Submitted:
20 September 2025
Posted:
22 September 2025
You are already at the latest version
Abstract
Keywords:
Significance Statement
Highlights
- REM sleep function is to reduce the vulnerability caused by N-REM sleep.
- REM sleep parameters are directly related to the body’s protection or vulnerability.
- REM sleep is cyclic due to its protective function.
- REM sleep probably emerged as a brief awakening from N-REM sleep.
- REM density is a measure of the organism’s alertness.
AI Peer Review
1. Introduction
2. Methodology
- Easy to test empirically. Allows the scientist to formulate hypotheses that generate specific predictions that can be corroborated or refuted by empirical evidence.
- Logical rigor. The chain “theory ⇒ hypotheses ⇒ specific predictions ⇒ empirical testing” provides methodological rigor and allows us to critically evaluate predictions.
- Cumulative corroboration. In the case of theories that resist successive attempts at refutation, they accumulate a greater number of corroborations, giving rise to new research and hypotheses that expand and refine the theoretical framework.
- Reproducibility. Due to the specific predictions, other researchers can test the hypotheses to verify if they obtain the same results, thus strengthening the reliability of the results obtained.
- Experimental orientation. The H-D method encourages scientists to design controlled and reproducible experiments. This also helps strengthen the reliability of the results obtained.
- Interdisciplinary flexibility. With appropriate caveats (see below), we can apply this method in different scientific fields.
- It is not immune to the sampling problem. Although the core of the H-D method is deductive reasoning, it is not entirely devoid of induction (see below). This makes it necessary to address the challenges inherent in the representative sample that the scientist has to select from a population.
- It prevents us, in its strictest sense, from confirming a theory. While excellent for falsification, the H-D method, taken literally, is exclusively negative: it allows us to be certain that certain theories are false, but prevents us from being certain (or as certain as possible) that a theory is true or probable (Marconi and Lakatos, 2021, p. 98; Sokal and Bricmont, 2016, p. 73). In other words, even if we have voluminous concordant results, they are incapable of confirming a hypothesis or theory. All they can do is indicate that we have not yet refuted it.
- It depends on auxiliary hypotheses. False-negative results can result from flaws in experimental design or in data interpretation. Moreover, the H-D method also relies on assumptions concerning mechanisms, measuring instruments, laboratory conditions, et cetera.
- Without appropriate caveats, it is inadequate for certain sciences. The H-D method is particularly unsuitable for testing probabilistic theories, a variety that, as Mayr (2001, p. 49) pointed out, includes the majority of biological theories. Any exceptions scientists may find to probabilistic theories do not necessarily indicate that those theories have been falsified. In the case of sciences such as evolutionary biology, for instance, it is difficult, and perhaps even impossible, to conclusively falsify certain theories (Mayr, 2001, p. 49).
- In its strict sense, it is inflexible to nuance. For a strict Popperian, a theory or hypothesis can be refuted by a single reliable observation that refutes it (Laudan, 1977, p. 26; Marconi and Lakatos, 2021, p. 98; Sokal and Bricmont, 2016, p. 72). In other words, the H-D method—combined with radical falsificationism—demands that we categorically abandon a theory or hypothesis if a single well-conducted study yields negative results. This inflexibility may work for the exact sciences; however, as Mayr (2001, p. 50) pointed out, it is inappropriate for sciences such as biology—especially evolutionary biology.
- Multiple compatibility problem. A single set of evidence may be compatible with more than one alternative hypothesis or theory, making it difficult for scientists to determine more easily which explanation is correct. For instance, scientists may use the fact that brain temperature increases during REM sleep (Ungurean et al., 2020; Wehr, 1992) to support the hypothesis that the function of REM sleep is to regulate brain temperature. However, this same evidence also supports the explanation that such warming occurs due to increased blood flow (Parmeggiani, 2007; Pastukhov and Ekimova, 2012). For this reason, the H-D method often requires that we rely on independent and additional evidence and arguments—a strategy I adopted in this Paper to deal with this limitation. (See Section 5, where I discuss the issue of brain warming during REM sleep.)
3. N-REM Sleep Is Highly Necessary, but Dangerous
4. The Sentinel Sleep Theory: Hypotheses and Predictions
- REM sleep is highly adaptive. In the absence of what we happen to call “REM sleep,” the crucial N-REM sleep would leave the organism highly vulnerable. When, by mere chance, a genetic mutation contributed to the emergence of an organism whose vulnerability due to N-REM sleep was reduced, non-random elimination promptly favored this adaptive mutation. And given the high adaptive value of this novelty, it did not remain restricted to the lineage in which it originally debuted. It spread widely across various species.
- REM sleep is cyclical due to its protective function. The function of REM sleep—to significantly reduce the vulnerability of N-REM sleep—reaches its full potential when it occurs periodically throughout N-REM sleep, rather than occurring only once.
- The primary biological function of REM sleep is to reduce the vulnerability caused by N-REM sleep. The brain being subjected to a state of deep sleep is necessary, but makes the organism substantially vulnerable, risking its survival. The REM period makes the brain more active—in a state of sleeping vigilance—to increase the organism’s alertness to its surroundings, resulting in greater protection. After all, the greater the brain’s alertness to the immediate environment, the higher the chances of the organism surviving when a sensory portal detects a sudden threat.
- The parameters of REM sleep depend on the organism’s vulnerability. The time the brain invests in the REM period, the duration of each episode, the REM sleep latency (i.e., the period between the onset of sleep and the occurrence of the first REM sleep episode), and its density (or intensity), depend on the current vulnerability (or level of protection) of the organism’s body. Something that is communicated to the brain by all varieties of mental mappings—interoceptive, proprioceptive, and exteroceptive. Generally, the better protected the organism is (lower vulnerability), the less time the brain will invest in REM sleep, and the longer its latency; the less protected the organism is (higher vulnerability), the more time the brain will invest in REM sleep, and the shorter its latency.
- REM sleep probably evolved from a brief awakening from N-REM sleep. The most plausible scenario regarding the evolutionary origin of REM sleep is that it emerged from an error. This error caused the organism to briefly wake up from N-REM sleep before its usual awakening, providing a limited but effective adaptive advantage. Consequently, this trait spread and, over the course of species evolution, became more complex. Eventually, this protective mechanism became REM sleep as we know it today.
4.1. REM Sleep Is Highly Adaptive
4.2. REM Sleep Is Cyclical Due to Its Protective Function
4.3. The Primary Biological Function of REM Sleep Is to Reduce the Vulnerability Caused by N-REM Sleep
4.4. The Parameters of REM Sleep Depend on the Organism’s Vulnerability
4.5. REM Sleep Evolved from a Brief Awakening from N-REM Sleep
5. Attempts at Refutation
6. A Significant and Detrimental Consensus
7. How to Assess the Adequacy of a Scientific Theory?
8. How to Refute My Theory?
9. Limitations
10. Conclusions
Data Availability Statement
References
- Abraham, W.C.; Dragunow, M.; Tate, W.P. The role of immediate early genes in the stabilization of long-term potentiation. Mol. Neurobiol. 1991, 5, 297–314. [Google Scholar] [CrossRef] [PubMed]
- Abrams, P.A. Adaptive foraging by predators as a cause of predator-prey cycles. Evol. Ecol. 1992, 6, 56–72. [Google Scholar] [CrossRef]
- Abrams, P.A. The evolution of predator-prey interactions: theory and evidence. Annu. Rev. Ecol. Syst. 2000, 31, 79–105. [Google Scholar] [CrossRef]
- Akre, K. REM sleep. 2024. Available online: https://www.britannica.com/science/rapid-eye-movement-sleep (accessed on 13 Apr, 2024).
