Submitted:
28 August 2024
Posted:
29 August 2024
You are already at the latest version
Abstract
Keywords:
Key points
- Human thymus produces thymic peptides that are important in normal T cell homeostasis - T cell production, maturation and activation (134)
- Thymic peptides with hormone-like activity have been tested in a variety of clinical conditions and are safe for administration
Introduction
Funding
Authorship and Conflict-of-Interest Statements
References
- M. R. M. van den Brink, E. Velardi, and M.-A. Perales, “Immune reconstitution following stem cell transplantation,” Hematology Am Soc Hematol Educ Program, vol. 2015, pp. 215–219, 2015. [CrossRef]
- C. de Koning et al., “CD4+ T-cell reconstitution predicts survival outcomes after acute graft-versus-host-disease: a dual-center validation,” Blood, vol. 137, no. 6, pp. 848–855, Feb. 2021. [CrossRef]
- M. S. Chaudhry, E. Velardi, F. Malard, and M. R. M. van den Brink, “Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation: Time To T Up the Thymus,” The Journal of Immunology, vol. 198, no. 1, pp. 40–46, Jan. 2017. [CrossRef]
- E. Velardi, J. J. Tsai, and M. R. M. van den Brink, “T cell regeneration after immunological injury,” Nat Rev Immunol, vol. 21, no. 5, pp. 277–291, May 2021. [CrossRef]
- L. Lutter, J. Spierings, F. C. C. van Rhijn-Brouwer, J. M. van Laar, and F. van Wijk, “Resetting the T Cell Compartment in Autoimmune Diseases With Autologous Hematopoietic Stem Cell Transplantation: An Update,” Front Immunol, vol. 9, p. 767, 2018. [CrossRef]
- A. E. Troy and H. Shen, “Cutting Edge: Homeostatic Proliferation of Peripheral T Lymphocytes Is Regulated by Clonal Competition1,” The Journal of Immunology, vol. 170, no. 2, pp. 672–676, Jan. 2003. [CrossRef]
- A. Dominari et al., “Thymosin alpha 1: A comprehensive review of the literature,” World J Virol, vol. 9, no. 5, pp. 67–78, Dec. 2020. [CrossRef]
- S. Lunin, M. Khrenov, O. Glushkova, S. Parfenyuk, T. Novoselova, and E. Novoselova, “Precursors of thymic peptides as stress sensors,” Expert Opin Biol Ther, vol. 20, no. 12, pp. 1461–1475, Dec. 2020. [CrossRef]
- X. Peng et al., “Signaling Pathways Leading to the Activation of IKK and MAPK by Thymosin α1,” Annals of the New York Academy of Sciences, vol. 1112, pp. 339–350, Sep. 2007. [CrossRef]
- P. H. Naylor, A. Friedman-Kien, E. Hersh, M. Erdos, and A. L. Goldstein, “Thymosin alpha 1 and thymosin beta 4 in serum: comparison of normal, cord, homosexual and AIDS serum,” Int J Immunopharmacol, vol. 8, no. 7, pp. 667–676, 1986. [CrossRef]
- K. K. Oates, P. H. Naylor, and A. L. Goldstein, “Localization of thymosin alpha 1 production to thymus medullary epithelial cells by use of monoclonal antibodies,” Hybridoma, vol. 6, no. 1, pp. 47–59, Feb. 1987. [CrossRef]
- F. E. Weller, U. Shah, G. D. Cummings, P. B. Chretien, and M. G. Mutchnick, “Serum levels of immunoreactive thymosin alpha 1 and thymosin beta 4 in large cohorts of healthy adults,” Thymus, vol. 19, no. 1, pp. 45–52, Feb. 1992.
