub 2015 Jan 19. PMID: 25601652; PMCID: PMC4322048. [CrossRef]
- de Almeida PE, Mak J, Hernandez G, Jesudason R, Herault A, Javinal V, Borneo J, Kim JM, Walsh KB. Anti-VEGF Treatment Enhances CD8+ T-cell Antitumor Activity by Amplifying Hypoxia. Cancer Immunol Res. 2020 Jun;8(6):806-818. Epub 2020 Apr 1. PMID: 32238381. [CrossRef]
- Zhang, L., Zhang, B., Li, L., Ye, Y., Wu, Y., Yuan, Q., Xu, W., Wen, X., Guo, X., & Nian, S. (2022b). Novel targets for immunotherapy associated with exhausted CD8 + T cells in cancer. Journal of Cancer Research and Clinical Oncology, 149(5), 2243–2258. [CrossRef]
- Lu, L., Zhang, Y., Tan, X., Merkher, Y., Leonov, S., Zhu, L., Deng, Y., Zhang, H., Zhu, D., Tan, Y., Fu, Y., Liu, T., & Chen, Y. (2022). Emerging mechanisms of pyroptosis and its therapeutic strategy in cancer. Cell Death Discovery, 8(1). [CrossRef]
- Flores-Mendoza G, Rodríguez-Rodríguez N, Rubio RM, Madera-Salcedo IK, Rosetti F, Crispín JC. Fas/FasL Signaling Regulates CD8 Expression During Exposure to Self-Antigens. Front Immunol. 2021 Mar 24;12:635862. PMID: 33841416; PMCID: PMC8024570. [CrossRef]
- Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, Carbone DP. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood. 2003 Jun 15;101(12):4878-86. Epub 2003 Feb 13. PMID: 12586633. [CrossRef]
- Zhao, Y., Guo, S., Deng, J., Shen, J., Du, F., Wu, X., Chen, Y., Li, M., Chen, M., Li, X., Li, W., Gu, L., Sun, Y., Wen, Q., Li, J., & Xiao, Z. (2022b). VEGF/VEGFR-Targeted Therapy and Immunotherapy in Non-small Cell Lung Cancer: Targeting the Tumor Microenvironment. International Journal of Biological Sciences, 18(9), 3845–3858. [CrossRef]
- Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017 Jan;27(1):109-118. Epub 2016 Dec 20. PMID: 27995907; PMCID: PMC5223231. [CrossRef]
- Sun L, Xu G, Liao W, Yang H, Xu H, Du S, Zhao H, Lu X, Sang X, Mao Y. Clinicopathologic and prognostic significance of regulatory T cells in patients with hepatocellular carcinoma: a meta-analysis. Oncotarget. 2017 Jun 13;8(24):39658-39672. PMID: 28487498; PMCID: PMC5503641. [CrossRef]
- Bourhis M, Palle J, Galy-Fauroux I, Terme M. Direct and Indirect Modulation of T Cells by VEGF-A Counteracted by Anti-Angiogenic Treatment. Front Immunol. 2021 Mar 29;12:616837. PMID: 33854498; PMCID: PMC8039365. [CrossRef]
- Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018 May;15(5):325-340. Epub 2018 Mar 6. PMID: 29508855; PMCID: PMC5921900. [CrossRef]
- Zhou K, Cheng T, Zhan J, Peng X, Zhang Y, Wen J, Chen X, Ying M. Targeting tumor-associated macrophages in the tumor microenvironment. Oncol Lett. 2020 Nov;20(5):234. Epub 2020 Sep 14. PMID: 32968456; PMCID: PMC7500051. [CrossRef]
- Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab. 2019 Jul 2;30(1):36-50. PMID: 31269428. [CrossRef]
- Myers KV, Amend SR, Pienta KJ. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Mol Cancer. 2019 May 14;18(1):94. PMID: 31088471; PMCID: PMC6515593. [CrossRef]
- Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019 Jul 12;12(1):76. PMID: 31300030; PMCID: PMC6626377. [CrossRef]
- Hwang I, Kim JW, Ylaya K, Chung EJ, Kitano H, Perry C, Hanaoka J, Fukuoka J, Chung JY, Hewitt SM. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med. 2020 Nov 23;18(1):443. PMID: 33228719; PMCID: PMC7686699. [CrossRef]
- Bosch NC, Voll RE, Voskens CJ, Gross S, Seliger B, Schuler G, Schaft N, Dörrie J. NF-κB activation triggers NK-cell stimulation by monocyte-derived dendritic cells. Ther Adv Med Oncol. 2019 Dec 11;11:1758835919891622. PMID: 31853267; PMCID: PMC6909276. [CrossRef]
- Lucarini V, Melaiu O, Tempora P, D’Amico S, Locatelli F, Fruci D. Dendritic Cells: Behind the Scenes of T-Cell Infiltration into the Tumor Microenvironment. Cancers (Basel). 2021 Jan 23;13(3):433. PMID: 33498755; PMCID: PMC7865357. [CrossRef]
- Han Z, Dong Y, Lu J, Yang F, Zheng Y, Yang H. Role of hypoxia in inhibiting dendritic cells by VEGF signaling in tumor microenvironments: mechanism and application. Am J Cancer Res. 2021 Aug 15;11(8):3777-3793. PMID: 34522449; PMCID: PMC8414384.
- Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018 May;15(5):310-324. Epub 2018 Feb 13. PMID: 29434333. [CrossRef]
- Long J, Hu Z, Xue H, Wang Y, Chen J, Tang F, Zhou J, Liu L, Qiu W, Zhang S, Ouyang Y, Ye Y, Xu G, Li L, Zeng Z. Vascular endothelial growth factor (VEGF) impairs the motility and immune function of human mature dendritic cells through the VEGF receptor 2-RhoA-cofilin1 pathway. Cancer Sci. 2019 Aug;110(8):2357-2367. Epub 2019 Jun 28. PMID: 31169331; PMCID: PMC6676124. [CrossRef]
- Inoshima N, Nakanishi Y, Minami T, Izumi M, Takayama K, Yoshino I, Hara N. The influence of dendritic cell infiltration and vascular endothelial growth factor expression on the prognosis of non-small cell lung cancer. Clin Cancer Res. 2002 Nov;8(11):3480-6. PMID: 12429638.
- Hegde S, Leader AM, Merad M. MDSC: Markers, development, states, and unaddressed complexity. Immunity. 2021 May 11;54(5):875-884. PMID: 33979585; PMCID: PMC8709560. [CrossRef]
- Weber R, Groth C, Lasser S, Arkhypov I, Petrova V, Altevogt P, Utikal J, Umansky V. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. Cell Immunol. 2021 Jan;359:104254. Epub 2020 Nov 29. PMID: 33296753. [CrossRef]
- Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000 May;6(5):1755-66. PMID: 10815894.
- Wang L, Dai Y, Zhu F, Qiu Z, Wang Y, Hu Y. Efficacy of DC-CIK-based immunotherapy combined with chemotherapy in the treatment of intermediate to advanced non-small cell lung cancer. Am J Transl Res. 2021 Nov 15;13(11):13076-13083. PMID: 34956526; PMCID: PMC8661198.
- Hawke LG, Whitford MKM, Ormiston ML. The Production of Pro-angiogenic VEGF-A Isoforms by Hypoxic Human NK Cells Is Independent of Their TGF-β-Mediated Conversion to an ILC1-Like Phenotype. Front Immunol. 2020 Aug 25;11:1903. PMID: 32983113; PMCID: PMC7477355. [CrossRef]
- Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014 Nov 10;26(5):605-22. Epub 2014 Nov 10. PMID: 25517747; PMCID: PMC4269830. [CrossRef]
- Eguchi R, Wakabayashi I. HDGF enhances VEGF-dependent angiogenesis and FGF-2 is a VEGF-independent angiogenic factor in non-small cell lung cancer. Oncol Rep. 2020 Jul;44(1):14-28. Epub 2020 Apr 9. PMID: 32319650; PMCID: PMC7251661. [CrossRef]
- Jung WY, Min KW, Oh YH. Increased VEGF-A in solid type of lung adenocarcinoma reduces the patients’ survival. Sci Rep. 2021 Jan 14;11(1):1321. PMID: 33446784; PMCID: PMC7809025. [CrossRef]
- Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms Controlling PD-L1 Expression in Cancer. Mol Cell. 2019 Nov 7;76(3):359-370. Epub 2019 Oct 24. PMID: 31668929; PMCID: PMC6981282. [CrossRef]
- Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T, van Nimwegen M, Lau SP, Latupeirissa K, Schetters S, van Kooyk Y, Boon L, Moyaart A, Mueller YM, Katsikis PD, Eggermont AM, Vroman H, Stadhouders R, Hendriks RW, Thüsen JV, Grünhagen DJ, Verhoef C, van Hall T, Aerts JG. The PD-1/PD-L1-Checkpoint Restrains T cell Immunity in Tumor-Draining Lymph Nodes. Cancer Cell. 2020 Nov 9;38(5):685-700.e8. Epub 2020 Oct 1. PMID: 33007259. [CrossRef]
- Koh YW, Lee SJ, Han JH, Haam S, Jung J, Lee HW. PD-L1 protein expression in non-small-cell lung cancer and its relationship with the hypoxia-related signaling pathways: A study based on immunohistochemistry and RNA sequencing data. Lung Cancer. 2019 Mar;129:41-47. Epub 2019 Jan 16. PMID: 30797490. [CrossRef]
- Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K. Targeting B7-1 in immunotherapy. Med Res Rev. 2020 Mar;40(2):654-682. Epub 2019 Aug 25. PMID: 31448437. [CrossRef]
- Kudo M. Scientific Rationale for Combined Immunotherapy with PD-1/PD-L1 Antibodies and VEGF Inhibitors in Advanced Hepatocellular Carcinoma. Cancers (Basel). 2020; 12. [CrossRef]
- Tozuka, T., Yanagitani, N., Sakamoto, H., Yoshida, H., Amino, Y., Uematsu, S., Yoshizawa, T., Hasegawa, T., Ariyasu, R., Uchibori, K., Kitazono, S., Seike, M., Gemma, A., & Nishio, M. (2020). Association between continuous decrease of plasma VEGF-A levels and the efficacy of chemotherapy in combination with anti-programmed cell death 1 antibody in non-small cell lung cancer patients. Cancer Treatment and Research Communications, 25, 100249. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