- Amici, R.; Cerri, M.; Ocampo-Garcés, A.; Baracchi, F.; Dentico, D.; Jones, C.A.; Luppi, M.; Perez, E.; Parmeggiani, P.L.; Zamboni, G. Cold exposure and sleep in the rat: REM sleep homeostasis and body size. Sleep 2008, 31, 708–715. [Google Scholar] [CrossRef]
- Amici, R.; Zamboni, G.; Perez, E.; Jones, C.A.; Parmeggiani, P.L. The influence of a heavy thermal load on REM sleep in the rat. Brain research 1998, 781, 252–258. [Google Scholar] [CrossRef]
- Amo, L.; López, P.; Martín, J. Refuge use: a conflict between avoiding predation and losing mass in lizards. Physiol. Behav. 2007, 90, 334–343. [Google Scholar] [CrossRef]
- Anafi, R.C.; Kayser, M.S.; Raizen, D.M. Exploring phylogeny to find the function of sleep. Nat. Rev. Neurosci. 2019, 20, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.N.; Bradley, A.J. Sleep disturbance in mental health problems and neurodegenerative disease. Nat. Sci. Sleep 2013, 5, 61–75. [Google Scholar] [CrossRef]
- Andrillon, T.; Kouider, S. The vigilant sleeper: neural mechanisms of sensory (de) coupling during sleep. Curr. Opin. Physiol. 2020, 15, 47–59. [Google Scholar] [CrossRef]
- Angeles Fernández-Gil, M.; Palacios-Bote, R.; Leo-Barahona, M.; Mora-Encinas, J.P. Anatomy of the brainstem: a gaze into the stem of life. Semin. Ultrasound. CT MR 2010, 31, 196–219. [Google Scholar] [CrossRef] [PubMed]
- Antonijevic, I. HPA axis and sleep: identifying subtypes of major depression. Stress (Amsterdam, Netherlands) 2008, 11, 15–27. [Google Scholar] [CrossRef]
- Arias, J.A.; Williams, C.; Raghvani, R.; Aghajani, M.; Baez, S.; Belzung, C.; Booij, L.; Busatto, G.; Chiarella, J.; Fu, C.H.; Ibanez, A.; Liddell, B.J.; Lowe, L.; Penninx, B.W.J.H.; Rosa, P.; Kemp, A.H. The neuroscience of sadness: A multidisciplinary synthesis and collaborative review. Neurosci. Biobehav. Rev. 2020, 111, 199–228. [Google Scholar] [CrossRef]
- Arnold, L.M. Understanding fatigue in major depressive disorder and other medical disorders. Psychosomatics 2008, 49, 185–190. [Google Scholar] [CrossRef]
- Arkes, H.R.; Aberegg, S.K.; Arpin, K.A. Analysis of Physicians’ Probability Estimates of a Medical Outcome Based on a Sequence of Events. JAMA Netw. Open. 2022, 5, e2218804. [Google Scholar] [CrossRef]
- Asahina, M.; Suzuki, A.; Mori, M.; Kanesaka, T.; Hattori, T. Emotional sweating response in a patient with bilateral amygdala damage. Int. J. Psychophysiol. 2003, 47, 87–93. [Google Scholar] [CrossRef]
- Aserinsky, E.; Kleitman, N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 1953, 118, 273–4. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Bloom, F.E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1981, 1, 876–886. [Google Scholar] [CrossRef]
- Atienza, M.; Cantero, J.L.; Escera, C. Auditory information processing during human sleep as revealed by event-related brain potentials. Clin. Neurophysiol. 2001, 112, 2031–2045. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, C.; Lombardo, C.; Bux, E.; Hansen, S.; Salveta, C.; Biello, S.; Violani, C.; Espie, C.A. Psychophysiological reactivity to sleep-related emotional stimuli in primary insomnia. Behav. Res. Ther. 2010, 48, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, C.; Nanovska, S.; Regen, W.; Spiegelhalder, K.; Feige, B.; Nissen, C.; Reynolds, C. F.; Riemann, D. Sleep and mental disorders: A meta-analysis of polysomnographic research. Psychol. Bull. 2016, 142, 969–990. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, C.; Spiegelhalder, K.; Regen, W.; Feige, B.; Nissen, C.; Lombardo, C.; Violani, C.; Hennig, J.; Riemann, D. Insomnia disorder is associated with increased amygdala reactivity to insomnia-related stimuli. Sleep 2014, 37, 1907–1917. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, S.; Drabløs, F. Gene regulation in the immediate-early response process. Advances in biological regulation 2016, 62, 37–49. [Google Scholar] [CrossRef]
- Balzamo, E.; Bradley, R.J.; Rhodes, J.M. Sleep ontogeny in the chimpanzee: from two months to forty-one months. Electroencephalogr. Clin. Neurophysiol. 1972, 33, 47–60. [Google Scholar] [CrossRef]
- Barbato, G.; Barker, C.; Bender, C.; Giesen, H.A.; Wehr, T.A. Extended sleep in humans in 14 hour nights (LD 10:14): relationship between REM density and spontaneous awakening. Electroencephalogr. Clin. Neurophysiol. 1994, 90, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Barbato, G. Is REM Density a Measure of Arousal during Sleep? Brain Sci. 2023, 13, 378. [Google Scholar] [CrossRef]
- Basinger, H.; Hogg, J.P. Neuroanatomy, Brainstem. StatPearls; StatPearls Publishing, 2023; Available online: https://www.ncbi.nlm.nih.gov/books/NBK544297/ (accessed on 26 Aug, 2025).
- Bass, D.I.; Manns, J.R. Memory-enhancing amygdala stimulation elicits gamma synchrony in the hippocampus. Behav. Neurosci. 2015, 129, 244–256. [Google Scholar] [CrossRef]
- Bass, D.I.; Nizam, Z.G.; Partain, K.N.; Wang, A.; Manns, J.R. Amygdala-mediated enhancement of memory for specific events depends on the hippocampus. Neurobiol. Learn. Mem. 2014, 107, 37–41. [Google Scholar] [CrossRef]
- Bass, D.I.; Partain, K.N.; Manns, J.R. Event-specific enhancement of memory via brief electrical stimulation to the basolateral complex of the amygdala in rats. Behav. Neurosci. 2012, 126, 204–208. [Google Scholar] [CrossRef]
- Bear, M.F.; Connors, B.W.; Paradiso, M.A. Neuroscience: Exploring the Brain, fourth ed.; Wolters Kluwer; Philadelphia, 2016. [Google Scholar]
- Becks, L.; Ellner, S.P.; Jones, L.E.; Hairston, N.G., Jr. The functional genomics of an eco-evolutionary feedback loop: linking gene expression, trait evolution, and community dynamics. Ecol. Lett. 2012, 15, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Benca, R.M.; Peterson, M.J. Insomnia and depression. Sleep Med. 2008, 9 Suppl 1, S3–S9. [Google Scholar] [CrossRef]
- Bergel, A.; Deffieux, T.; Demené, C.; Tanter, M.; Cohen, I. Local hippocampal fast gamma rhythms precede brain-wide hyperemic patterns during spontaneous rodent REM sleep. Nat. Commun. 2018, 9, 5364. [Google Scholar] [CrossRef]
- Berger, M.; Riemann, D. REM sleep in depression—an overview. J. Sleep Res. 1993, 2, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.J. Relations between sleep duration, body weight and metabolic rate in mammals. Anim. Behav. 1990, 40, 989–991. [Google Scholar] [CrossRef]
- Bisaz, R.; Travaglia, A.; Alberini, C.M. The neurobiological bases of memory formation: from physiological conditions to psychopathology. Psychopathology 2014, 47, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Bisschops, L.L.; Hoedemaekers, C.W.; Simons, K.S.; van der Hoeven, J.G. Preserved metabolic coupling and cerebrovascular reactivity during mild hypothermia after cardiac arrest. CCM 2010, 38, 1542–1547. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, M.S. Developing sensorimotor systems in our sleep. Curr. Dir. Psychol. Sci. 2015, 24, 32–37. [Google Scholar] [CrossRef]
- Blumberg, M.S.; Lesku, J.A.; Libourel, P.A.; Schmidt, M.H.; Rattenborg, N.C. What is REM sleep? Curr. Biol. 2020, 30, R38–R49. [Google Scholar] [CrossRef]
- Bohannon, J. When Predators Attack: Carnivore-on-carnivore violence keeps competition in check. Science.org. 2006. Available online: https://www.science.org/content/article/when-predators-attack (accessed on 26 Aug, 2025).
- Borniger, J.C.; Ungerleider, K.; Zhang, N.; Karelina, K.; Magalang, U.J.; Weil, Z.M. Repetitive brain injury of juvenile mice impairs environmental enrichment-induced modulation of REM sleep in adulthood. Neuroscience 2018, 375, 74–83. [Google Scholar] [CrossRef]
- Born, J.; Schenk, U.; Späth-Schwalbe, E.; Fehm, H.L. Influences of partial REM sleep deprivation and awakenings on nocturnal cortisol release. Biol. Psychiatry 1988, 24, 801–811. [Google Scholar] [CrossRef]
- Boutrel, B.; Monaca, C.; Hen, R.; Hamon, M.; Adrien, J. Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J. Neurosci. 2002, 22, 4686–4692. [Google Scholar] [CrossRef]
- Brand, S.; Gerber, M.; Beck, J.; Hatzinger, M.; Pühse, U.; Holsboer-Trachsler, E. Exercising, sleep-EEG patterns, and psychological functioning are related among adolescents. World J. Biol. Psychiatry 2010, 11, 129–140. [Google Scholar] [CrossRef]
- Braun, A.R.; Balkin, T.J.; Wesenten, N.J.; Carson, R.E.; Varga, M.; Baldwin, P.; Selbie, S.; Belenky, G.; Herscovitch, P. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 1997, 120, 1173–1197. [Google Scholar] [CrossRef]
- Braun, A.R.; Balkin, T.J.; Wesensten, N.J.; Gwadry, F.; Carson, R.E.; Varga, M.; Baldwin, P.; Belenky, G.; Herscovitch, P. Dissociated pattern of activity in visual cortices and their projections during human rapid eye movement sleep. Science 1998, 279, 91–95. [Google Scholar] [CrossRef]
- Brinkman, J. E.; Reddy, V.; Sharma, S. Physiology of Sleep. StatPearls; StatPearls Publishing, 2023; Available online: https://www.ncbi.nlm.nih.gov/books/NBK482512/ (accessed on 26 Aug, 2025).