- F. Pica et al., “Serum thymosin alpha 1 levels in normal and pathological conditions,” Expert Opin Biol Ther, vol. 18, no. sup1, pp. 13–21, Jul. 2018. [CrossRef]
- M. del M. Pozo-Balado et al., “Higher plasma levels of thymosin-α1 are associated with a lower waning of humoral response after COVID-19 vaccination: an eight months follow-up study in a nursing home,” Immunity & Ageing, vol. 20, no. 1, p. 9, Mar. 2023. [CrossRef]
- N. Tao et al., “Thymosin α1 and Its Role in Viral Infectious Diseases: The Mechanism and Clinical Application,” Molecules, vol. 28, no. 8, p. 3539, Apr. 2023. [CrossRef]
- R. L et al., “Jack of all trades: thymosin α1 and its pleiotropy,” Annals of the New York Academy of Sciences, vol. 1269, Oct. 2012. [CrossRef]
- M. D. M. Pozo-Balado et al., “Higher plasma levels of thymosin-α1 are associated with a lower waning of humoral response after COVID-19 vaccination: an eight months follow-up study in a nursing home,” Immun Ageing, vol. 20, no. 1, p. 9, Mar. 2023. [CrossRef]
- A. Ciancio and M. Rizzetto, “Thymalfasin in the treatment of hepatitis B and C,” Ann N Y Acad Sci, vol. 1194, pp. 141–146, Apr. 2010. [CrossRef]
- C. Matteucci et al., “Thymosin alpha 1 and HIV-1: recent advances and future perspectives,” Future Microbiol, vol. 12, pp. 141–155, Feb. 2017. [CrossRef]
- F. Pei, X. Guan, and J. Wu, “Thymosin alpha 1 treatment for patients with sepsis,” Expert Opin Biol Ther, vol. 18, no. sup1, pp. 71–76, Jul. 2018. [CrossRef]
- A. Minutolo et al., “Thymosin alpha 1 restores the immune homeostasis in lymphocytes during Post-Acute sequelae of SARS-CoV-2 infection,” Int Immunopharmacol, vol. 118, p. 110055, May 2023. [CrossRef]
- S. Gravenstein et al., “Augmentation of influenza antibody response in elderly men by thymosin alpha one. A double-blind placebo-controlled clinical study,” J Am Geriatr Soc, vol. 37, no. 1, pp. 1–8, Jan. 1989. [CrossRef]
- G. Carraro et al., “Thymosin-alpha 1 (Zadaxin) enhances the immunogenicity of an adjuvated pandemic H1N1v influenza vaccine (Focetria) in hemodialyzed patients: a pilot study,” Vaccine, vol. 30, no. 6, pp. 1170–1180, Feb. 2012. [CrossRef]
- K. Eckert, M. Schmitt, F. Garbin, U. Wahn, and H. R. Maurer, “Thymosin alpha 1 effects, in vitro, on lymphokine-activated killer cells from patients with primary immunodeficiencies: preliminary results,” Int J Immunopharmacol, vol. 16, no. 12, pp. 1019–1025, Dec. 1994. [CrossRef]
- Y. Liu et al., “Thymosin Alpha 1 Reduces the Mortality of Severe Coronavirus Disease 2019 by Restoration of Lymphocytopenia and Reversion of Exhausted T Cells,” Clinical Infectious Diseases, vol. 71, no. 16, pp. 2150–2157, Nov. 2020. [CrossRef]
- C. Costantini et al., “A Reappraisal of Thymosin Alpha1 in Cancer Therapy,” Front Oncol, vol. 9, p. 873, 2019. [CrossRef]
- E. Dinetz and E. Lee, “Comprehensive Review of the Safety and Efficacy of Thymosin Alpha 1 in Human Clinical Trials,” Altern Ther Health Med, vol. 30, no. 1, pp. 6–12, Jan. 2024.
