Submitted:
13 September 2024
Posted:
14 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Dataset Creation
2.3.2. Classification
2.4. Accuracy Assessment
2.5. Comparison of Classified Maps with Official Maps
3. Results and Discussion
3.1. Spectral Indices
3.2. Evaluation Metrics for Random Forest and SVM
3.3. Comparison of Land Cover Classification Accuracy
3.4. Post-Widlfire Land Cover Change Detection
3.5. Land Cover Maps
3.5.1. Land Cover Maps – RF x OBIA Model
3.5.2. Land Cover Maps – SVM x PBIA Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szpakowski, D.M.; Jensen, J.L.R. A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sensing 2019, vol. 11, no. 22. [CrossRef]
- Bashirzadeh, M.; Abedi, M.; Shefferson, R.P.; Farzam, M. Post-Fire Recovery of Plant Biodiversity Changes Depending on Time Intervals since Last Fire in Semiarid Shrublands. Fire 2023, vol. 6, no. 3, p. 103, 2023. [CrossRef]
- Eurostat, "Archive: Land cover and land use statistics at regional level," Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Land_cover_and_land_use_statistics_at_regional_level (accessed on ….).
- U. S. E. P. Agency, "Land Cover - Environmental Effects," Available online: https://www.epa.gov/report-environment/land-cover#:~:text=Land%20cover%20affects%20or%20influences,%2C%20climate%2C%20and%20carbon%20storage (accessed on …).
- Calsamiglia, A.; Lucas-Borja, M.E.; Fortesa, J.; García-Comendador, J.; Estrany, J. Changes in Soil Quality and Hydrological Connectivity Caused by the Abandonment of Terraces in a Mediterranean Burned Catchment. Forests, 2017, vol. 8, no. 9. [CrossRef]
- Papathanasiou, C.; Makropoulos, C.; Mimikou, M. Hydrological modelling for flood forecasting: Calibrating the post-fire initial conditions. Journal of Hydrology 2015, vol. 529, pp. 1838-1850. [CrossRef]
- Stoof C.R. et al.. Soil surface changes increase runoff and erosion risk after a low-moderate severity fire. Geoderma 2015, vol. 239, pp. 58-67. [CrossRef]
- Fournier, T.; Fèvre, J.; Carcaillet, F; Carcaillet, C. For a few years more: reductions in plant diversity 70 years after the last fire in Mediterranean forests. Plant Ecology 2020, vol. 221, no. 7, pp. 559-576. [CrossRef]
- Lloret, F; Vilà, M. Diversity patterns of plant functional types in relation to fire regime and previous land use in Mediterranean woodlands. Journal of Vegetation Science 2003, vol. 14, no. 3, pp. 387-398.
- Viana-Soto, A.; Okujeni, A.; Pflugmacher, D.; García, M.; Aguado, I.; Hostert, P. Quantifying post-fire shifts in woody-vegetation cover composition in Mediterranean pine forests using Landsat time series and regression-based unmixing. Remote Sensing of Environment 2022, vol. 281, Nov 2022. [CrossRef]
- Dolny, A.; Ozana, S.; Burda, M.; Harabis, F. Effects of Landscape Patterns and Their Changes to Species Richness, Species Composition, and the Conservation Value of Odonates (Insecta). Insects 2021, vol. 12, no. 6. [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environmental Development 2020, vol. 34. [CrossRef]
- Wiersma, Y.F.; Nudds, T.D.; Rivard, D.H. Models to distinguish effects of landscape patterns and human population pressures associated with species loss in Canadian national parks. Landscape Ecology 2004, vol. 19, no. 7, pp. 773-786. [CrossRef]
- Tahiru, A.A.; Doke, D.A.; Baatuuwie, B.N.Effect of land use and land cover changes on water quality in the Nawuni Catchment of the White Volta Basin, Northern Region, Ghana. Applied Water Science 2020, vol. 10, no. 8. [CrossRef]