- Brooks, P.L.; Peever, J. A Temporally Controlled Inhibitory Drive Coordinates Twitch Movements during REM Sleep. Curr. Biol. 2016, 26, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.R.; Piscopo, S.; De Stefano, R.; Giuditta, A. Brain and behavioural evidence for rest-activity cycles in Octopus vulgaris. Behav. Brain Res. 2006, 172, 355–359. [Google Scholar] [CrossRef]
- Brown, R.E.; Basheer, R.; McKenna, J.T.; Strecker, R.E.; McCarley, R.W. Control of sleep and wakefulness. Physiol. Rev. 2012, 92, 1087–1187. [Google Scholar] [CrossRef]
- Buckley, T.M.; Schatzberg, A.F. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J. Clin. Endocrinol. Metab. 2005, 90, 3106–3114. [Google Scholar] [CrossRef] [PubMed]
- Burak, M.K.; Monk, J.D.; Schmitz, O.J. Eco-Evolutionary Dynamics: The Predator-Prey Adaptive Play and the Ecological Theater. Yale J. Biol. Med. 2018, 91, 481–489. [Google Scholar] [PubMed]
- Caeiro, C.; Guo, K.; Mills, D. Dogs and humans respond to emotionally competent stimuli by producing different facial actions Erratum in. Sci. Rep. 2017, 7 8, 15525 10409. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Cacciola, A.; Bruschetta, D.; Milardi, D.; Quattrini, F.; Sciarrone, F.; la Rosa, G.; Bramanti, P.; Anastasi, G. Neuroanatomy and function of human sexual behavior: A neglected or unknown issue? Brain Behav. 2019, 9, e01389. [Google Scholar] [CrossRef]
- Campbell, S.S.; Tobler, I. Animal sleep: a review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 1984, 8, 269–300. [Google Scholar] [CrossRef]
- Capellini, I.; Barton, R.A.; McNamara, P.; Preston, B.T.; Nunn, C.L. Phylogenetic analysis of the ecology and evolution of mammalian sleep. Evol.; int. j. org. evol. 2008, 62, 1764–1776. [Google Scholar] [CrossRef]
- Cardis, R.; Lecci, S.; Fernandez, L.M.; Osorio-Forero, A.; Chu Sin Chung, P.; Fulda, S.; Decosterd, I.; Lüthi, A. Cortico-autonomic local arousals and heightened somatosensory arousability during NREMS of mice in neuropathic pain. eLife 2021, 10, e65835. [Google Scholar] [CrossRef]
- Carnielli, W.A.; Epstein, R.L. Pensamento Crítico: O Poder da Lógica e da Argumentação [Critical Thinking: The Power of Logic and Argumentation]; Editora Rideel; São Paulo, 2019. [Google Scholar]
- Carter, M.E.; Yizhar, O.; Chikahisa, S.; Nguyen, H.; Adamantidis, A.; Nishino, S.; Deisseroth, K.; de Lecea, L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 2010, 13, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Caska, C.M.; Hendrickson, B.E.; Wong, M.H.; Ali, S.; Neylan, T.; Whooley, M.A. Anger expression and sleep quality in patients with coronary heart disease: findings from the Heart and Soul Study. Psychosom. Med. 2009, 71, 280–285. [Google Scholar] [CrossRef]
- Cerri, M.; Ocampo-Garces, A.; Amici, R.; Baracchi, F.; Capitani, P.; Jones, C.A.; Luppi, M.; Perez, E.; Parmeggiani, P.L.; Zamboni, G. Cold exposure and sleep in the rat: effects on sleep architecture and the electroencephalogram. Sleep 2005, 28, 694–705. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, R.; Algarín, C.; Garrido, M.; Causa, L.; Held, C.; Lozoff, B.; Peirano, P. Night time sleep macrostructure is altered in otherwise healthy 10-year-old overweight children. IJO 2014, 38, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Chand, T.; Alizadeh, S.; Jamalabadi, H.; Herrmann, L.; Krylova, M.; Surova, G.; van der Meer, J.; Wagner, G.; Engert, V.; Walter, M. EEG revealed improved vigilance regulation after stress exposure under Nx4 - A randomized, placebo-controlled, double-blind, cross-over trial Erratum in: IBRO Neurosci. Rep. IBRO Neurosci. Rep. 2021, 11 12, 175–182 81. [Google Scholar] [CrossRef]
- Cheeta, S.; Ruigt, G.; van Proosdij, J.; Willner, P. Changes in sleep architecture following chronic mild stress. Biol. Psychiatry 1997, 41, 419–427. [Google Scholar] [CrossRef]
- Chen, H.L.; Gao, J.X.; Chen, Y.N.; Xie, J.F.; Xie, Y.P.; Spruyt, K.; Lin, J.S.; Shao, Y.F.; Hou, Y.P. Rapid Eye Movement Sleep during Early Life: A Comprehensive Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 13101. [Google Scholar] [CrossRef]
- Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992, 267, 1244–1252. [Google Scholar] [CrossRef]
- Chu, B.; Marwaha, K.; Sanvictores, T.; Awosika, A.O.; Ayers, D. Physiology, Stress Reaction. In StatPearls; StatPearls Publishing, 2024; Available online: https://pubmed.ncbi.nlm.nih.gov/31082164/.
- Cirelli, C.; Tononi, G. Is sleep essential? PLoS Biol. 2008, 6, e216. [Google Scholar] [CrossRef]
- Clark, E.A.; Kessinger, J.; Duncan, S.E.; Bell, M.A.; Lahne, J.; Gallagher, D.L.; O’Keefe, S.F. The Facial Action Coding System for Characterization of Human Affective Response to Consumer Product-Based Stimuli: A Systematic Review. Front. psychol. 2020, 11, 920. [Google Scholar] [CrossRef]
- Coombs, E.J.; Felice, R.N.; Clavel, J.; Park, T.; Bennion, R.F.; Churchill, M.; Geisler, J.H.; Beatty, B.; Goswami, A. The tempo of cetacean cranial evolution. Curr. Biol. 2022, 32, 2233–2247.e4. [Google Scholar] [CrossRef] [PubMed]
- Corsi-Cabrera, M.; Velasco, F.; Del Río-Portilla, Y.; Armony, J.L.; Trejo-Martínez, D.; Guevara, M.A.; Velasco, A.L. Human amygdala activation during rapid eye movements of rapid eye movement sleep: an intracranial study. J. Sleep Res. 2016, 25, 576–582. [Google Scholar] [CrossRef]
- Cortez, M.; Ellner, S.P. Understanding rapid evolution in predator-prey interactions using the theory of fast-slow dynamical systems. Am. Nat. 2010, 176, E109–E127. [Google Scholar] [CrossRef]
- Crick, F.; Mitchison, G. The function of dream sleep. Nature 1983, 304, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Croughwell, N.; Smith, L.R.; Quill, T.; Newman, M.; Greeley, W.; Kern, F.; Lu, J.; Reves, J.G. The effect of temperature on cerebral metabolism and blood flow in adults during cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 1992, 103, 549–554. [Google Scholar] [CrossRef]
- Cui, G.F.; Hou, M.; Shao, Y.F.; Chen, H.L.; Gao, J.X.; Xie, J.F.; Chen, Y.N.; Cong, C.Y.; Dai, F.Q.; Hou, Y.P. A Novel Continuously Recording Approach for Unraveling Ontogenetic Development of Sleep-Wake Cycle in Rats. Front. Neurol. 2019, 10, 873. [Google Scholar] [CrossRef]
- Damasio, A.R. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996, 351, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Damasio, A.R. Looking for Spinoza: Joy, Sorrow, and the Feeling Brain; Houghton Mifflin Harcourt; New York, 2003. [Google Scholar]
- Damasio, A.R. Self Comes to Mind: Constructing the Conscious Brain; Vintage Books; New York, 2012. [Google Scholar]
- Damasio, A.R. O Mistério da Consciência: Do Corpo e das Emoções ao Conhecimento de Si [The feeling of what happens: Body and emotion in the making of consciousness]; Editora Schwarcz S.A.; São Paulo, 2015. [Google Scholar]
- Damasio, A.R. The Strange Order of Things: Life, Feeling, and the Making of Cultures; Vintage Books; New York, 2019. [Google Scholar]
- Dang-Vu, T.T.; Schabus, M.; Desseilles, M.; Sterpenich, V.; Bonjean, M.; Maquet, P. Functional neuroimaging insights into the physiology of human sleep. Sleep 2010, 33, 1589–1603. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C.R. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life; John Murray; London, 1859. [Google Scholar]
- Datta, S.; Siwek, D.F. Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats. J. Neurosci. Res. 2002, 70, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Dauvilliers, Y.; Arnulf, I.; Mignot, E. Narcolepsy with cataplexy. Lancet (London, England) 2007, 369, 499–511. [Google Scholar] [CrossRef]
- Davis, M.; Whalen, P.J. The amygdala: vigilance and emotion. Mol. Psychiatry 2001, 6, 13–34. [Google Scholar] [CrossRef]
- Davis, S.; Bozon, B.; Laroche, S. How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav. Brain Res. 2003, 142, 17–30. [Google Scholar] [CrossRef]
- Dawkins, R. Climbing Mount Improbable; W. W. Norton & Company; New York, 1997. [Google Scholar]
- Dawkins, R. A Devil’s Chaplain: Selected Essays; Phoenix, London, 2004. [Google Scholar]
- Dawkins, R. The Greatest Show on Earth: The Evidence for Evolution; Black Swan, Great Britain, 2010a. [Google Scholar]