- J.-H. Ding et al., “The role of Tα1 on the infective patients after hematopoietic stem cell transplantation,” Int J Hematol, vol. 97, no. 2, pp. 280–283, Feb. 2013. [CrossRef]
- K. Perruccio et al., “Thymosin Alfa 1 Administration Improves Immune Reconstitution and Decreases Infection-Related Mortality After HLA-Matched Sibling T Cell-Depleted Stem Cell Transplantation,” Blood, vol. 118, no. 21, p. 1013, Nov. 2011. [CrossRef]
- Y. Xi et al., “Epigenetic Therapy Promotes the Ratio of Th1/Th17 Lineage to Reverse Immune Evasion and Treat Leukemia Relapse Post-allogeneic Stem Cell Transplantation in Non-APL AML Patients,” Front Mol Biosci, vol. 7, p. 595395, Aug. 2021. [CrossRef]
- N. M. Kouttab, M. Prada, and P. Cazzola, “Thymomodulin: biological properties and clinical applications,” Med Oncol Tumor Pharmacother, vol. 6, no. 1, pp. 5–9, 1989. [CrossRef]
- P. Ataca Atilla et al., “Thyroid dysfunctions in adult patients after allogeneic hematopoietic stem cell transplantation,” Clinical Transplantation, vol. 34, no. 10, p. e14049, 2020. [CrossRef]
- G. Grasso, M. Muscettola, R. Stecconi, M. Muzzioli, and N. Fabris, “Restorative Effect of Thymomodulin and Zinc on Interferon-Gamma Production in Aged Mice,” Annals of the New York Academy of Sciences, vol. 673, no. 1, pp. 256–259, 1992. [CrossRef]
- B. Balbi, M. Valle, S. Oddera, F. Manca, G. Rossi, and L. Allegra, “Thymomodulin increases HLA-DR expression by macrophages but not T-lymphocyte proliferation in autologous mixed leucocyte reaction,” Eur Respir J, vol. 6, no. 1, pp. 102–109, Jan. 1993. [CrossRef]
- P. C. Braga, G. Piatti, M. Dal Sasso, S. Maci, and F. Blasi, “Thymomodulin stimulates phagocytosis in vitro by rat macrophages and human polymorphonuclear cells,” J Chemother, vol. 5, no. 5, pp. 313–316, Oct. 1993. [CrossRef]
- G. Vasilopoulos, A. Porwit, L. Lauren, P. Reizenstein, and P. Cazzola, “The effect of a calf thymus acid lysate on bone marrow cell growth in vitro,” Immunopharmacol Immunotoxicol, vol. 10, no. 4, pp. 523–536, 1988. [CrossRef]
- G. Valesini, V. Barnaba, R. Benvenuto, F. Balsano, P. Mazzanti, and P. Cazzola, “A calf thymus acid lysate improves clinical symptoms and T-cell defects in the early stages of HIV infection: second report,” Eur J Cancer Clin Oncol, vol. 23, no. 12, pp. 1915–1919, Dec. 1987. [CrossRef]
- V. Maiorano et al., “Thymomodulin increases the depressed production of superoxide anion by alveolar macrophages in patients with chronic bronchitis,” Int J Tissue React, vol. 11, no. 1, pp. 21–25, 1989.
- A. Fiocchi et al., “A double-blind clinical trial for the evaluation of the therapeutical effectiveness of a calf thymus derivative (Thymomodulin) in children with recurrent respiratory infections,” Thymus, vol. 8, no. 6, pp. 331–339, 1986.
- N. Fabris, E. Mocchegiani, S. Mariotti, F. Pacini, and A. Pinchera, “Thyroid function modulates thymic endocrine activity,” J Clin Endocrinol Metab, vol. 62, no. 3, pp. 474–478, Mar. 1986. [CrossRef]
- W. Savino, M. Dardenne, L. A. Velloso, and S. D. Silva-Barbosa, “The thymus is a common target in malnutrition and infection,” British Journal of Nutrition, vol. 98, no. S1, pp. S11–S16, Oct. 2007. [CrossRef]
- W. Savino, J. Durães, C. Maldonado-Galdeano, G. Perdigon, D. A. Mendes-da-Cruz, and P. Cuervo, “Thymus, undernutrition, and infection: Approaching cellular and molecular interactions,” Frontiers in Nutrition, vol. 9, 2022. [CrossRef]
- S. Wade et al., “Thymulin (Zn-facteur thymique serique) activity in anorexia nervosa patients,” Am J Clin Nutr, vol. 42, no. 2, pp. 275–280, Aug. 1985. [CrossRef]
- A. S. Prasad et al., “Serum thymulin in human zinc deficiency.,” J Clin Invest, vol. 82, no. 4, pp. 1202–1210, Oct. 1988.