- Wear, D.N.; Turner, M.G.; Naiman, R.J. Land cover along an urban-rural gradient: Implications for water quality. Ecological Applications 1998, vol. 8, no. 3, pp. 619-630. [CrossRef]
- Wilson, C.; Weng, Q. Assessing Surface Water Quality and Its Relation with Urban Land Cover Changes in the Lake Calumet Area, Greater Chicago. Environmental Management 2010. Vol. 45, no. 5, pp. 1096-1111. [CrossRef]
- Alkama, R.; Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 2016. Vol. 351, no. 6273, pp. 600-604. [CrossRef]
- Feddema, J. J.; Oleson, K. W.; Bonan, G. B.; Mearns, L. O.; Buja, L. E.; Meehl, G. A.; Washington, W. M. The importance of land-cover change in simulating future climates. Science 2005. Vol. 310, no. 5754, pp. 1674-1678. [CrossRef]
- Seto, K. C.; Fragkias, M.; Güneralp, B.; Reilly, M. K. A Meta-Analysis of Global Urban Land Expansion. Plos One 2011. Vol. 6, no. 8. [CrossRef]
- Houghton, R. A.; House, J. I.; Pongratz, J.; van der Werf, G. R.; DeFries, R. S.; Hansen, M. C.; Le Quéré, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012. Vol. 9, no. 12, pp. 5125-5142. [CrossRef]
- Zhao, M.; Pitman, A. J. The impact of land cover change and increasing carbon dioxide on the extreme and frequency of maximum temperature and convective precipitation. Geophysical Research Letters 2002. Vol. 29, no. 6, pp. 2-1-2-4. [CrossRef]
- European Commission. Available online: http://data.europa.eu/89h/9433731c-2c95-4588-b5fe-979d04633c29 (accessed on 13.6.2024).
- European Forest Fire Information System. Available online: https://effis.jrc.ec.europa.eu/apps/effis.statistics/estimates/EU/2024/2006/2023 (accessed on 25.10.2023).
- Turco, M.; Jerez, S.; Augusto, S.; Tarín-Carrasco, P.; Ratola, N.; Jiménez-Guerrero, P.; Trigo, R. M. Climate drivers of the 2017 devastating fires in Portugal. Scientific Reports 2019. Vol. 9, no. 1, p. 13886. [CrossRef]
- Euronews. Available online: https://www.euronews.com/2022/09/13/eleven-people-acquitted-of-negligence-over-deadly-2017-wildfires-in-portugal (accessed on 16.10.2023).
- Diário de Notícias. Available online: https://www.dn.pt/sociedade/incendio-de-agosto-foi-o-maior-em-47-anos-na-serra-da-estrela-15552358.html/ (accessed on 2.10.2023).
- Burned territories - burned area 2022. Available online: https://sig.icnf.pt/portal/home/item.html?id=983c4e6c4d5b4666b258a3ad5f3ea5af (accessed on 2.10.2023).
- Natural.PT. Available online: https://natural.pt/protected-areas/parque-natural-serra-estrela?locale=pt (accessed on 6.11.2023).
- SNIG. Available online: https://snig.dgterritorio.gov.pt/rndg/srv/search?keyword=COSc (accessed on 15.11.2023).
- SNIG. Available online: https://snig.dgterritorio.gov.pt/rndg/srv/search?keyword=COS (accessed on 15.11.2023).
- Shrestha, B. B. Approach for Analysis of Land-Cover Changes and Their Impact on Flooding Regime. Quaternary 2019. Vol. 2, no. 3, p. 27. [CrossRef]
- Githui, F.; Mutua, F.; Bauwens, W. Estimating the impacts of land-cover change on runoff using the soil and water assessment tool (SWAT): case study of Nzoia catchment, Kenya. Hydrological Sciences Journal 2009. Vol. 54, no. 5, pp. 899-908. [CrossRef]
- Wu, S.; Li, D.; Liu, L.; Zhang, W.; Liu, K.; Zhao, W.; Shen, J.; Hao, C.; Zhang, L. Global patterns and influencing factors of post-fire land cover change. Global and Planetary Change 2023. Vol. 223, p. 104076. [CrossRef]
- Huang, X.; Jensen, J. R. A machine-learning approach to automated knowledge-base building for remote sensing image analysis with GIS data. Photogrammetric engineering and remote sensing 1997. Vol. 63, no. 10, pp. 1185-1193.
- Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence 2018. Vol. 40, no. 4, pp. 834-848.
- Yousefi, S.; Mirzaee, S.; Almohamad, H.; Al Dughairi, A. A.; Gomez, C.; Siamian, N.; Alrasheedi, M.; Abdo, H. G. Image Classification and Land Cover Mapping Using Sentinel-2 Imagery: Optimization of SVM Parameters. Land 2022. Vol. 11, no. 7. [CrossRef]
- Jia, Y. Object-based land cover classification with orthophoto and lidar data. 2015.
- De Oliveira, I. C. L. B. Remote Sensing for Land Use/Land Cover Mapping in Almada. 2022.
- Aziz, G.; Minallah, N.; Saeed, A.; Frnda, J.; Khan, W. Remote sensing based forest cover classification using machine learning. Scientific Reports 2024. Vol. 14, no. 1, p. 69. [CrossRef]
- Rodriguez-Galiano, V. F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing 2012. Vol. 67, pp. 93-104. [CrossRef]
- Brnabic, A.; Hess, L. M. Systematic literature review of machine learning methods used in the analysis of real-world data for patient-provider decision making. BMC Medical Informatics and Decision Making 2021. Vol. 21, no. 1, p. 54. [CrossRef]
- MIT Sloan School of Management. Available online: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained#:~:text=What%20is%20machine%20learning%3F,to%20how%20humans%20solve%20problems (accessed on 9.2. 2024).
- Maxwell, A. E.; Warner, T. A.; Fang, F. Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing 2018. Vol. 39, no. 9, pp. 2784-2817. [CrossRef]
- Dostmohammadi, M.; Pedram, M. Z.; Hoseinzadeh, S.; Garcia, D. A. A GA-stacking ensemble approach for forecasting energy consumption in a smart household: A comparative study of ensemble methods. Journal of Environmental Management 2024. Vol. 364, p. 121264. [CrossRef]
- Roy, M.-H.; Larocque, D. Robustness of random forests for regression. Journal of Nonparametric Statistics 2012. Vol. 24, no. 4, pp. 993-1006. [CrossRef]
- Contreras, P.; Orellana-Alvear, J.; Muñoz, P.; Bendix, J.; Célleri, R. Influence of Random Forest Hyperparameterization on Short-Term Runoff Forecasting in an Andean Mountain Catchment. Atmosphere 2021. Vol. 12, no. 2, p. 238. [CrossRef]
- Zhao, Y. Chapter 4 - Decision Trees and Random Forest. In R and Data Mining; Zhao, Y., Ed.; Academic Press, 2013; pp. 27-40.
- Chau, A. L.; Li, X.; Yu, W. Support vector machine classification for large datasets using decision tree and Fisher linear discriminant. Future Generation Computer Systems 2014. Vol. 36, pp. 57-65. [CrossRef]
- Urso, A.; Fiannaca, A.; La Rosa, M.; V. Ravì, Rizzo, R. Data Mining: Classification and Prediction. In Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C., Eds.; Oxford: Academic Press, 2019; pp. 384-402.
- Xia, Y. Chapter Eleven - Correlation and association analyses in microbiome study integrating multiomics in health and disease. In Progress in Molecular Biology and Translational Science, Sun, J., Ed.; Academic Press, 2020; Vol. 171, pp. 309-491.
- Hossain, M. D.; Chen, D. Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing 2019. Vol. 150, pp. 115-134. [CrossRef]
- Tassi, A.; Gigante, D.; Modica, G.; Di Martino, L.; Vizzari, M. Pixel- vs. Object-Based Landsat 8 Data Classification in Google Earth Engine Using Random Forest: The Case Study of Maiella National Park. Remote Sensing 2021. Vol. 13, no. 12. [CrossRef]
- Goldblatt, R.; You, W.; Hanson, G.; Khandelwal, A. K. Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image Classification in Google Earth Engine. Remote Sensing 2016. Vol. 8, no. 8. [CrossRef]
- Xiong, J.; Thenkabail, P. S.; Tilton, J. C.; Gumma, M. K.; Teluguntla, P.; Oliphant, A.; Congalton, R. G.; Yadav, K.; Gorelick, N. Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine. Remote Sensing 2017. Vol. 9, no. 10, p. 1065. [CrossRef]
- VisitPortugal. Available online: https://www.visitportugal.com/en/destinos/centro-de-portugal/73759 (accessed on 13.11.2023).