- Dawkins, R. Bedau, M.A., Cleland, C.E., Eds.; Universal Darwinism. In The Nature of Life: Classical and Contemporary Perspectives From Philosophy and Science; Cambridge University Press; New York, 2010b; pp. 360–373. [Google Scholar]
- Dawkins, R. River Out of Eden: A Darwinian View of Life; Weidenfeld & Nicolson; London, 2015a. [Google Scholar]
- Dawkins, R. The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design; W. W. Norton & Company; New York, 2015b. [Google Scholar]
- Deboer, T.; Sanford, L.D.; Ross, R.J.; Morrison, A.R. Effects of electrical stimulation in the amygdala on ponto-geniculo-occipital waves in rats. Brain Res. 1998, 793, 305–310. [Google Scholar] [CrossRef]
- Decker, M.J.; Rye, D.B.; Lee, S.Y.; Strohl, K.P. Paradoxical sleep suppresses immediate early gene expression in the rodent suprachiasmatic nuclei. Front. Neurol. 2010, 1, 122. [Google Scholar] [CrossRef]
- Demyttenaere, K.; De Fruyt, J.; Stahl, S.M. The many faces of fatigue in major depressive disorder. Int. J. Neuropsychopharmacol. 2005, 8, 93–105. [Google Scholar] [CrossRef]
- Denisova, K. English translation of the first study reporting cyclical periods of increased respiration and eye and body motility during sleep in infants in 1926, with commentary. Sleep 2024, 47, zsad219. [Google Scholar] [CrossRef]
- Denoyer, M.; Sallanon, M.; Buda, C.; Delhomme, G.; Dittmar, A.; Jouvet, M. The posterior hypothalamus is responsible for the increase of brain temperature during paradoxical sleep. Exp. Brain Res. 1991, 84, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Desseilles, M.; Dang-Vu, T.T.; Sterpenich, V.; Schwartz, S. Cognitive and emotional processes during dreaming: a neuroimaging view. Conscious. Cogn. 2011, 20, 998–1008. [Google Scholar] [CrossRef]
- Deurveilher; Semba, S.K. Basal forebrain regulation of cortical activity and sleep-wake states: Roles of cholinergic and non-cholinergic neurons. Sleep and Biol. Rhythms 2011, 9, 65–70. [Google Scholar] [CrossRef]
- Devinsky, O.; Morrell, M.J.; Vogt, B.A. Contributions of anterior cingulate cortex to behaviour. Brain 1995, 118, 279–306. [Google Scholar] [CrossRef] [PubMed]
- de Feijter, M.; Katimertzoglou, A.; Tiemensma, J.; Ikram, M.A.; Luik, A.I. Polysomnography-estimated sleep and the negative feedback loop of the hypothalamic-pituitary-adrenal (HPA) axis. Psychoneuroendocrinology 2022, 141, 105749. [Google Scholar] [CrossRef]
- de Lecea, L.; Huerta, R. Hypocretin (orexin) regulation of sleep-to-wake transitions. Front. pharmacol. 2014, 5, 16. [Google Scholar] [CrossRef]
- De Luca, R.; Nardone, S.; Grace, K.P.; Venner, A.; Cristofolini, M.; Bandaru, S.S.; Sohn, L.T.; Kong, D.; Mochizuki, T.; Viberti, B.; Zhu, L.; Zito, A.; Scammell, T.E.; Saper, C.B.; Lowell, B.B.; Fuller, P.M.; Arrigoni, E. Orexin neurons inhibit sleep to promote arousal. Nat. Commun. 2022, 13, 4163. [Google Scholar] [CrossRef] [PubMed]
- Dhabhar, F.S. The short-term stress response – Mother nature’s mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Front. Neuroendocrinol. 2018, 49, 175–192. [Google Scholar] [CrossRef]
- Dillon, R.F.; Webb, W.B. Threshold of arousal from “activated” sleep in the rat. J. Comp. Physiol. Psychol. 1965, 59, 446–447. [Google Scholar] [CrossRef]
- dos Reis, A.B. Metodologia Científica em Perícia Criminal [Scientific Methodology in Criminal Forensics]; Millennium Editora; Campinas, 2016. [Google Scholar]
- Dragoi, G.; Carpi, D.; Recce, M.; Csicsvari, J.; Buzsáki, G. Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat. J. Neurosci. 1999, 19, 6191–6199. [Google Scholar] [CrossRef]
- Driver, H.S.; Rogers, G.G.; Mitchell, D.; Borrow, S.J.; Allen, M.; Luus, H.G.; Shapiro, C.M. Prolonged endurance exercise and sleep disruption. Med. Sci. Sports Exerc. 1994, 26, 903–907. [Google Scholar] [CrossRef]
- Driver, H.S.; Taylor, S.R. Exercise and sleep. Sleep Med. Rev. 2000, 4, 387–402. [Google Scholar] [CrossRef]
- Dudai, Y.; Eisenberg, M. Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 2004, 44, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Eagleman, D.M.; Vaughn, D.A. The Defensive Activation Theory: REM sleep as a mechanism to prevent takeover of the visual cortex. Front. Neurosci. 2021, 15, 632853. [Google Scholar] [CrossRef]
- Ebbinghaus, H. Ebbinghaus, H.; Ruger, H.A.; Bussenius, C.E., Translators; Retention as a function of the number of repetitions. In Memory: A contribution to experimental psychology; Teachers College Press; New York, 1913; pp. 52–61. [Google Scholar] [CrossRef]
- Elgar, M.A.; Pagel, M.D.; Harvey, P.H. Sleep in mammals. Anim. Behav. 1988, 36, 1407–1419. [Google Scholar] [CrossRef]
- Elgar, M.A.; Pagel, M.D.; Harvey, P.H. Sources of variation in mammalian sleep. Anim. Behav. 1990, 40, 991–995. [Google Scholar] [CrossRef]
- Elrokhsi, S.H.; Bluez, G.P.; Chin, C.N.; Wheeler, M.D.; Silva, G.E.; Perfect, M.M. Differences in sleep architecture according to body mass index in children with type 1 diabetes. Pediatr. Diabetes 2020, 21, 98–105. [Google Scholar] [CrossRef]
- Ermann, M.; Peichl, J.; Pohl, H.; Schneider, M.M.; Winkelmann, Y. Spontanerwachen und Träumen bei Patienten mit psychovegetativen Schlafstörungen [Spontaneous awakening and dreams of patients with psychophysiologic sleep disorders]. Psychother. Psychosom. Med. Psychol. 1993, 43, 333–340. [Google Scholar]
- Ermis, U.; Krakow, K.; Voss, U. Arousal thresholds during human tonic and phasic REM sleep. J. Sleep Res. 2010, 19, 400–406. [Google Scholar] [CrossRef]
- España, R.A.; Scammell, T.E. Sleep neurobiology from a clinical perspective. Sleep 2011, 34, 845–858. [Google Scholar] [CrossRef]
- Estabrooke, I.V.; McCarthy, M.T.; Ko, E.; Chou, T.C.; Chemelli, R.M.; Yanagisawa, M.; Saper, C.B.; Scammell, T.E. Fos expression in orexin neurons varies with behavioral state. J. Neurosci. 2001, 21, 1656–1662. [Google Scholar] [CrossRef]
- Exner, C.; Weniger, G.; Irle, E. Implicit and explicit memory after focal thalamic lesions. Neurology 2001, 57, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Sanborn, C.K.; Renegar, K.B.; Majde, J.A.; Krueger, J.M. Influenza viral infections enhance sleep in mice. Proc. Soc. Exp. Biol. Med. 1995, 210, 242–252. [Google Scholar] [CrossRef]
- Fehm, H.L.; Späth-Schwalbe, E.; Pietrowsky, R.; Kern, W.; Born, J. Entrainment of nocturnal pituitary-adrenocortical activity to sleep processes in man—a hypothesis. Exp. Clin. Endocrinol. Diabet. 1993, 101, 267–276. [Google Scholar] [CrossRef]
- Feige, B.; Al-Shajlawi, A.; Nissen, C.; Voderholzer, U.; Hornyak, M.; Spiegelhalder, K.; Kloepfer, C.; Perlis, M.; Riemann, D. Does REM sleep contribute to subjective wake time in primary insomnia? A comparison of polysomnographic and subjective sleep in 100 patients. J. Sleep Res. 2008, 17, 180–190. [Google Scholar] [CrossRef]
- Feige, B.; Benz, F.; Dressle, R.J.; Riemann, D. Insomnia and REM sleep instability. J. Sleep Res. 2023, 32, e14032. [Google Scholar] [CrossRef]
- Feinberg, I.; Floyd, T.C.; March, J.D. Effects of sleep loss on delta (0.3-3 Hz) EEG and eye movement density: new observations and hypotheses. Electroencephalogr. Clin. Neurophysiol. 1987, 67, 217–221. [Google Scholar] [CrossRef]
- Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 1985, 125, 1–15. [Google Scholar] [CrossRef]
- Feng, H.; Wen, S.Y.; Qiao, Q.C.; Pang, Y.J.; Wang, S.Y.; Li, H.Y.; Cai, J.; Zhang, K.X.; Chen, J.; Hu, Z.A.; Luo, F.L.; Wang, G.Z.; Yang, N.; Zhang, J. Orexin signaling modulates synchronized excitation in the sublaterodorsal tegmental nucleus to stabilize REM sleep. Nat. Commun. 2020, 11, 3661. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.Z.; Chen, J.T.; Hu, Z.Y.; Liu, G.X.; Zhou, Y.S.; Zhang, P.; Su, A.X.; Yang, S.; Zhang, Y.M.; Wei, R.M.; Chen, G.H. Effects of Sleep Reactivity on Sleep Macro-Structure, Orderliness, and Cortisol After Stress: A Preliminary Study in Healthy Young Adults. Nat. Sci. Sleep 2023, 15, 533–546. [Google Scholar] [CrossRef]
- Feriante, J.; Araujo, J.F. Physiology, REM sleep. In StatPearls; StatPearls Publishing, 2023; Available online: https://pubmed.ncbi.nlm.nih.gov/30285349/.