- L. Iovino et al., “Activation of the zinc-sensing receptor GPR39 promotes T-cell reconstitution after hematopoietic cell transplant in mice,” Blood, vol. 139, no. 25, pp. 3655–3666, Jun. 2022. [CrossRef]
- M. Santos, T. Henriques-Coelho, and A. Leite-Moreira, “Immunomodulatory role of thymulin in lung diseases,” Expert Opin Ther Targets, vol. 14, no. 2, pp. 131–141, Feb. 2010. [CrossRef]
- P. C. Reggiani et al., “The thymus-neuroendocrine axis: physiology, molecular biology, and therapeutic potential of the thymic peptide thymulin,” Ann N Y Acad Sci, vol. 1153, pp. 98–106, Feb. 2009. [CrossRef]
- E. G. Novoselova et al., “Thymulin and peroxiredoxin 6 have protective effects against streptozotocin-induced type 1 diabetes in mice,” Int J Immunopathol Pharmacol, vol. 35, p. 20587384211005644, 2021. [CrossRef]
- B. Nasseri, J. Zaringhalam, S. Daniali, H. Manaheji, Z. Abbasnejad, and V. Nazemian, “Thymulin treatment attenuates inflammatory pain by modulating spinal cellular and molecular signaling pathways,” Int Immunopharmacol, vol. 70, pp. 225–234, May 2019. [CrossRef]
- P. C. Reggiani et al., “Thymulin-based gene therapy and pituitary function in animal models of aging,” Neuroimmunomodulation, vol. 18, no. 5, pp. 350–356, 2011. [CrossRef]
- E. Martines, P. C. Reggiani, J. I. Schwerdt, R. G. Goya, and G. Cónsole, “Neonatal thymulin gene therapy in nude mice: Effects on the morphology of the pituitary corticotrope population,” Histol Histopathol, vol. 26, no. 4, pp. 471–479, Apr. 2011. [CrossRef]
- E. V. Martines et al., “The thymulin-lactotropic axis in rodents: thymectomy, immunoneutralization and gene transfer studies,” Neuroimmunomodulation, vol. 20, no. 5, pp. 256–263, 2013. [CrossRef]
- B. Safieh-Garabedian, S. A. Kanaan, S. J. Jabbur, and N. E. Saadé, “Cytokine-mediated or direct effects of thymulin on the nervous system as assessed by pain-related behavior,” Neuroimmunomodulation, vol. 6, no. 1–2, pp. 39–44, 1999. [CrossRef]
- B. Safieh-Garabedian, M. Nomikos, and N. Saadé, “Targeting inflammatory components in neuropathic pain: The analgesic effect of thymulin related peptide,” Neurosci Lett, vol. 702, pp. 61–65, May 2019. [CrossRef]
- B. Safieh-Garabedian, M. D. Kendall, M. A. Khamashta, and G. R. Hughes, “Thymulin and its role in immunomodulation,” J Autoimmun, vol. 5, no. 5, pp. 547–555, Oct. 1992. [CrossRef]
- J. J. Twomey, G. Goldstein, V. M. Lewis, P. M. Bealmear, and R. A. Good, “Bioassay determinations of thymopoietin and thymic hormone levels in human plasma,” Proc Natl Acad Sci U S A, vol. 74, no. 6, pp. 2541–2545, Jun. 1977. [CrossRef]
- D.-P. Sun et al., “Clinicopathologic and Prognostic Significance of Thymopoietin-α Overexpression in Gastric Cancer,” J Cancer, vol. 10, no. 21, pp. 5099–5107, Aug. 2019. [CrossRef]
- G. Goldstein and C. Y. Lau, “Immunoregulation by thymopoietin,” J Supramol Struct, vol. 14, no. 3, pp. 397–403, 1980. [CrossRef]
- J. Szelényi, P. Páldi-Haris, and S. Hóllan, “Immunomodulatory Effect and Acetylcholine Receptor Binding of a Thymopeptide (Tp4) on Human Peripheral Blood Lymphocytes,” Int J Immunopathol Pharmacol, vol. 4, no. 1, pp. 1–8, Jan. 1991. [CrossRef]
- T. Audhya, M. A. Talle, and G. Goldstein, “Thymopoietin radioreceptor assay utilizing lectin-purified glycoprotein from a biologically responsive T cell line,” Arch Biochem Biophys, vol. 234, no. 1, pp. 167–177, Oct. 1984. [CrossRef]
- Q. Zheng, J. Jia, Z. Zhou, Q. Chu, W. Lian, and Z. Chen, “The Emerging Role of Thymopoietin-Antisense RNA 1 as Long Noncoding RNA in the Pathogenesis of Human Cancers,” DNA Cell Biol, vol. 40, no. 7, pp. 848–857, Jul. 2021. [CrossRef]
