Submitted:
13 September 2024
Posted:
15 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pinney Equation from Noether Symmetry of the Time-Dependent Harmonic Oscillator
3. Pinney Equation from Noether Symmetry of the Damped Time-Dependent Harmonic Oscillator
4. Time-Dependent Linear in Velocity Damping
5. Nonlinear Damped Ermakov Systems - Discussion and Generalization
6. Conclusions
Funding
Conflicts of Interest
References
- Pinney, E. The nonlinear differential equation y′′+p(x)y+cy-3=0. Proc. Am. Math. Soc. 1950, 1, 681 (1pp). [Google Scholar] [CrossRef]
- Ermakov, V. P. Second-order differential equations. Conditions of complete integrability. Univ. Isz. Kiev Series III 1880, 9, 1–25, (Translated by A. O. Harin). See: Appl. Anal. Discrete Math. 2008, 2, 123–148. [Google Scholar] [CrossRef]
- Cariñena, J. F. and de Lucas, J. Applications of Lie systems in dissipative Milne-Pinney equations. Int. J. Geom. Meth. Mod. Phys. 2009, 6, 683–699. [Google Scholar] [CrossRef]
- Brazier, T. I. and Leach, P. G. L. Invariants for dissipative systems and Noether’s theorem. Re. Mex. Fís. 1994, 40, 378–385. [Google Scholar]
- González-Acosta, E. and Corona-Galindo, M. G. Noether’s theorem and the invariants for dissipative and driven dissipative like systems. Rev. Mex. Fís. 1992, 38, 511–517. [Google Scholar]
- Profilo, G. and Soliana, G. Noether invariants and complete Lie-Point symmetries for equations of the Hill type. Prog. Theor. Phys. 1990, 84, 974–992. [Google Scholar] [CrossRef]
- Profilo, G. Soliana, G. Group-theoretical approach to the classical and quantum oscillator with time-dependent mass and frequency. Phys. Rev. A 1991, 44, 2057–2065. [Google Scholar] [CrossRef]
- Dodonov, V. V. and Man’ko, V. I. Evolution of multidimensional systems. Magnetic properties of ideal gases of charged particles. In Proceedings of Lebedev Physics Institute v. 183, Nova Science, Cornrnack, N. Y. (1987).
- Simic, S. S. A note on generalization of the Lewis invariant and the Ermakov systems. J. Phys. A: Math. Gen. 2000, 33, 5435–5447. [Google Scholar] [CrossRef]
- Haas, F. The damped Pinney equation and its applications to dissipative quantum mechanics. Phys. Scripta 2010, 81, 025004. [Google Scholar] [CrossRef]
- Musielak, Z. E. Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A: Math. Theor. 2008, 41, 055205 (17pp). [Google Scholar] [CrossRef]
- Musielak, Z. E. , Roy, D. and Swift, L. D. Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients. Chaos, Solitons and Fractals 2008, 38, 894–902. [Google Scholar] [CrossRef]
- Qian, S.-W. , Huang, B.-W. and Gu, Z.-Y. Ermakov invariant and the general solution for a damped harmonic oscillator with a force quadratic in velocity. J. Phys. A: Math. Gen. 2001, 34, 5613–5617. [Google Scholar] [CrossRef]
- Guha, P. and Ghose-Choudhury, A. A note on generalization of the Ermakov–Lewis invariant and its demystification. Mod. Phys. Lett. A 2019, 34, 1950021 (8pp). [Google Scholar] [CrossRef]
- Guha, P. and Ghose-Choudhury, Nonlocal transformations of the generalized Liénard type equations and dissipative Ermakov-Milne-Pinney systems. Int. J. Geom. Meth. Mod. Phys. 2019, 16, 1950107 (18 pp). [Google Scholar] [CrossRef]
- Mancas, S. C. and Rosu, H. C. Integrable equations with Ermakov-Pinney nonlinearities and Chiellini damping. Appl. Math. Comp. 2015, 259, 1–11. [Google Scholar] [CrossRef]
- Rosu, H. C. , Mancas, S. C. and Chen, P. Barotropic FRW cosmologies with Chiellini damping. Phys. Lett. A, 2015, 379, 882–887. [Google Scholar] [CrossRef]
- Haas, F. Noether symmetries and conservation laws of a reduced gauged bilayer graphene model. Phys. Lett. A 2023, 482, 129034–129039. [Google Scholar] [CrossRef]
- Leach, P. G. L. and Andriopoulos, K. The Ermakov equation: a comentary. Appl. Anal. Discr. Math. 2008, 2, 146–157. [Google Scholar] [CrossRef]
- Ray, J. R. and Reid, J. L. More exact invariants for the time dependent harmonic oscillator. Phys Lett A 1979, 71, 317–318. [Google Scholar] [CrossRef]
- Sarlet, W. and Cantrijn, F. Generalizations of Noether’s theorem in classical mechanics. SIAM Rev. 1981, 23, 467–494. [Google Scholar] [CrossRef]
- Leach, P. G. L. The complete symmetry group of the one-dimensional time-dependent harmonic oscillator. J. Math. Phys. 1980, 21, 300–304. [Google Scholar] [CrossRef]
- Cerveró, J. M. and Estévez, P. G. A review in Ermakov systems and their symmetries. Symmetry 2021, 13, 493–16pp. [Google Scholar] [CrossRef]
- Caldirola, P. Quantum theory of nonconservative systems. Il Nuovo Cimento B (1971-1996) 1983, 77, 241–262. [Google Scholar] [CrossRef]
- Kanai, E. On the quantization of the dissipative systems. Prog. Theor. Phys. 1948, 77, 440–442. [Google Scholar] [CrossRef]
- Maamache, M. Ermakov systems, exact solution, and geometrical angles and phases. Phys. Rev. A 1995, 52, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Gallegos, A. , Vargas-Rodríguez and Macías-Díaz, J. E. Ermakov-Lewis invariants for a class of parametric anharmonic oscillators. Rev. Mex. Física 2017, 63, 162–165. [Google Scholar]
- Guasti, M. F. Energy exchange in the dissipative time-dependent harmonic oscillator: Physical interpretation of the Ermakov invariant. Pramana J. Phys. 2022, 96, 221 (14pp). [Google Scholar] [CrossRef]
- Pedrosa, I. A. Canonical transformations and exact invariants for dissipative systems. J. Math. Phys. 1987, 28, 2662–2664. [Google Scholar] [CrossRef]
- Dantas, C. M. A. , Pedrosa, I. A. and Baseia, B. Harmonic oscillator with time-dependent mass and frequency and a perturbative potential. Phys. Rev. A 1992, 45, 1320–1324. [Google Scholar] [CrossRef]
- Campoamor-Stursberg, R. Perturbations of Lagrangian systems based on the preservation of subalgebras of Noether symmetries. Acta Mech 2016, 227, 1941–1956. [Google Scholar] [CrossRef]
- Schuch, D. and Kaushal, R. S. Some remarks on dissipative Ermakov systems and damping in Bose–Einstein condensates. Journal of Physics: Conference Series 2011, 306, 012032 (11pp). [Google Scholar]
- Nassar, A. B. Ermakov and non-Ermakov systems in quantum dissipative models. J. Math. Phys. 1986, 27, 755–758. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).