- Ficca, G.; Scavelli, S.; Fagioli, I.; Gori, S.; Murri, L.; Salzarulo, P. Rapid eye movement activity before spontaneous awakening in elderly subjects. J. Sleep Res. 2004, 13, 49–53. [Google Scholar] [CrossRef]
- Fogwe, L.A.; Reddy, V.; Mesfin, F.B. Neuroanatomy, Hippocampus. In StatPearls; StatPearls Publishing, 2023. [Google Scholar]
- Foote, S.L.; Aston-Jones, G.; Bloom, F.E. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. PNAS 1980, 77, 3033–3037. [Google Scholar] [CrossRef]
- Forester, G.; Kroneisen, M.; Erdfelder, E.; Kamp, S.M. Adaptive Memory: Independent Effects of Survival Processing and Reward Motivation on Memory. Front. hum. neurosci. 2020, 14, 588100. [Google Scholar] [CrossRef]
- Fraigne, J.J.; Torontali, Z.A.; Snow, M.B.; Peever, J.H. REM Sleep at its Core - Circuits, Neurotransmitters, and Pathophysiology. Front. Neurol. 2015, 6, 123. [Google Scholar] [CrossRef]
- Franco, R. The conjunction fallacy and interference effects. J. Math. Psychol. 2009, 53, 415–422. [Google Scholar] [CrossRef]
- Frank, M.G.; Waldrop, R.H.; Dumoulin, M.; Aton, S.; Boal, J.G. A preliminary analysis of sleep-like states in the cuttlefish Sepia officinalis. PloS one 2012, 7, e38125. [Google Scholar] [CrossRef] [PubMed]
- Friess, E.; Tagaya, H.; Grethe, C.; Trachsel, L.; Holsboer, F. Acute cortisol administration promotes sleep intensity in man. Neuropsychopharmacology 2004, 29, 598–604. [Google Scholar] [CrossRef]
- Fuchs, T.; Maury, D.; Moore, F.R.; Bingman, V.P. Daytime micro-naps in a nocturnal migrant: an EEG analysis. Biol. Lett. 2009, 5, 77–80. [Google Scholar] [CrossRef]
- Gazzaniga, M.; Heatherton, T.; Halpern, D. Psychological Science, fifth ed.; W. W. Norton & Company; New York, 2016. [Google Scholar]
- Geva-Sagiv, M.; Mankin, E.A.; Eliashiv, D.; Epstein, S.; Cherry, N.; Kalender, G.; Tchemodanov, N.; Nir, Y.; Fried, I. Augmenting hippocampal-prefrontal neuronal synchrony during sleep enhances memory consolidation in humans. Nat. Neurosci. 2023, 26, 1100–1110. [Google Scholar] [CrossRef]
- Ghanean, H.; Ceniti, A.K.; Kennedy, S.H. Fatigue in Patients with Major Depressive Disorder: Prevalence, Burden and Pharmacological Approaches to Management. CNS drugs 2018, 32, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, Z.L.; Thomas, K.G.F.; Lipinska, G. Bedtime Stress Increases Sleep Latency and Impairs Next-Day Prospective Memory Performance. Front. Neurosci. 2020, 14, 756. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.N.; Walker, M.P. The role of sleep in emotional brain function. Annu. Rev. Clin. Psychol. 2014, 10, 679–708. [Google Scholar] [CrossRef]
- Goleman, D. O Cérebro e a Inteligência Emocional: Novas Perspectivas [The Brain and Emotional Intelligence: New Insights]; Objetiva, Rio de Janeiro, 2012. [Google Scholar]
- Gonnissen, H.K.; Hursel, R.; Rutters, F.; Martens, E.A.; Westerterp-Plantenga, M.S. Effects of sleep fragmentation on appetite and related hormone concentrations over 24 h in healthy men. Br. J. Nutr. 2013, 109, 748–756. [Google Scholar] [CrossRef]
- Goodenough, D.R.; Witkin, H.A.; Koulack, D.; Cohen, H. The effects of stress films on dream affect and on respiration and eye-movement activity during Rapid-Eye-Movement sleep. Psychophysiology 1975, 12, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Graven, S.N.; Browne, J.V. Sleep and brain development: the critical role of sleep in fetal and early neonatal brain development. Newborn Infant Nurs. Rev. 2008, 8, 173–179. [Google Scholar] [CrossRef]
- Grigg-Damberger, M.M.; Wolfe, K.M. Infants Sleep for Brain. J. Clin. Sleep Med. 2017, 13, 1233–1234. [Google Scholar] [CrossRef]
- Gutwein, B.M.; Fishbein, W. Paradoxical sleep and memory (I): Selective alterations following enriched and impoverished environmental rearing. Brain Res. Bull. 1980a, 5, 9–12. [Google Scholar] [CrossRef]
- Gutwein, B.M.; Fishbein, W. Paradoxical sleep and memory (II): sleep circadian rhythmicity following enriched and impoverished environmental rearing. Brain Res. Bull. 1980b, 5, 105–109. [Google Scholar] [CrossRef]
- Hague, J.F.; Gilbert, S.S.; Burgess, H.J.; Ferguson, S.A.; Dawson, D. A sedentary day: effects on subsequent sleep and body temperatures in trained athletes. Physiol. Behav. 2003, 78, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Seong, M.J.; Hyeon, J.; Joo, E.; Oh, J. Classification and automatic scoring of arousal intensity during sleep stages using machine learning. Sci. Rep. 2024, 14, 5983. [Google Scholar] [CrossRef]
- Harvey, P.H.; Pagel, M.D. The comparative method in evolutionary biology; Oxford university press; New York, 1991. [Google Scholar]
- Hämäläinen, A.; Dammhahn, M.; Aujard, F.; Kraus, C. Losing grip: Senescent decline in physical strength in a small-bodied primate in captivity and in the wild. Exp. Gerontol. 2015, 61, 54–61. [Google Scholar] [CrossRef]
- Hebb, D.O. Delafresnaye, J.F., Ed.; Distinctive features of learning in the higher animal. In Brain mechanisms and learning; Blackwell; Oxford, 1961; pp. 37–46. [Google Scholar]
- Hess, C.W.; Mills, K.R.; Murray, N.M.; Schriefer, T.N. Excitability of the human motor cortex is enhanced during REM sleep. Neurosci. Lett. 1987, 82, 47–52. [Google Scholar] [CrossRef]
- Higgins, E.T. Making a theory useful: lessons handed down. PSPR 2004, 8, 138–145. [Google Scholar] [CrossRef]
- Hindle, A.G.; Lawler, J.M.; Campbell, K.L.; Horning, M. Muscle senescence in short-lived wild mammals, the soricine shrews Blarina brevicauda and Sorex palustris. Journal of experimental zoology. J. Exp. Zool. A Ecol. Genet. Physiol. 2009, 311, 358–367. [Google Scholar] [CrossRef]
- Hong, C.C.; Harris, J.C.; Pearlson, G.D.; Kim, J.S.; Calhoun, V.D.; Fallon, J.H.; Golay, X.; Gillen, J.S.; Simmonds, D.J.; van Zijl, P.C.; Zee, D.S.; Pekar, J.J. fMRI evidence for multisensory recruitment associated with rapid eye movements during sleep. Hum. Brain Mapp. 2009, 30, 1705–1722. [Google Scholar] [CrossRef]
- Horner, R.L.; Sanford, L.D.; Annis, D.; Pack, A.I.; Morrison, A.R. Serotonin at the laterodorsal tegmental nucleus suppresses rapid-eye-movement sleep in freely behaving rats. J. Neurosci. 1997a, 17, 7541–7552. [Google Scholar] [CrossRef] [PubMed]
- Horner, R.L.; Sanford, L.D.; Pack, A.I.; Morrison, A.R. Activation of a distinct arousal state immediately after spontaneous awakening from sleep. Brain Res. 1997b, 778, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Hrozanova, M.; Klöckner, C.A.; Sandbakk, Ø.; Pallesen, S.; Moen, F. Reciprocal associations between sleep, mental strain, and training load in junior endurance athletes and the role of poor subjective sleep quality. Front. Psychol. 2020, 11, 545581. [Google Scholar] [CrossRef]
- Ibayashi, S.; Takano, K.; Ooboshi, H.; Kitazono, T.; Sadoshima, S.; Fujishima, M. Effect of selective brain hypothermia on regional cerebral blood flow and tissue metabolism using brain thermo-regulator in spontaneously hypertensive rats. Neurochem. Res. 2000, 25, 369–375. [Google Scholar] [CrossRef]
- Imeri, L.; Opp, M.R. How (and why) the immune system makes us sleep. Nature reviews. Neuroscience 2009, 10, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Koyanagi, T.; Nakahara, H.; Hara, K.; Hori, E.; Nakano, H. Functional development of human eye movement in utero assessed quantitatively with real-time ultrasound. AJOG 1986, 155, 170–174. [Google Scholar] [CrossRef]
- Ito, H.; Fukatsu, N.; Rahaman, S.M.; Mukai, Y.; Izawa, S.; Ono, D.; Kilduff, T.S.; Yamanaka, A. Deficiency of orexin signaling during sleep is involved in abnormal REM sleep architecture in narcolepsy. PNAS 2023, 120, e2301951120. [Google Scholar] [CrossRef]
- Izquierdo, I. Memória [Memory]; Artmed, Porto Alegre, 2018. [Google Scholar]
- Jaggard, J.B.; Wang, G.X.; Mourrain, P. Non-REM and REM/paradoxical sleep dynamics across phylogeny. Curr. Opin. Neurobiol. 2021, 71, 44–51. [Google Scholar] [CrossRef]
- Jan, J.E.; Reiter, R.J.; Wasdell, M.B.; Bax, M. The role of the thalamus in sleep, pineal melatonin production, and circadian rhythm sleep disorders. J. Pineal Res. 2009, 46, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jouvet, M.; Michel, F.; Courjon, J. Comptes rendus des seances de la Societe de biologie et de ses filiales 1959, 153, 1024–1028.