- D. Marrero-Rodríguez et al., “Thymopoietin Beta and Gamma Isoforms as a Potential Diagnostic Molecular Marker for Breast Cancer: Preliminary Data,” Pathol Oncol Res, vol. 21, no. 4, pp. 1045–1050, Sep. 2015. [CrossRef]
- L. Zhang et al., “Depletion of thymopoietin inhibits proliferation and induces cell cycle arrest/apoptosis in glioblastoma cells,” World J Surg Oncol, vol. 14, no. 1, p. 267, Oct. 2016. [CrossRef]
- G. H. Sunshine, R. S. Basch, R. G. Coffey, K. W. Cohen, G. Goldstein, and J. W. Hadden, “Thymopoietin Enhances the Allogeneic Response and Cyclic GMP Levels of Mouse Peripheral, Thymus-Derived Lymphocytes1,” The Journal of Immunology, vol. 120, no. 5, pp. 1594–1599, May 1978. [CrossRef]
- J. Duchateau and K. Bolla, “Immunomodulation with thymopentin: in vitro studies,” Med Oncol Tumor Pharmacother, vol. 6, no. 1, pp. 19–23, 1989. [CrossRef]
- K. Kang, K. D. Cooper, and J. M. Hanifin, “Thymopoietin pentapeptide (TP-5) improves clinical parameters and lymphocyte subpopulations in atopic dermatitis,” Journal of the American Academy of Dermatology, vol. 8, no. 3, pp. 372–377, Mar. 1983. [CrossRef]
- F. Aiuti et al., “Thymopoietin pentapeptide treatment of primary immunodeficiencies,” Lancet, vol. 1, no. 8324, pp. 551–554, Mar. 1983. [CrossRef]
- S. Ben-Efraim, Y. Keisari, R. Ophir, M. Pecht, N. Trainin, and Y. Burstein, “Immunopotentiating and immunotherapeutic effects of thymic hormones and factors with special emphasis on thymic humoral factor THF-gamma2,” Crit Rev Immunol, vol. 19, no. 4, pp. 261–284, 1999.
- M. Martignoni, M. Benedetti, G. P. Davey, K. F. Tipton, and A. G. McDonald, “Degradation of thymic humoral factor γ2 in human, rat and mouse blood: An experimental and theoretical study,” Biochim Biophys Acta Proteins Proteom, vol. 1868, no. 9, p. 140467, Sep. 2020. [CrossRef]
- F. Rosina et al., “Treatment of chronic hepatitis D with thymus-derived polypeptide thymic humoral factor-gamma 2: a pilot study,” Dig Liver Dis, vol. 34, no. 4, pp. 285–289, Apr. 2002. [CrossRef]
- N. Trainin, “Prospects of AIDS therapy by thymic humoral factor, a thymic hormone,” Nat Immun Cell Growth Regul, vol. 9, no. 3, pp. 155–159, 1990.
- M. G. Mutchnick, A. E. Good, N. Barlas, and N. Trainin, “Thymic humoral factor effect on intracellular lymphocyte cAMP in patients with ankylosing spondylitis,” J Rheumatol, vol. 9, no. 4, pp. 627–629, 1982.
- B. Shohat et al., “Cellular immunity in patients with acquired immunodeficiency syndrome (AIDS) in Israel: effects of THF, a thymic hormone in vitro,” Thymus, vol. 8, no. 3, pp. 151–160, 1986.
- U. Osuna-Martínez, J. A. Reyes-Esparza, V. L. Petricevich, R. Hernández-Pando, and L. Rodríguez-Fragoso, “Protective effect of thymic humoral factor on porcine serum-induced hepatic fibrosis and liver damage in Wistar rats,” Ann Hepatol, vol. 10, no. 4, pp. 540–551, 2011.
- B. Rager-Zisman et al., “Thymic humoral factor, THF-gamma 2, enhances immunotherapy of murine cytomegalovirus (MCMV) infection by both CD4+ and CD8+ immune T cells,” Immunol Lett, vol. 39, no. 1, pp. 23–31, Dec. 1993. [CrossRef]
- J. Beuth, J. M. Schierholz, G. Mayer, and Y. Keisari, “Thymic humoral factor-gamma 2 augments immune cell response and exerts antitumor activity in murine model systems,” Anticancer Res, vol. 20, no. 6B, pp. 4473–4476, 2000.
- Z. T. Handzel et al., “Cell mediated immunity and effects of ‘thymic humoral factor’ in 15 patients with SSPE,” Brain Dev, vol. 5, no. 1, pp. 29–35, 1983. [CrossRef]
- R. Michalevicz, A. Many, B. Ramot, and N. Trainin, “The in vitro effect of thymic humoral factor and levamisole on peripheral blood lymphocytes in systemic lupus erythematosus patients,” Clin Exp Immunol, vol. 31, no. 1, pp. 111–115, Jan. 1978.
