Submitted:
03 September 2024
Posted:
04 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Reagents and Water Samples
2.2. Instrumentation
2.3. Indicator Reaction Protocols and Data Processing
3. Results and Discussion
3.1. Hydrolysis of Dye I
3.2. Reaction of Hypochlorite with Dye I
3.3. Interaction of Model Analytes with Dye I (without NaOCl)
3.4. Effect of Model Analytes in the Carbocyanine – NaOCl Reaction
3.5. Near-IR Signal induced by Model Analytes
3.6. Dependence of the RGB SIGNAL on the concentration of Analytes
3.7. Effects of Analytes in Mixtures
3.8. Effect of the Time Interval between Adding Hypochlorite and the Dye
3.9. Testing of Wastewater and Natural Water Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The United Nations World Water Development Report 2024: water for prosperity and peace. UNESCO, 2024. https://unesdoc.unesco.org/ark:/48223/pf0000388948. Accessed Aug. 28, 2024.
- Repeta, D.J. Chapter 2 - Chemical Characterization and Cycling of Dissolved Organic Matter, pp. 21–63 in book: Biogeochemistry of Marine Dissolved Organic Matter (Second Edition). Eds.: Hansell, D.A.; Carlson, C.A. Academic Press, 2015. [CrossRef]
- Shi, W.; Zhuang, W.-E.; Hur, J.; Yang, L. Monitoring dissolved organic matter in wastewater and drinking water treatments using spectroscopic analysis and ultra-high resolution mass spectrometry. Water Res. 2021, 188, 116406. [CrossRef]
- Chen, W.; Yu, H.-Q. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. Water Res. 2021, 190, 116759. [CrossRef]
- Xu, X.; Thomson, N.R. Estimation of the maximum consumption of permanganate by aquifer solids using a modified chemical oxygen demand test. J. Environm. Eng. 2008, 134, 353–361. [CrossRef]
- Stauß, A.C.; Fuchs, C.; Jansen, P.; Repert, S.; Alcock, K.; Ludewig, S.; Rozhon, W. The Ninhydrin Reaction Revisited: Optimisation and Application for Quantification of Free Amino Acids. Molecules 2024, 29, 3262. [CrossRef]
- Aguilar Diaz de Leon, J.; Borges, C.R. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J. Vis. Exp. 2020, 159, e61122. [CrossRef]
- Chan, K.-Y.; Wasserman, B.P. Direct colorimetric assay of free thiol groups and disulfide bonds in suspensions of solubilized and particulate cereal proteins. Cereal Chemistry 1993, 70, 22-26. DOI: none.
- Apak, R.; Çekiç, SD.; Üzer, A.; Çapanoğlu, E.; Çelik, S.E.; Bener, M.; Can, Z.; Durmazel, S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. Anal. Methods, 2020, 12, 5266. [CrossRef]
- Kumar, S.; Chaitanya, R.K.; Preedy, V.R. Chapter 20 - Assessment of Antioxidant Potential of Dietary Components, Editor(s): Victor R. Preedy, Ronald Ross Watson. HIV/AIDS. Academic Press, 2018, pp. 239–253. [CrossRef]
- Fernandes, G.M.; Silva, W.R.; Barreto, D.N.; Lamarca, R.S.; Gomes, P.C.F.L; Petruci, J.F. da S.; Batista, A.D. Novel approaches for colorimetric measurements in analytical chemistry – A review. Anal. Chim. Acta, 2020, 1135, 187–203. [CrossRef]
- Ali, R.B.; Omrani, R.; Akacha, A.B.; Dziri, C.; El May, M.V. Development and validation of a colorimetric method for the quantitative analysis of thioamide derivatives. Spectr. Acta A 2019, 220, 117154. [CrossRef]
- Li, Z.; Suslick, K.S. The Optoelectronic Nose. Acc. Chem. Res. 2021, 54, 950−960. [CrossRef]
- Yaroshenko, I.; Kirsanov, D.; Marjanovic, M.; Lieberzeit, P.A.; Korostynska, O.; Mason, A.; Frau, I.; Legin, A. Real-Time Water Quality Monitoring with Chemical Sensors. Sensors 2020, 20, 3432. [CrossRef]
- Vaughan, A.A.; Narayanaswamy, R. Optical fibre reflectance sensors for the detection of heavy metal ions based on immobilised Br-PADAP. Sens. Actuators B 1998, 51, 368–376. [CrossRef]
- Sasaki, Y.; Lyu, X.; Minami, T. Printed colorimetric chemosensor array on a 96-microwell paper substrate for metal ions in river water. Front. Chem. 2023, 11, 1134752. [CrossRef]
- Ghohestani, E.; Tashkhourian, J.; Sharifi, H.; Bojanowski, N.M.; Seehafer, K.; Smarsly, E.; Bunz, U.H.F.; Hemmateenejad, B. A poly (arylene ethynylene)-based microfluidic fluorescence sensor array for discrimination of polycyclic aromatic hydrocarbons. Analyst 2022, 147, 4266–4274. [CrossRef]
- Sicard, C.; Glen, C.; Aubie, B.; Wallace, D.; Jahanshahi-Anbuhi, S.; Pennings, K.; Daigger, G.T.; Pelton, R.; Brennan, J.D.; Filipe, C.D.M. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 2015, 70, 360–369. [CrossRef]
- Yang, M.; Zhang, M.; Jia, M. Optical sensor arrays for the detection and discrimination of natural products, Nat. Prod. Rep., 2023, 40, 628–645. [CrossRef]
- Unprecedented flooding displaces hundreds of thousands across East Africa. UN News. https://news.un.org/en/story/2024/05/1149461. Accessed Aug. 28, 2024.