- Jouvet, M. Research on the neural structures and responsible mechanisms in different phases of physiological sleep. Archives italiennes de biologie 1962, 100, 125–206. [Google Scholar]
- Jouvet-Mounier, D.; Astic, L.; Lacote, D. Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month. Dev. Psychobiol. 1970, 2, 216–239. [Google Scholar] [CrossRef]
- Jumah, F.R.; Dossani, R.H. Neuroanatomy, Cingulate Cortex. In StatPearls; StatPearls Publishing, 2022; Available online: https://pubmed.ncbi.nlm.nih.gov/30725762.
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus and Giroux, New York, 2011. [Google Scholar]
- Kalmbach, D.A.; Cuamatzi-Castelan, A.S.; Tonnu, C.V.; Tran, K.M.; Anderson, J.R.; Roth, T.; Drake, C.L. Hyperarousal and sleep reactivity in insomnia: current insights. Nat. sci. sleep. 2018, 10, 193–201. [Google Scholar] [CrossRef]
- Kanaya, H.J.; Park, S.; Kim, J.H.; Kusumi, J.; Krenenou, S.; Sawatari, E.; Sato, A.; Lee, J.; Bang, H.; Kobayakawa, Y.; Lim, C.; Itoh, T.Q. A sleep-like state in Hydra unravels conserved sleep mechanisms during the evolutionary development of the central nervous system. Sci. Adv. 2020, 6, eabb9415. [Google Scholar] [CrossRef]
- Kandel, E.R.; Dudai, Y.; Mayford, M.R. The molecular and systems biology of memory. Cell 2014, 157, 163–186. [Google Scholar] [CrossRef] [PubMed]
- Kandel, E.R.; Koester, J.D.; Mack, S.H.; Siegelbaum, S.A. (Eds.) Principles of neural science, sixth ed.; McGraw-Hill; New York, 2021. [Google Scholar]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; Siegelbaum, S.A.; Hudspeth, A.J. (Eds.) Principles of neural science, fifth ed.; McGraw-Hill; New York, 2013. [Google Scholar]
- Karpicke, J.D.; Roediger, H.L., 3rd. The critical importance of retrieval for learning. Science 2008, 319, 966–968. [Google Scholar] [CrossRef] [PubMed]
- Kavanau, J.L. Memory, sleep and the evolution of mechanisms of synaptic efficacy maintenance. Neurosci. 1997, 79, 7–44. [Google Scholar] [CrossRef]
- Keene, A.C.; Duboue, E.R. The origins and evolution of sleep. J. Exp. Biol. 2018, 221, jeb159533. [Google Scholar] [CrossRef]
- Keller, J.; Gomez, R.; Williams, G.; Lembke, A.; Lazzeroni, L.; Murphy, G.M., Jr.; Schatzberg, A.F. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol. Psychiatry 2017, 22, 527–536. [Google Scholar] [CrossRef]
- Kingsley, E. 12 Animals Bold and Brave Enough to Take on a Lion. A-Z-Animals. 2024. Available online: https://a-z-animals.com/animals/lion/facts-lion/lion-threats/.
- Kishi, T.T.; Andersen, M.L.; Luciano, Y.M.; Kakazu, V.A.; Tufik, S.; Pires, G.N. Methods for REM sleep density analysis: A scoping review. Clocks & Sleep 2023, 5, 793–805. [Google Scholar] [CrossRef]
- Kitamura, E.; Kawasaki, Y.; Kasai, T.; Midorikawa, I.; Shiroshita, N.; Kawana, F.; Ogasawara, E.; Kitade, M.; Itakura, A.; Koikawa, N.; Matsuda, T. The relationship between body composition and sleep architecture in athletes. Sleep Med. 2021, 87, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Kiyono, S.; Seo, M.L.; Shibagaki, M. Effects of rearing environments upon sleep-waking parameters in rats. Physiol. Behav. 1981, 26, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Kjaerby, C.; Andersen, M.; Hauglund, N.; Untiet, V.; Dall, C.; Sigurdsson, B.; Ding, F.; Feng, J.; Li, Y.; Weikop, P.; Hirase, H.; Nedergaard, M. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat. Neurosci. 2022, 25, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Klemm, W.R. Why does REM sleep occur? A wake-up hypothesis. Front. Syst. Neurosci. 2011, 5, 73. [Google Scholar] [CrossRef]
- Knight, R.D. Física: Uma Abordagem Estratégica: [Physics for Scientists and Engineers: A Strategic Approach with Modern Physics], second ed.; Bookman; Porto Alegre, 2009; Volume 2. [Google Scholar]
- Knopper, R.W.; Hansen, B. Locus coeruleus and the defensive activation theory of rapid eye movement sleep: A mechanistic perspective. Front. Neurosci. 2023, 17, 1094812. [Google Scholar] [CrossRef]
- Kollar, E.J.; Pasnau, R.O.; Rubin, R.T.; Naitoh, P.; Slater, G.G.; Kales, A. Psychological, psychophysiological, and biochemical correlates of prolonged sleep deprivation. Am. J. Psychiatry 1969, 126, 488–497. [Google Scholar] [CrossRef]
- Konadhode, R.R.; Pelluru, D.; Shiromani, P.J. Unihemispheric sleep: an enigma for current models of sleep-wake regulation. Sleep 2016, 39, 491–494. [Google Scholar] [CrossRef]
- Koshmanova, E.; Berger, A.; Beckers, E.; Campbell, I.; Mortazavi, N.; Sharifpour, R.; Paparella, I.; Balda, F.; Berthomier, C.; Degueldre, C.; Salmon, E.; Lamalle, L.; Bastin, C.; Van Egroo, M.; Phillips, C.; Maquet, P.; Collette, F.; Muto, V.; Chylinski, D.; Jacobs, H.I.; Vandewalle, G. Locus coeruleus activity while awake is associated with REM sleep quality in older individuals. JCI insight 2023, 8, e172008. [Google Scholar] [CrossRef] [PubMed]
- Krueger, J.M.; Majde, J.A. Microbial products and cytokines in sleep and fever regulation. Critical reviews in immunology 1994, 14, 355–379. [Google Scholar] [CrossRef]
- Lamberto, F.; Peral-Sanchez, I.; Muenthaisong, S.; Zana, M.; Willaime-Morawek, S.; Dinnyés, A. Environmental Alterations during Embryonic Development: Studying the Impact of Stressors on Pluripotent Stem Cell-Derived Cardiomyocytes. Genes 2021, 12, 1564. [Google Scholar] [CrossRef]
- Laudan, L. Progress and Its Problems: Towards a Theory of Scientific Growth; Routledge & Kegan Paul; London, 1977. [Google Scholar]
- Lee, A. K.; Wilson, M. A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 2002, 36, 1183–1194. [Google Scholar] [CrossRef]
- Lee, M.G.; Hassani, O.K.; Jones, B.E. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. 2005, 25, 6716–6720. [Google Scholar] [CrossRef]
- Lee, M.; Sanz, L.R.D.; Barra, A.; Wolff, A.; Nieminen, J.O.; Boly, M.; Rosanova, M.; Casarotto, S.; Bodart, O.; Annen, J.; Thibaut, A.; Panda, R.; Bonhomme, V.; Massimini, M.; Tononi, G.; Laureys, S.; Gosseries, O.; Lee, S.W. Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning. Nat. Commun. 2022, 13, 1064. [Google Scholar] [CrossRef]
- Leitner, C.; Dalle Piagge, F.; Tomic, T.; Nozza, F.; Fasiello, E.; Castronovo, V.; De Gennaro, L.; Baglioni, C.; Ferini-Strambi, L.; Galbiati, A. Sleep alterations in major depressive disorder and insomnia disorder: A network meta-analysis of polysomnographic studies. Sleep Med. Rev. 2025, 80, 102048. [Google Scholar] [CrossRef]
- Lennie, P. The cost of cortical computation. Curr. Biol. 2003, 13, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Lesku, J.A.; Rattenborg, N.C. The missing cost of ecological sleep loss. Sleep advances: a journal of the Sleep Research Society 2022, 3, zpac036. [Google Scholar] [CrossRef] [PubMed]
- Lesku, J.A.; Roth, T.C., 2nd; Amlaner, C.J.; Lima, S.L. A phylogenetic analysis of sleep architecture in mammals: the integration of anatomy, physiology, and ecology. Am. Nat. 2006, 168, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Le Bon, O.; Staner, L.; Rivelli, S.K.; Hoffmann, G.; Pelc, I.; Linkowski, P. Correlations using the NREM-REM sleep cycle frequency support distinct regulation mechanisms for REM and NREM sleep. J. Appl. Physiol. 2002, 93, 141–146. [Google Scholar] [CrossRef]
- Le Bon, O. Relationships between REM and NREM in the NREM-REM sleep cycle: a review on competing concepts. Sleep Med. 2020, 70, 6–16. [Google Scholar] [CrossRef]
- Lauer, C.; Riemann, D.; Lund, R.; Berger, M. Shortened REM latency: a consequence of psychological strain? Psychophysiology 1987, 24, 263–271. [Google Scholar] [CrossRef]
- Le Bon, O. An Asymmetrical Hypothesis for the NREM-REM Sleep Alternation-What Is the NREM-REM Cycle? Front. Neurosci. 2021, 15, 627193. [Google Scholar] [CrossRef]
- Leung, L.C.; Wang, G.X.; Madelaine, R.; Skariah, G.; Kawakami, K.; Deisseroth, K.; Urban, A.E.; Mourrain, P. Neural signatures of sleep in zebrafish. Nature 2019, 571, 198–204. [Google Scholar] [CrossRef]