- Life-Relict. Available online: http://www.liferelict.ect.uevora.pt/index.php/areas-de-intervencao/?lang=en (accessed on 13.11.2023).
- European Environment Agency. Available online: https://eunis.eea.europa.eu/sites/PTCON0014 (accessed on 3.11.2023).
- Estrela Geopark Association. Available online: https://www.geoparkestrela.pt/menu (accessed on 3.11.2023).
- Google Earth Engine. Available online: https://developers.google.com/earth-engine/apidocs/ee-algorithms-image-segmentation-snic (accessed on 3.6.2024).
- Google Earth Engine. Available online: https://earthengine.google.com/faq/ (accessed on 3.6.2024).
- Teodoro, A.; Amaral, A. A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data. Environments 2019. Vol. 6, no. 3, p. 36. [CrossRef]
- UN-SPIDER. Available online: https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-burn-severity/in-detail/normalized-burn-ratio (accessed on 5.12.2023).
- Pettorelli, N. The Normalized Difference Vegetation Index. Oxford University Press, 2013.
- USGS. Available online: https://www.usgs.gov/special-topics/remote-sensing-phenology/science/ndvi-foundation-remote-sensing-phenology (accessed on 1.12.2024).
- Ma, L.; Li, M. C.; Ma, X. X.; Cheng, L.; Du, P. J.; Liu, Y. X. A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing 2017. Vol. 130, pp. 277-293. [CrossRef]
- Lebourgeois, V.; Dupuy, S.; Vintrou, É.; Ameline, M.; Butler, S.; Bégué, A. A Combined Random Forest and OBIA Classification Scheme for Mapping Smallholder Agriculture at Different Nomenclature Levels Using Multisource Data (Simulated Sentinel-2 Time Series, VHRS and DEM). Remote Sensing 2017. Vol. 9, no. 3, p. 259. [CrossRef]
- Gorelick, N. Segmentation. In Earth Engine User Summit 2018. Dublin, Ireland, 12.6.2018.
- Foody, G. M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment 2020. vol. 239, p. 111630. [CrossRef]
- The Australian Government Department of Sustainability, Environment, Water, Population and Communities. Available online: https://www.dcceew.gov.au/sites/default/files/documents/ssr195.pdf (accessed on 15.5.2024).
- Singh, P.; Singh, N.; Singh, K. K.; Singh, A. Chapter 5 - Diagnosing of disease using machine learning. In Machine Learning and the Internet of Medical Things in Healthcare, Singh, K. K., Elhoseny, M., Singh, A., Elngar, A. A., Eds.:; Academic Press, 2021; pp. 89-111.
- W&B Fully Connected. Available online: https://wandb.ai/mostafaibrahim17/ml-articles/reports/An-Introduction-to-the-F1-Score-in-Machine-Learning--Vmlldzo2OTY0Mzg1 (accessed on 25.5.2024).
- Open Library. Available online: https://ecampusontario.pressbooks.pub/remotesensing/chapter/chapter-7-accuracy-assessment/ (accessed on 25.5.2024).