- Shik, A.V.; Stepanova, I.A.; Doroshenko, I.A.; Podrugina, T.A.; Beklemishev, M.K. Carbocyanine-Based Optical Sensor Array for the Discrimination of Proteins and Rennet Samples Using Hypochlorite Oxidation. Sensors 2023, 23, 4299. [CrossRef]
- Skorobogatov, E.V.; Shik, A.V.; Sobolev, P.V.; Stepanova, I.A.; Orekhov, V.S.; Ustyuzhanin, A.O.; Koksharova, M.V.; Ikhalaynen, Yu.A.; Timchenko, Yu.V.; Rodin, I.A.; Beklemishev, M.K. Monitoring Different Water Types for Engine Oil Water-Soluble Fraction and Iron(2+) Using a Reaction-Based Optical Sensing Strategy: a Proof-of-Concept Study. Ind. Eng. Chem. Res. 2024, 63, 12336–12349. [CrossRef]
- Skorobogatov, E.V.; Timchenko, Yu.V.; Doroshenko, I.A.; Podrugina, T.A.; Rodin, I.A.; Beklemishev, M.K. Determination of Isoniazid by a Photometric Method due to Covalent Binding with a Carbocyanine Dye. J. Analyt. Chem. 2024, 79, 417–425. [CrossRef]
- Doroshenko, I.A.; Aminulla, K.G.; Azev, V.N.; Kulinich, T.M.; Vasilichin, V.A.; Shtil, A.A.; Podrugina, T.A. Synthesis of modified conformationally fixed tricarbocyanine dyes for conjugation with therapeutic agents. Mendeleev Commun. 2021, 3, 615–621. [CrossRef]
- Zakharenkova, S.A.; Katkova, E.A.; Doroshenko, I.A.; Kriveleva, A.S.; Lebedeva, A.N.; Vidinchuk, T.A.; Shik, A.V.; Abramchuk, S.S.; Podrugina, T.A.; Beklemishev, M.K. Aggregation-based fluorescence amplification strategy: “turn-on” sensing of aminoglycosides using near-IR carbocyanine dyes and pre-micellar surfactants. Spectrochim. Acta A 2021, 247, 119109. [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. Just Watch Once: Unified Real-Time Object Detection. Proc. IEEE Conf. on Computer Vision and Pattern Recognition 2016, 779–788. [CrossRef]
- Stepanova, I.A.; Shik, A.V.; Skorobogatov, E.V.; Bartoshevich, A.A.; Beklemishev, M.K. Colorimetric determination of cetyltrimethylammonium bromide by using aggregation with a carbocyanine dye. Analitika i kontrol’ [Analytics and Control] 2022, 26, 204–211. [CrossRef]
- Chen, H.; Xie, J.; Huang, C.; Liang, Y.; Zhang, Y.; Zhao, X.; Ling, Y.; Wang, L.; Zheng, Q.; Yang, X. Database and review of disinfection by-products since 1974: Constituent elements, molecular weights, and structures, J. Hazard. Mater. 2024, 462, 132792. [CrossRef]
- Mazur, D.M.; Lebedev, A.T. Transformation of Organic Compounds during Water Chlorination/Bromination: Formation Pathways for Disinfection By-Products (A Review). J. Anal. Chem. 2022, 77, 1705–1728. [CrossRef]
- Shen, Y. Formation of nitrogenous disinfection by-products (N-DBPs) in drinking water: emerging concerns and current issue. IOP Conf. Ser.: Earth Environ. Sci., 2021, 801, 012015. [CrossRef]







| Delay time*, h | Model analyte (time of developing the signal after reaction start) |
| 0 | DNA (5–40 min), BSA (15–40 min), lysozyme (30–40 min) |
| 1 | DNA (1–40 min), BSA (15–40 min) |
| 24 | Lysozyme (1–40 min) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