- T. Umiel, M. Pecht, and N. Trainin, “THF, a thymic hormone, promotes interleukin-2 production in intact and thymus-deprived mice,” J Biol Response Mod, vol. 3, no. 4, pp. 423–434, Aug. 1984.
- Y. Berner, Z. T. Handzel, M. Pecht, N. Trainin, and Z. Bentwich, “Attempted treatment of acquired immunodeficiency syndrome (AIDS) with thymic humoral factor,” Isr J Med Sci, vol. 20, no. 12, pp. 1195–1196, Dec. 1984.
- R. Ophir et al., “Thymic humoral factor-gamma 2 (THF-gamma 2) immunotherapy reduces the metastatic load and restores immunocompetence in 3LL tumor-bearing mice receiving anticancer chemotherapy,” Immunopharmacol Immunotoxicol, vol. 18, no. 2, pp. 209–236, May 1996. [CrossRef]
- M. KS. Chan, M. BF. Wong, T. Skutella, R. Moya, and Klokol Dmytro, “Clinical Experience of Thymic Regeneration with Thymus Extracts, Thymic Peptides and Stem Cells in General Medicine, Oncology and Anti-Aging Medicine: A Review,” HSOA Journal of Stem Cells Research Development & Therapy, May 2023. [CrossRef]
- F. Harris, Y. A. Berdugo, and T. Tree, “IL-2-based approaches to Treg enhancement,” Clin Exp Immunol, vol. 211, no. 2, pp. 149–163, Mar. 2023. [CrossRef]
- R. Sabat et al., “Biology of interleukin-10,” Cytokine Growth Factor Rev, vol. 21, no. 5, pp. 331–344, Oct. 2010. [CrossRef]
- A. Mancusi, M. Alvarez, S. Piccinelli, A. Velardi, and A. Pierini, “TNFR2 signaling modulates immunity after allogeneic hematopoietic cell transplantation,” Cytokine Growth Factor Rev, vol. 47, pp. 54–61, Jun. 2019. [CrossRef]
- S. Barisic and R. W. Childs, “Graft-Versus-Solid-Tumor Effect: From Hematopoietic Stem Cell Transplantation to Adoptive Cell Therapies,” Stem Cells, vol. 40, no. 6, pp. 556–563, Jun. 2022. [CrossRef]
- L. Ruggeri et al., “Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation,” Blood, vol. 94, no. 1, pp. 333–339, Jul. 1999.
- A. Rager et al., “Inflammatory cytokine inhibition with combination daclizumab and infliximab for steroid-refractory acute GVHD,” Bone Marrow Transplant, vol. 46, no. 3, pp. 430–435, Mar. 2011. [CrossRef]
- D. Couriel et al., “Tumor necrosis factor-alpha blockade for the treatment of acute GVHD,” Blood, vol. 104, no. 3, pp. 649–654, Aug. 2004. [CrossRef]
- Y. Yang et al., “IFN-γ promotes graft-versus-leukemia effects without directly interacting with leukemia cells in mice after allogeneic hematopoietic cell transplantation,” Blood, vol. 118, no. 13, pp. 3721–3724, Sep. 2011. [CrossRef]
- H. Wang et al., “Paradoxical effects of IFN-gamma in graft-versus-host disease reflect promotion of lymphohematopoietic graft-versus-host reactions and inhibition of epithelial tissue injury,” Blood, vol. 113, no. 15, pp. 3612–3619, Apr. 2009. [CrossRef]
- F. Baron and A. Nagler, “Novel strategies for improving hematopoietic reconstruction after allogeneic hematopoietic stem cell transplantation or intensive chemotherapy,” Expert Opin Biol Ther, vol. 17, no. 2, pp. 163–174, Feb. 2017. [CrossRef]
- S. Amadori et al., “Use of glycosylated recombinant human G-CSF (lenograstim) during and/or after induction chemotherapy in patients 61 years of age and older with acute myeloid leukemia: final results of AML-13, a randomized phase-3 study,” Blood, vol. 106, no. 1, pp. 27–34, Jul. 2005. [CrossRef]
- R. Gurion et al., “Colony-stimulating factors for prevention and treatment of infectious complications in patients with acute myelogenous leukemia,” Cochrane Database of Systematic Reviews, no. 6, 2012. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