| Acquisition Date | Event | Cloud cover (%) |
|---|---|---|
| 2 August 2022 | Pre-wildfire 2022 | 0.000657 |
| 26 September 2022 | Post-wildfire 2022 | 0.152309 |
| 28 July 2023 | Summer 2023 (1 Year after fire) |
0.000352 |
| ID | Class/Level 1 | Level 3 | Satellite image |
|---|---|---|---|
| 0 | 2 - Agriculture | 211- Autumn/winter annual crops 212 - Spring/summer annual crops 213 - Other agricultural areas |
![]() |
| 1 | 1 - Artificial | 100 - Artificial areas | ![]() |
| 2 | 5 - Bareland |
500 - Surface without vegetation |
![]() |
| 3 | 3 - Forest |
311 - Cork oak and holm oak 312 - Eucalyptus 313 - Other hardwoods 321 - Maritime pine 323 - Other resinous plants |
![]() |
| 4 | 4 - Shrub | 410 - Shrub 420 - Spontaneous herbaceous vegetation |
![]() |
| 5 | 6 - Water | 620 - Water | ![]() |
| Fire Severity | dNBR range (scaled by 103) | MLC (100m2) |
% | dNBR range (scaled by 103) | USGS (100m2) |
% |
|---|---|---|---|---|---|---|
| Unburned | <= 100 | 53291 | 2.20 | <= 100 | 53291 | 2.20 |
| Low | 100 - 320 | 409450 | 16.89 | 100 - 270 | 292044 | 12.05 |
| Moderate | 320 - 650 | 1042929 | 43.03 | 270 - 660 | 1193272 | 49.23 |
| High | > 650 | 918192 | 37.88 | > 660 | 885255 | 36.52 |
| Total | 2423862 | 100 | 2423862 | 100 |
| NDVI | Pre-wildfire 2022 (100m2) | % | Post-wildfire 2022 (100m2) | % | Summer 2023 (100m2) | % |
|---|---|---|---|---|---|---|
| <= 0.1 | 647 | 0.03 | 23563 | 0.98 | 25378 | 1.05 |
| 0.1 - 0.5 | 844708 | 34.85 | 2229573 | 91.98 | 1820739 | 75.11 |
| > 0.5 | 1578507 | 65.12 | 170726 | 7.04 | 577745 | 23.84 |
| Total | 2423862 | 100 | 2423862 | 100 | 2423862 | 100 |
| SVM x PBIA | Agriculture | Artificial | Bareland | Forest | Shrub | Water | Precision |
|---|---|---|---|---|---|---|---|
| Agriculture | 797 | 2 | 16 | 249 | 79 | 0 | 0.6973 |
| Artificial | 11 | 207 | 6 | 0 | 0 | 0 | 0.9241 |
| Bareland | 18 | 13 | 2554 | 0 | 0 | 0 | 0.988 |
| Forest | 185 | 0 | 0 | 860 | 11 | 0 | 0.8144 |
| Shrub | 223 | 2 | 0 | 11 | 83 | 0 | 0.2602 |
| Water | 0 | 0 | 0 | 0 | 0 | 53 | 1 |
| Recall | 0.6459 | 0.9241 | 0.9915 | 0.7679 | 0.4798 | 1 |
| RF x OBIA | RF x PBIA | SVM x OBIA | SVM x PBIA | |||||
|---|---|---|---|---|---|---|---|---|
| OA | κ | OA | κ | OA | κ | OA | κ | |
| Pre-fire 2022 | 0.99 | 0.98 | 0.90 | 0.86 | 0.74 | 0.66 | 0.81 | 0.73 |
| Post-fire 2022 | 0.99 | 0.98 | 0.94 | 0.91 | 0.84 | 0.76 | 0.85 | 0.77 |
| Summer 2023 | 0.99 | 0.99 | 0.94 | 0.91 | 0.97 | 0.96 | 0.88 | 0.83 |
| F22 | RF x OBIA | RF x PBIA | SVM x OBIA | SVM x PBIA | ||||
|---|---|---|---|---|---|---|---|---|
| Class | Area (ha) | % | Area (ha) | % | Area (ha) | % | Area (ha) | % |
| 0 | 1,655.68 | 6.83 | 2,989.13 | 12.33 | 3,684.57 | 15.20 | 5,172.30 | 21.34 |
