Submitted:
04 September 2024
Posted:
05 September 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Materials and Methods
Results and Discussion
Conclusion
References
- Adams, M., Spence, J., Clark, S., Farr, J. R., Benford, S., & Tandavanitj, N. (2020). From sharing to gifting: A web app for deepening engagement. Proceedings of EVA London 2020 30, 48–49. [CrossRef]
- Anderson, S. (2020). Some provocations on the digital future of museums. In Winesmith, K. and Anderson, S. (eds), The Digital Future of Museums: Conversations and Provocations. Abingdon, New York: Routledge: 10–27.
- Argyriou, L., Economou, D., & Bouki, V. (2020). Design methodology for 360 immersive video applications: the case study of a cultural heritage virtual tour. Personal and Ubiquitous Computing, 24(6): 843-859. [CrossRef]
- Bahrami, M., & Albadvi, A. (2023). Deep learning for identifying Iran's cultural heritage buildings in need of conservation using image classification and Grad-CAM. arXiv preprint arXiv:2302.14354. [CrossRef]
- Beelen, K., Lawrence, J., Wilson, D C S, & Beavan, D. (2023). Bias and representativeness in digitized newspaper collections: Introducing the environmental scan. Digital Scholarship in the Humanities, 38 (1): 1–22. [CrossRef]
- Berg, H., Hall, S. M., Bhalgat, Y., Yang, W., Kirk, H. R., Shtedritski, A., & Bain, M. (2022). A prompt array keeps the bias away: Debiasing vision-language models with adversarial learning. arXiv preprint arXiv:2203.11933.
- Berry, D. M., & Dieter, M. (2015). Thinking postdigital aesthetics: Art, computation and design. In Postdigital aesthetics: Art, computation and design. London: Palgrave Macmillan UK. pp. 1-11.
- Caton K., & Santos C.A. (2008). Closing the hermeneutic circle photographic encounters with the other. Annals of Tourism Research 35: 7–26.
- Davis, J. L., Williams, A., & Yang, M. W. (2021). Algorithmic reparation. Big Data & Society, 8(2), 20539517211044808: 1-12.
- Emerick, K. (2014). Conserving and managing ancient monuments: Heritage, democracy, and inclusion. Woodbridge: Boydell & Brewer.
- Griffin, G., Wennerström, E. and Foka A. (2023). AI and Swedish heritage institutions: Opportunities and challenges. AI and Society. [CrossRef]
- Hayles, N.K. (2017). Unthought: The Power of the Cognitive Nonconscious. Chicago: University of Chicago Press.
- Izsak, K., Terrier, A., Kreutzer, S., et al., (2022). Opportunities and challenges of artificial intelligence technologies for the cultural and creative sectors. Brussels: Publications Office of the European Union, European Commission, Directorate-General for Communications Networks, Content and Technology.
- Fahse, T., Huber, V., & van Giffen, B. (2021). Managing bias in machine learning projects. In Ahlemann, F., Schütte, R. and Stiegllitz, S., Innovation Through Information Systems: Volume II: A Collection of Latest Research on Technology Issues. London, Springer: 94-109.
- Geismar, H. (2018). Museum object lessons for the digital age. London: UCL Press.
- Hamilakis, Y. (2016). Decolonial archaeologies: from ethnoarchaeology to archaeological ethnography. World Archaeology, 48(5): 678-682.
- Harrison, R. (2010). Introduction. In R. Harrison (ed.), Understanding the politics of heritage. Manchester: Manchester University Press: 5-42.
- Harrison, R. (2013). Heritage: Critical approaches. New York: Routledge.
- Huster, A. C. (2013). Assessing systematic bias in museum collections: A case study of spindle whorls. Advances in Archaeological Practice, 1(2): 77–90.
- Kamiran, F., & Calders, T. (2010). Classification with no discrimination by preferential sampling. In Informal Proceedings of the 19th Annual Machine Learning Conference of Belgium and The Netherlands, Benelearn'10, Belgium, Leuven: 1-6.
- Kizhner, I., Terras, M., Rumyantsev, M., Khokhlova, V., Demeshkova, E., Rudov, I., & Afanasieva, J., (2021). Digital cultural colonialism: measuring bias in aggregated digitized content held in Google Arts and Culture. Digital Scholarship in the Humanities, 36(3): 607–640.
- Knell, S. (2010). Introduction. In Knell, S. J, Aronsson, P., & Amundsen, A. B. (eds), National Museums: New Studies from Around the World. London: Routledge: 3–29.
- Logan, W., & Wijesuriya, G. (2015). The new heritage studies and education, training, and capacity-building. In W. Logan, M.N. Craith, U. Kocke (eds.), A companion to heritage studies. Malden, MA: John Wiley and Sons: 557-573.