- Libourel, P.A.; Barrillot, B.; Arthaud, S.; Massot, B.; Morel, A.L.; Beuf, O.; Herrel, A.; Luppi, P.H. Partial homologies between sleep states in lizards, mammals, and birds suggest a complex evolution of sleep states in amniotes. PLoS biology 2018, 16, e2005982. [Google Scholar] [CrossRef]
- Libourel, P.A.; Herrel, A. Sleep in amphibians and reptiles: a review and a preliminary analysis of evolutionary patterns. Biol. Rev. Camb. Philos. Soc. 2016, 91, 833–866. [Google Scholar] [CrossRef]
- Lima, S.L.; Rattenborg, N.C.; Lesku, J.A.; Amlaner, C.J. Sleeping under the risk of predation. Anim. Behav. 2005, 70, 723–736. [Google Scholar] [CrossRef]
- Liu, X.; Forbes, E.E.; Ryan, N.D.; Rofey, D.; Hannon, T.S.; Dahl, R.E. Rapid eye movement sleep in relation to overweight in children and adolescents. Arch. Gen. Psychiatry 2008, 65, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Luppi, P.H.; Chancel, A.; Malcey, J.; Cabrera, S.; Fort, P.; Maciel, R.M. Which structure generates paradoxical (REM) sleep: The brainstem, the hypothalamus, the amygdala or the cortex? Sleep Med. Rev. 2024, 74, 101907. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Yang, T.; Zhao, H.; Zhang, M.; Meng, F.; Fu, H.; Xie, Y.; Xu, H. Insular Cortex is Critical for the Perception, Modulation, and Chronification of Pain. Neuroscience bulletin 2016, 32, 191–201. [Google Scholar] [CrossRef]
- Lu, J.; Sherman, D.; Devor, M.; Saper, C.B. A putative flip-flop switch for control of REM sleep. Nature 2006, 441, 589–594. [Google Scholar] [CrossRef]
- Lu, Y. The Conjunction and Disjunction Fallacies: Explanations of the Linda Problem by the Equate-to-Differentiate Model. Integr. Psychol. Behav. Sci. 2016, 50, 507–531. [Google Scholar] [CrossRef] [PubMed]
- Lyamin, O.I.; Kosenko, P.O.; Korneva, S.M.; Vyssotski, A.L.; Mukhametov, L.M.; Siegel, J.M. Fur seals suppress REM sleep for very long periods without subsequent rebound. Curr. Biol. 2018, 28, 2000–2005.e2. [Google Scholar] [CrossRef]
- Lyamin, O.I.; Manger, P.R.; Ridgway, S.H.; Mukhametov, L.M.; Siegel, J.M. Cetacean sleep: an unusual form of mammalian sleep. Neurosci. Biobehav. Rev. 2008, 32, 1451–1484. [Google Scholar] [CrossRef]
- Lyamin, O.I.; Siegel, J.M. Sleep in Aquatic Mammals. Handbook of behavioral neuroscience 2019, 30, 375–393. [Google Scholar] [CrossRef]
- Magalhães, S.; Janssen, A.; Montserrat, M.; Sabelis, M. W. Prey attack and predators defend: counterattacking prey trigger parental care in predators. Proc. Biol. Sci. 2005, 272, 1929–1933. [Google Scholar] [CrossRef]
- Mancia, A. On the revolution of cetacean evolution. Mar. Genom. 2018, 41, 1–5. [Google Scholar] [CrossRef]
- Mandell, M.P.; Mandell, A.J.; Rubin, R.T.; Brill, P.; Rodnick, J.; Sheff, R.; Chaffey, B. Activation of the pituitary-adrenal axis during rapid eye movement sleep in man. Life Sci. 1966, 5, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Maquet, P.; Péters, J.; Aerts, J.; Delfiore, G.; Degueldre, C.; Luxen, A.; Franck, G. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 1996, 383, 163–166. [Google Scholar] [CrossRef]
- Maquet, P. Functional neuroimaging of normal human sleep by positron emission tomography. J. Sleep Res. 2000, 9, 207–231. [Google Scholar] [CrossRef]
- Marconi, M. A.; Lakatos, E. M. Fundamentos de Metodologia Científica [Fundamentals of Scientific Methodology]; Editora Atlas Ltd.a.; Rio de Janeiro, 2021. [Google Scholar]
- Martins, E.P.; Garland, T., Jr. Phylogenetic analyses of the correlated evolution of continuous characters: a simulation study. Evol.; int. j. org. evol. 1991, 45, 534–557. [Google Scholar] [CrossRef]
- Martin, J.M.; Andriano, D.W.; Mota, N.B.; Mota-Rolim, S.A.; Araújo, J.F.; Solms, M.; Ribeiro, S. Structural differences between REM and non-REM dream reports assessed by graph analysis. PloS one 2020, 15, e0228903. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.J.; Grimwood, P.D.; Morris, R.G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 2000, 23, 649–711. [Google Scholar] [CrossRef]
- Mascetti, G.G. Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives Erratum in. Nat. Sci. Sleep 2016, 8 9, 221–238 1. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Ozawa, N.; Shinozaki, T.; Aoki, K.; Nihonmatsu-Kikuchi, N.; Shinba, T.; Tatebayashi, Y. Chronic antidepressant treatment rescues abnormally reduced REM sleep theta power in socially defeated rats. Sci. Rep. 2021, 11, 16713. [Google Scholar] [CrossRef]
- Maurer, J.; Lin, A.; Jin, X.; Hong, J.; Sathi, N.; Cardis, R.; Osorio-Forero, A.; Lüthi, A.; Weber, F.; Chung, S. Homeostatic regulation of REM sleep by the preoptic area of the hypothalamus. eLife 2024, 12, RP92095. [Google Scholar] [CrossRef]
- Mavanji, V.; Perez-Leighton, C.E.; Kotz, C.M.; Billington, C.J.; Parthasarathy, S.; Sinton, C.M.; Teske, J.A. Promotion of Wakefulness and Energy Expenditure by Orexin-A in the Ventrolateral Preoptic Area. Sleep 2015, 38, 1361–1370. [Google Scholar] [CrossRef]
- Mayr, E. The Growth of Biological Thought: Diversity, Evolution, and Inheritance; Harvard University Press; Cambridge, 1982. [Google Scholar]
- Mayr, E. This is Biology: The Science of the Living World; Harvard University Press; Cambridge, 2001. [Google Scholar]
- Mayr, E. What Makes Biology Unique?: Considerations on the Autonomy of a Scientific Discipline; Cambridge University Press; New York, 2004. [Google Scholar]
- Mayr, E. O Que é a Evolução [What Evolution is]; Rocco, Rio de Janeiro, 2009. [Google Scholar]
- McCarley, R.W. REM sleep and depression: common neurobiological control mechanisms. Am. J. Psychiatry 1982, 139, 565–570. [Google Scholar] [CrossRef]
- McCarthy, A.; Wafford, K.; Shanks, E.; Ligocki, M.; Edgar, D.M.; Dijk, D.J. REM sleep homeostasis in the absence of REM sleep: Effects of antidepressants. Neuropharmacology 2016, 108, 415–425. [Google Scholar] [CrossRef]
- McFadden. A Navalha de Occam: O Princípio Filosófico que Libertou a Ciência e Ajudou a Explicar o Universo [Life is Simple]; Sextante; Rio de Janeiro, 2022. [Google Scholar]
- McKinnon, L.; Shattuck, E.C.; Samson, D.R. Sound reasons for unsound sleep: Comparative support for the sentinel hypothesis in industrial and nonindustrial groups. Evol. Med. Public Health 2022, 11, 53–66. [Google Scholar] [CrossRef]
- Medeiros, S.L.S.; Paiva, M.M.M.; Lopes, P.H.; Blanco, W.; Lima, F.D.; Oliveira, J.B.C.; Medeiros, I.G.; Sequerra, E.B.; de Souza, S.; Leite, T.S.; Ribeiro, S. Cyclic alternation of quiet and active sleep states in the octopus. iScience 2021, 24, 102223. [Google Scholar] [CrossRef]
- Meisel, D.V.; Byrne, R.A.; Mather, J.A.; Kuba, M. Behavioral sleep in Octopus vulgaris. Vie et Milieu 2011, 61, 185–190. [Google Scholar]
- Meredith, R.W.; Gatesy, J.; Cheng, J.; Springer, M.S. Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales. Proc. Biol. Sci. 2011, 278, 993–1002. [Google Scholar] [CrossRef]
- Mignot, E. Why we sleep: the temporal organization of recovery. PLoS Biol. 2008, 6, e106. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, J.; Juszczyk, G.; Gawrońska-Grzywacz, M.; Herbet, M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci. 2021, 11, 1298. [Google Scholar] [CrossRef] [PubMed]
- Mileykovskiy, B.Y.; Kiyashchenko, L.I.; Siegel, J.M. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 2005, 46, 787–798. [Google Scholar] [CrossRef]
- Mirmiran, M.; van den Dungen, H.; Uylings, H.B. Sleep patterns during rearing under different environmental conditions in juvenile rats. Brain Res. 1982, 233, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, E.M.; Hrachovy, R.A.; Kellaway, P. Atlas of neonatal electroencephalography, third ed.; Lippincott Williams e Wilkins; Philadelphia, 2004. [Google Scholar]
- Mlodinow, L. O Andar do Bêbado: Como o Acaso Determina Nossas [The drunkard’s walk: How randomness rules our lives]; Zahar, Rio de Janeiro, 2009. [Google Scholar]
