Submitted:
16 April 2024
Posted:
16 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Light Spring in Vacuum

3. Quantum Currents
4. Scattered Radiation

5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Yoon, J.W.; Kim, Y.G.; Choi, I.W.; Sung, J.H.; Lee, H.W.; S.K. Lee, S.K.; C.H. Nam, C.H. Realization of Laser Intensity over 1023W/cm2. Optica 2021, 8, 630. [Google Scholar] [CrossRef]
- Di Piazza, A.; Müller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely High-Intensity Laser Interactions with Fundamental Quantum Systems. Rev. Mod. Phys. 2012, 84, 1177. [Google Scholar] [CrossRef]
- Gonoskov, A.; Blackburn, T.G.; Marklund, M.; S.S. Bulanov, S.S. Charged Particle Motion and Radiation in Strong Electromagnetic Fields. Rev. Mod. Phys. 2022, 94, 045001. [Google Scholar] [CrossRef]
- Fedotov, A.; Ilderton, A.; Karbstein, F.; King, B.; Seipt, D.; Taya, T.; G. Torgrimsson, G. Advances in QED with Intense Background Fields. Phys. Rep. 2023, 1010, 1. [Google Scholar] [CrossRef]
- Brodin, G.; Marklund, M.; Stenflo, L. Proposal for Detection of QED Vacuum Nonlinearities in Maxwell’s Equations by the Use of Waveguides. Phys. Rev. Lett. 2001, 87, 171801. [Google Scholar] [CrossRef] [PubMed]
- Bialynicka-Birula, Z.; Bialynicki-Birula, I. Nonlinear Effects in Quantum Electrodynamics. Photon Propagation and Photon Splitting in an External Field. Phys. Rev. D 1970, 2, 2341. [Google Scholar] [CrossRef]
- Lundstrom, E.; Brodin, G.; Lundin, J.; Marklund, M.; Bingham, R.; Collier, J.; Mendonça, J.T.; Norreys, P. Using High-Power Lasers for Detection of Elastic Photon-Photon Scattering. Phys. Rev. Lett. 2006, 96, 083602. [Google Scholar] [CrossRef] [PubMed]
- Gies, H.; Karbstein, F.; Seegert, N. Quantum Reflection of Photons off Spatio-temporal Electromagnetic Field Inhomogeneities. New J. Phys. 2015, 17, 043060. [Google Scholar] [CrossRef]
- Mendonça, J.T.; Marklund, M.; Shukla, P.K.; Brodin, G. Photon Acceleration in Vacuum. Phys. Lett. A 2006, 359, 700. [Google Scholar] [CrossRef]
- Schwinger, J. On Gauge Invariance and Vacuum Polarization. Phys. Rev. 1951, 82, 664. [Google Scholar] [CrossRef]
- Heisenberg, W.; Euler, H. Consequences of Dirac’s Theory of Positrons. Z. Phys. 1936, 98, 714. [Google Scholar] [CrossRef]
- Mendonça, J.T. Superradiance in Quantum Vacuum. Quantum Rep. 2021, 3, 42. [Google Scholar] [CrossRef]
- Mendonça, J.T. Particle-Pair Creation by High-Harmonic Laser Fields. Phys. Scr. 2023, 98, 125606. [Google Scholar] [CrossRef]
- Penrose, R. Gravitational Collapse: The Role of General Relativity. 1969, 252–276. [Google Scholar]
- Zel’dovich, Y.B. Amplification of Cylindrical Electromagnetic Waves Reflected from a Rotating Body. Sov. Phys. JETP 1972, 35, 1085. [Google Scholar]
- Brito, R.; Cardoso, V.; Pani, P. Superradiance. Lecture Notes in Physics 2015, 906, 1–237. [Google Scholar]
- Zhang, H.; Zhang, B. Shielding of Penrose Superradiance in Optical Black Holes. Eur. Phys. J. C 2023, 83, 233. [Google Scholar] [CrossRef]
- Braidotti, M.C.; Prizia, R.; Maitland, C.; Marino, F.; Prain, A.; Starshynov, I.; Westerberg, N.; Wright, E.M.; Faccio, D. Measurement of Penrose Superradiance in a Photon Superfluid. Phys. Rev. Lett. 2022, 128, 013901. [Google Scholar] [CrossRef]
- Cromb, M.; Gibson, G.M.; Toninelli, E.; Padgett, M.J.; Wright, E.M.; Faccio, D. Amplification of Waves from a Rotating Body. Nat. Phys. 2020, 16, 1069. [Google Scholar] [CrossRef]
- Torres, T.; Patrick, S.; Coutant, A.; Richartz, M.; Tedford, E.W.; Weinfurtner, S. Rotational Superradiant Scattering in a Vortex Flow. Nat. Phys. 2017, 13, 833. [Google Scholar] [CrossRef]
- Mendonça, J.T.; Vieira, J.; Willim, C.; Fedele, R. Particle Acceleration by Twisted Laser Beams. Front. Phys. 2022, 10, 995379. [Google Scholar] [CrossRef]
- Vieira, J.; Mendonça, J.T.; Quéré, F. Optical Control of the Topology of Laser-Plasma Accelerators. Phys. Rev. Lett. 2018, 121, 054801. [Google Scholar] [CrossRef]
- Mendonça, J.T.; Willim, C.; Vieira, J. Twisted Waves near a Plasma Cutoff. Symmetry 2022, 14, 146. [Google Scholar] [CrossRef]
- Pariente, G.; Quéré, F. Spatio-Temporal Light Springs: Extended Encoding of Orbital Angular Momentum in Ultrashort Pulses. Opt. Lett. 2015, 40, 2037. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, J.T. Emission of Twisted Photons from Quantum Vacuum. EuroPhys. Lett. 2017, 120, 61001. [Google Scholar] [CrossRef]
- Li, S.; Li, G.; Ain, Q.; Hur, M.S.; Ting, A.C.; Kulagin, V.V.; Kamperidis, C.; Hafz, N.A.M. A laser-plasma accelerator driven by two-color relativistic femtosecond laser pulses. Sci. Adv. 2019, 5, eaav7940. [Google Scholar] [CrossRef]
- Wang, J.W.; Zepf, M.; Rykovanov, S.G. Intense Attosecond Pulses Carrying Orbital Angular Momentum using Laser Plasma Interactions. Nat. Commun. 2019, 10, 5554. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
