Submitted:
17 September 2024
Posted:
19 September 2024
You are already at the latest version
Abstract
Keywords:
1. Black Hole Cosmology Model Entropy
2. The Schwarzschild Metric for a Hubble Sphere Black Hole Written in Entropy Form
3. The Critical Friedmann Equation
4. Conclusions
References
- E. T. Tatum and U. V. S. Seshavatharam Clues to the fundamental nature of gravity, dark energy and dark matter. Journal of Modern Physics, 9:1469, 2018. [CrossRef]
- M. V. John. Rh=ct and the eternal coasting cosmological model. Monthly Notices of the Royal Astronomical Society, 484, 2019. [CrossRef]
- M. V. John and K. B. Joseph. Generalized Chen-Wu type cosmological model. Physical Review D, 61:087304, 2000. [CrossRef]
- M. V. John and J. V. Narlikar. Comparison of cosmological models using bayesian theory. Physical Review D, 65:043506, 2002. [CrossRef]
- F. Melia. The Rh=ct universe without inflation. Astronomy & Astrophysics, 553, 2013. [CrossRef]
- Melia and A. S. H. Shevchuk The Rh=ct universe. Monthly Notices of the Royal Astronomical Society, 419:2579, 2012. [CrossRef]
- E. T. Tatum and U. V. S. Seshavatharam. How a realistic linear Rh=ct model of cosmology could present the illusion of late cosmic acceleration. Journal of Modern Physics, 9:1397, 2018a.
- F. Melia. A resolution of the monopole problem in the Rh=ct universe. The Dark Universe, 42:101329, 2023. [CrossRef]
- F. Melia. Strong observational support for the Rh=ct timeline in the early universe. Physics of the Dark Universe, 46:101587, 2024. [CrossRef]
- R. K. Pathria. The universe as a black hole. Nature, 240:298, 1972. [CrossRef]
- W. M. Stuckey. The observable universe inside a black hole. American Journal of Physics, 62:788, 1994. [CrossRef]
- T. X. Zhang and C. Frederick. Acceleration of black hole universe. Astrophysics and Space Science, 349:567, 2014. [CrossRef]
- N. Popławski. The universe in a black hole in Einstein–Cartan gravity. The Astrophysical Journal, 832:96, 2016. [CrossRef]
- N. Popławski. Gravitational collapse of a fluid with torsion into a universe in a black hole. Journal of Experimental and Theoretical Physics, 132:374, 2021. [CrossRef]
- E. Gaztanaga. The black hole universe, part ii. Symmetry, 2022:1984, 2022. [CrossRef]
- J. Bekenstein. Black holes and the second law. Lettere al Nuovo Cimento, 4(15):99, 1972. [CrossRef]
- J. Bekenstein. Black holes and entropy. Physical Review D, 7(8):2333, 1973. [CrossRef]
- S. Hawking. Black holes and thermodynamics. Physical Review D, 13(2):191, 1976. [CrossRef]
- A. Friedmann. Über die krüng des raumes. Zeitschrift für Physik, 10:377, 1922. [CrossRef]
- E. T. Tatum, U. V. S. Seshavatharam, and S. Lakshminarayana. The basics of flat space cosmology. International Journal of Astronomy and Astrophysics, 5:116, 2015. [CrossRef]
- E. G. Haug and S. Wojnow. How to predict the temperature of the CMB directly using the Hubble parameter and the Planck scale using the Stefan-Boltzman law. Research Square, Pre-print, under consideration by journal, 2023. [CrossRef]
- E. G. Haug. CMB, Hawking, Planck, and Hubble scale relations consistent with recent quantization of general relativity theory. International Journal of Theoretical Physics, 63(57), 2024. [CrossRef]
- E. G. Haug and E. T. Tatum. The Hawking Hubble temperature as a minimum temperature, the Planck temperature as a maximum temperature and the CMB temperature as their geometric mean temperature. Journal of Applied Physics and Mathematics (accepted and forthcoming), 2024a.
- E. G. Haug. Planck quantized bending of light leads to the CMB temperature. Hal archive, 2023. Available online: https://hal.science/hal-04357053.
- M. Planck. Natuerliche Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften: Berlin, Germany, 1899. Available online: https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up.
- E. G. Haug. God time = Planck time. Open Journal of Microphysics 14:40, 2024. [CrossRef]
- E. G. Haug. Finding the Planck length multiplied by the speed of light without any knowledge of G, c, or h, using a Newton force spring. Journal Physics Communication, 4:075001, 2020. [CrossRef]
- S. Dhal, S. Singh, K. Konar, and R. K. Paul. Calculation of cosmic microwave background radiation parameters using COBE/FIRAS dataset. Experimental Astronomy (2023), 56:715, 2023. [CrossRef]
- E. G. Haug and E. T. Tatum. Solving the Hubble tension using the Union2 supernova database. Preprints.org, 2024b. [CrossRef]
- P. Noterdaeme, P. Petitjean, R. Srianand, C. Ledoux, and S. López. The evolution of the cosmic microwave background temperature. Astronomy and Astrophysics, 526, 2011. [CrossRef]
- D. J. Fixsen. The temperature of the cosmic microwave background. The Astrophysical Journal, 707:916, 2009. [CrossRef]
- Y. S. Murakami and A. et. al Y. S., Riess. Leveraging SN Ia spectroscopic similarity to improve the measurement of H0. arXiv:2306.00070.
- A. G. Riess and et. al. A comprehensive measurement of the local value of the Hubble constant with 1 km s-1 Mpc-1 uncertainty from the Hubble space telescope and the sh0es team. The Astrophysical Journal, 934, 2021. [CrossRef]
- N. Aghanim et al. Planck Collaboration. Planck 2018 results. vi. cosmological parameters. Astronomy & Astrophysics, 641, 2020. [CrossRef]
- L. Balkenhol and et. al. Measurement of the CMB temperature power spectrum and constraints on cosmology from the SPT-3G 2018 TT, TE, and EE dataset. Physical Review D, 108:023510, 2023. [CrossRef]
- E. G. Haug The Planck computer is the quantum gravity computer: We live inside a gigantic computer, the Hubble sphere computer? Quantum Reports, 6:482, 2024. [CrossRef]
- K. Schwarzschild. über das gravitationsfeld einer kugel aus inkompressibler flussigkeit nach der einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, page 424, 1916.
- A. S. Eddington. Report On The Relativity Theory Of Gravitation. The Physical Society Of London, Fleetway Press, London, 1918.
- E. G. Haug and E. T. Tatum. Friedmann type equations in thermodynamic form lead to much tighter constraints on the critical density of the universe, 2024c. Available online: https://www.preprints.org/manuscript/202403.1241/v2.
- E. T. Tatum and U. V. S. Seshavatharam. Flat space cosmology as a model of light speed cosmic expansion—implications for the vacuum energy density. Journal of Modern Physics, 9:2008, 2018b. [CrossRef]
| CMB Study | Temperature Measurement | High-Precision Method for |
| Dhal et. al [28] 2023 | ||
| Noterdaeme et. al [30] | ||
| Fixsen et. al [31] |
| Study: | estimate: | Standard method estimate for : |
| 2023: Murakami et al. [32]: | ||
| 2021: Riess et al. [33]: | ||
| 2021: Planck Collaboration [34]: | ||
| 2023: Balkenhol et. al [35]: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