- Lorenz, K. (2010). “Dialectics at a standstill”: archaic kouroi-cum-epigram as I-box. In M. Baumbach, A. Petrovic, & I. Petrovic (Eds.), Archaic and classical Greek epigram. Cambridge University Press: 131-148.
- Macdonald, S. (Ed.). (2011). A companion to museum studies. Malden, MA: John Wiley & Sons.
- Manovich, L. & Arielli, E. (2021). Artificial Aesthetics, Manovich.net (online).
- Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1-35.
- Milan, S. & Trere, E. (2019). Big data from the south(s): beyond data universalism. Television and New Media, 20(4): 319–35.
- Ooghe, B., Waasland, H. C., & Moreels, D. (2009). Analysing selection for digitisation. D-Lib Magazine, 15(9/10). [CrossRef]
- Pastaltzidis, I., Dimitriou, N., Quezada-Tavarez, K., Aidinlis, S., Marquenie, T., Gurzawska, A., & Tzovaras, D. (2022). Data augmentation for fairness-aware machine learning: Preventing algorithmic bias in law enforcement systems. In 2022 ACM Conference on Fairness, Accountability, and Transparency: 2302-2314.
- Rettberg, J. W. (2023). Machine Vision: How Algorithms are Changing the Way We See the World. John Wiley & Sons.
- Risam, R. (2018). Decolonizing the digital humanities in theory and practice. In Sayers, J. (ed.) The Routledge companion to media studies and digital humanities. London: Routledge: 78-86.
- Salazar, N. B. (2012). Tourism imaginaries: a conceptual approach. Annals of Tourism Research, 39(2): 863–82.
- Said, E. W. (1978). Orientalism. New York: Random House.
- Sharp, J. P. (2002). Writing travel/travelling writing: Roland Barthes detours the Orient. Environment and Planning D: Society and Space, 20(2): 155–66. [CrossRef]
- Silverman, H., Waterton, E., & Watson S. (2017). An introduction to heritage in action. In H. Silverman, E. Waterton, & S. Watson (eds.), Heritage in Action: Making the Past in the Present, Cham: Springer: 3-18.
- Smith, L. (2006). Uses of heritage. London: Routledge.
- Smith, L., Shackel, P., & Campbell, G. (2011). Introduction: Class still matters. In L. Smith, P. Shackel, G. Campbell (eds.), Heritage, Labour and the Working Classes. London: Routledge: 1-16.
- Suresh, H., & Guttag, J. (2021). A framework for understanding sources of harm throughout the machine learning life cycle. Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO '21), ACM, New York, NY, USA: 1-9.
- Tunbridge, J.E., & Ashworth, G.J. (1996). Dissonant heritage: the management of the past as a resource in conflict. Chichester: J. Wiley.
- van Giffen, B., Herhausen, D., & Fahse, T. (2022). Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods. Journal of Business Research, 144: 93-106. [CrossRef]
- Wang, T., Zhao, J., Yatskar, M., Chang, K. W., & Ordonez, V. (2019). Balanced datasets are not enough: Estimating and mitigating gender bias in deep image representations. Proceedings of the IEEE/CVF International Conference on Computer Vision: 5310-5319.
- Wasielewski, A. (2023a). Computational Formalism, MIT Press.
- Wasielewski, A. (2023b). ‘Midjourney can’t count’: Questions of representation and meaning for text-to-image generators. The Interdisciplinary Journal of Image Sciences, 37(1), 71-82.
- Wasielewski, A. (2023c). Authenticity and the Poor Image in the Age of Deep Learning. photographies, 16(2), 191-210.
- Wells, J. C., & Lixinski, L. (2016). Heritage values and legal rules: Identification and treatment of the historic environment via an adaptive regulatory framework (part 1). Journal of Cultural Heritage Management and Sustainable Development, 6(3): 345-364. [CrossRef]
- Wells, J. C. (2015). In stakeholders we trust: Changing the ontological and epistemological orientation of built heritage assessment through participatory action research. In B. Szmygin (Ed.), How to assess built heritage? Assumptions, methodologies, examples of heritage assessment systems. Florence and Lublin: Romualdo Del Bianco Foundatione and Lublin University of Technology: 249-265.
- Winter, T. (2013). Clarifying the critical in critical heritage studies. International Journal of Heritage Studies, 19(6): 532-545. [CrossRef]
- Witcomb, A., & Buckley K. (2013). Engaging with the future of ‘critical heritage studies’: looking back in order to look forward. International Journal of Heritage Studies, 19 (6): 562–578.
- Zhang, Y., Zhang, Y., Halpern, B. M., Patel, T., & Scharenborg, O. (2022). Mitigating bias against non-native accents. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH: 3168-3172.
- Zhang, B. H., Lemoine, B., & Mitchell, M. (2018, December). Mitigating unwanted biases with adversarial learning. Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society: 335-340.


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