| 1 | 191.49 | 0.79 | 373.98 | 1.54 | 639.68 | 2.64 | 593.50 | 2.45 |
| 2 | 20,512.27 | 84.63 | 18,566.33 | 76.60 | 18,710.02 | 77.19 | 17,346.21 | 71.56 |
| 3 | 1,152.91 | 4.76 | 1,527.02 | 6.30 | 754.61 | 3.11 | 391,02 | 1.61 |
| 4 | 724.23 | 2.99 | 779.75 | 3.22 | 447.71 | 1.85 | 733.09 | 3.02 |
| Area(ha) | Agriculture | Artificial | Bareland | Forest | Shrub |
|---|---|---|---|---|---|
| COSc 2023 | 1479.32 | 5.78 | 5820.55 | 1168.25 | 15757.47 |
| RF_OBIA_S23 | 6867.58 | 349.50 | 10425.99 | 2316.96 | 4276.57 |
| RF_PBIA_S23 | 10254.29 | 187.83 | 8555.31 | 1892.89 | 3342.48 |
| SVM_OBIA_S23 | 9822.13 | 1041.57 | 9404.46 | 2196.01 | 1771.86 |
| SVM_PBIA_S23 | 14189.20 | 472.56 | 7944.88 | 752.46 | 876.15 |
| Major change from | Prefire 2022 to Postfire 2022 | Postfire 2022 to Summer 2023 | ||||
| To | Area (ha) | % | To | Area (ha) | % | |
| Agriculture | Bareland | 1593.07 | 6.57 | Agriculture | 690.74 | 2.85 |
| Artificial | Bareland | 70.53 | 0.29 | Artificial | 58.79 | 0.24 |
| Bareland | Bareland | 2094.21 | 8.64 | Bareland | 9965.35 | 41.11 |
| Forest | Bareland | 15847.11 | 65.38 | Forest | 653.9 | 2.7 |
| Shrub | Bareland | 907.34 | 3.74 | Agriculture | 302.43 | 1.25 |
| Major change from | Prefire 2022 to Postfire 2022 | Postfire 2022 to Summer 2023 | ||||
| To | Area (ha) | % | To | Area (ha) | % | |
| Agriculture | Bareland | 3305.88 | 13.64 | Agriculture | 3881.37 | 16.01 |
| Artificial | Bareland | 28.07 | 0.12 | Agriculture | 370.35 | 1.53 |
| Bareland | Bareland | 877.69 | 3.62 | Agriculture | 9354.4 | 38.59 |
| Forest | Bareland | 11373.65 | 46.92 | Forest | 243.37 | 1 |
| Shrub | Bareland | 1760.7 | 7.26 | Agriculture | 450.55 | 1.9 |
| ID | Land Cover | Prefire 2022 | Postfire 2022 | Summer 2023 | |||
| Area (ha) | % | Area (ha) | % | Area (ha) | % | ||
| 0 | Agriculture | 2452.94 | 10.12 | 1655.68 | 6.83 | 6867.58 | 28.34 |
| 1 | Artificial | 173.57 | 0.72 | 191.49 | 0.79 | 349.5 | 1.44 |
| 2 | Bareland | 2256.58 | 9.31 | 20512.27 | 84.63 | 10425.99 | 43.02 |
| 3 | Forest | 17846.92 | 73.64 | 1152.91 | 4.76 | 2316.96 | 9.56 |
| 4 | Shrub | 1506.59 | 6.22 | 724.23 | 2.99 | 4276.57 | 17.65 |
| Total | 24236.6 | 100 | 24236.6 | 100 | 24236.6 | 100 | |
| ID | Land Cover | Prefire 2022 | Postfire 2022 | Summer 2023 | |||
| Area (ha) | % | Area (ha) | % | Area (ha) | % | ||
| 0 | Agriculture | 5292.29 | 21.83 | 5,172.30 | 21.34 | 14189.20 | 58.55 |
| 1 | Artificial | 63.35 | 0.26 | 593.50 | 2.45 | 472.56 | 1.95 |
| 2 | Bareland | 984.99 | 4.06 | 17,346.21 | 71.56 | 7944.88 | 32.78 |
| 3 | Forest | 14884.9 | 61.41 | 391,02 | 1.61 | 752.46 | 3.1 |
| 4 | Shrub | 3010.71 | 12.42 | 733.09 | 3.02 | 876.15 | 3.62 |
| Total | 24236.24 | 100 | 24236.12 | 100 | 24235.25 | 100 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