- Mochizuki, T.; Arrigoni, E.; Marcus, J.N.; Clark, E.L.; Yamamoto, M.; Honer, M.; Borroni, E.; Lowell, B.B.; Elmquist, J.K.; Scammell, T.E. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. PNAS 2011, 108, 4471–4476. [Google Scholar] [CrossRef]
- Mogavero, M.P.; Godos, J.; Grosso, G.; Caraci, F.; Ferri, R. Rethinking the Role of Orexin in the Regulation of REM Sleep and Appetite. Nutrients 2023, 15, 3679. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.M.; Sirota, A.; Buzsáki, G. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J. Neurosci. 2008, 28, 6731–6741. [Google Scholar] [CrossRef]
- Monti, J.M.; Jantos, H. The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking. Prog. Brain Res. 2008, 172, 625–646. [Google Scholar] [CrossRef]
- Morin, C.M.; Drake, C.L.; Harvey, A.G.; Krystal, A.D.; Manber, R.; Riemann, D.; Spiegelhalder, K. Insomnia disorder. Nat. Rev. Dis. 2015, 1, 15026. [Google Scholar] [CrossRef]
- Moruzzi, G.; Eccles, J.C. Brain and conscious experience. Adv. Neurol. 1966, 77, 181–192. [Google Scholar]
- Moyne, M.; Legendre, G.; Arnal, L.; Kumar, S.; Sterpenich, V.; Seeck, M.; Grandjean, D.; Schwartz, S.; Vuilleumier, P.; Domínguez-Borràs, J. Brain reactivity to emotion persists in NREM sleep and is associated with individual dream recall. Cereb. Cortex Commun. 2022, 3, tgac003. [Google Scholar] [CrossRef]
- Mrozek, S.; Vardon, F.; Geeraerts, T. Brain temperature: physiology and pathophysiology after brain injury. Anesthesiol. Res. Pract. 2012, 989487. [Google Scholar] [CrossRef] [PubMed]
- Mukhametov, L.M.; Lyamin, O.I. The Black Sea bottlenose dolphin: the conditions of rest and activity; The Black Sea Bottlenose Dolphin. Nauka; Moscow, 1997; pp. 650–668. [Google Scholar]
- Mukhametov, L.M.; Oleksenko, A.I.; Poliakova, I.G. Kolichestvennaia kharakteristika élektrokortikograficheskikh stadiĭ sna u del’finov-afalin [Quantitative characteristics of the electrocorticographic sleep stages in bottle-nosed dolphins]. Neirofiziologiia = Neurophysiology 1988, 20(4), 532–538. [Google Scholar] [PubMed]
- Mukhametov, L.M.; Supin, A.Y.; Polyakova, I.G. Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain research 1977, 134(3), 581–584. [Google Scholar] [CrossRef]
- Mukhametov, L.M. Paradoxical sleep peculiarities in aquatic mammals. Sleep Res. A 1995, 24, 202. [Google Scholar]
- Mukherjee, S. The Gene: An Intimate History; Scribner, New York, 2016. [Google Scholar]
- Myllymäki, T.; Kyröläinen, H.; Savolainen, K.; Hokka, L.; Jakonen, R.; Juuti, T.; Martinmäki, K.; Kaartinen, J.; Kinnunen, M.L.; Rusko, H. Effects of vigorous late-night exercise on sleep quality and cardiac autonomic activity. J. Sleep Res. 2011, 20, 146–153. [Google Scholar] [CrossRef]
- Nádasdy, Z.; Hirase, H.; Czurkó, A.; Csicsvari, J.; Buzsáki, G. Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 1999, 19, 9497–9507. [Google Scholar] [CrossRef]
- Nair, K.P.; Salaka, R.J.; Srikumar, B.N.; Kutty, B.M.; Shankaranarayana Rao, B.S. Enriched environment rescues impaired sleep-wake architecture and abnormal neural dynamics in chronic epileptic rats. Neuroscience 2022, 495, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, K.; Morokuma, S.; Maehara, K.; Okawa, H.; Funabiki, Y.; Kato, K. Association of fetal eye movement density with sleeping and developmental problems in 1.5-year-old infants. Sci. Rep. 2022, 12, 8236. [Google Scholar] [CrossRef]
- Nath, R.D.; Bedbrook, C.N.; Abrams, M.J.; Basinger, T.; Bois, J.S.; Prober, D.A.; Sternberg, P.W.; Gradinaru, V.; Goentoro, L. The Jellyfish Cassiopea exhibits a sleep-like state. Curr. Biol. 2017, 27, 2984–2990.e3. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, sixth ed.; W. H. Freeman and Company; New York, 2013. [Google Scholar]
- Nicolaides, N.C.; Vgontzas, A.N.; Kritikou, I.; Chrousos, G. Feingold, K. R., Ed.; HPA Axis and Sleep; Endotext. MDText.com, Inc., 2020; Available online: https://www.ncbi.nlm.nih.gov/books/NBK279071/ (accessed on 26 Aug, 2025).
- Nicolau, M.C.; Akaârir, M.; Gamundí, A.; González, J.; Rial, R.V. Why we sleep: the evolutionary pathway to the mammalian sleep. Prog. Neurobiol. 2000, 62, 379–406. [Google Scholar] [CrossRef]
- Nishida, M.; Pearsall, J.; Buckner, R.L.; Walker, M.P. REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb. Cortex 2009, 19, 1158–1166. [Google Scholar] [CrossRef]
- Nofzinger, E.A.; Mintun, M.A.; Wiseman, M.; Kupfer, D.J.; Moore, R.Y. Forebrain activation in REM sleep: an FDG PET study. Brain Res. 1997, 770, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Nolan, M.F. Memory consolidation: Building influence over the entorhinal cortex. Curr. Biol. 2023, 33, R1160–R1162. [Google Scholar] [CrossRef] [PubMed]
- Nola, R.; Sankey, H. Theories of Scientific Method: An Introduction; Routledge; London and New York, 2014. [Google Scholar]
- Nollet, M.; Hicks, H.; McCarthy, A.P.; Wu, H.; Möller-Levet, C.S.; Laing, E.E.; Malki, K.; Lawless, N.; Wafford, K.A.; Dijk, D.J.; Winsky-Sommerer, R. REM sleep’s unique associations with corticosterone regulation, apoptotic pathways, and behavior in chronic stress in mice. Proc. Natl. Acad. Sci. U.S.A 2019, 116, 2733–2742. [Google Scholar] [CrossRef]
- Nutt, D.; Wilson, S.; Paterson, L. Sleep disorders as core symptoms of depression. Dialogues Clin. Neurosci. 2008, 10, 329–336. [Google Scholar] [CrossRef]
- Okawa, H.; Morokuma, S.; Maehara, K.; Arata, A.; Ohmura, Y.; Horinouchi, T.; Konishi, Y.; Kato, K. Eye movement activity in normal human fetuses between 24 and 39 weeks of gestation. PloS one 2017, 12, e0178722. [Google Scholar] [CrossRef] [PubMed]
- Oken, B.S.; Salinsky, M.C.; Elsas, S.M. Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin. Neurophysiol. 2006, 117, 1885–1901. [Google Scholar] [CrossRef]
- Okuno, H. Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci. Res. 2011, 69, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Ono, D.; Yamanaka, A. Hypothalamic regulation of the sleep/wake cycle. Neurosci. Res. 2017, 118, 74–81. [Google Scholar] [CrossRef]
- Ootsuka, Y.; Tanaka, M. Control of cutaneous blood flow by central nervous system. Temperature (Austin) 2015, 2, 392–405. [Google Scholar] [CrossRef]
- Opp, M.R. Cytokines and sleep. Sleep medicine reviews 2005, 9, 355–364. [Google Scholar] [CrossRef]
- Osorio-Forero, A.; Cardis, R.; Vantomme, G.; Guillaume-Gentil, A.; Katsioudi, G.; Devenoges, C.; Fernandez, L.M.J.; Lüthi, A. Noradrenergic circuit control of non-REM sleep substates. Curr. Biol. 2021, 31, 5009–5023.e7. [Google Scholar] [CrossRef]
- Osorio-Forero, A.; Cherrad, N.; Banterle, L.; Fernandez, L.M.J.; Lüthi, A. When the Locus Coeruleus Speaks Up in Sleep: Recent Insights, Emerging Perspectives. Int. J. Mol. Sci. 2022, 23, 5028. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, J.D.; Bruckner, R.; Autore, L.; Ryan, T.J. Natural forgetting reversibly modulates engram expression. eLife 2024, 12, RP92860. [Google Scholar] [CrossRef]
- Pagel, J.F.; Parnes, B.L. Medications for the treatment of sleep disorders: An overview. Prim. Care Companion J. Clin. Psychiatry 2001, 3, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Palagini, L.; Baglioni, C.; Ciapparelli, A.; Gemignani, A.; Riemann, D. REM sleep dysregulation in depression: state of the art. Sleep Med. Rev. 2013, 17, 377–390. [Google Scholar] [CrossRef]
- Pal, N.R.; Pal, S.K. Entropy: a new definition and its applications. IEEE Trans. Syst. Man Cybern. 1991, 21, 1260–1270. [Google Scholar] [CrossRef]
- Papale, L.A.; Andersen, M.L.; Antunes, I.B.; Alvarenga, T.A.; Tufik, S. Sleep pattern in rats under different stress modalities. Brain Res. 2005, 1060, 47–54. [Google Scholar] [CrossRef]
- Parmeggiani, P.L. REM sleep related increase in brain temperature: a physiologic problem. Arch. Ital. Biol. 2007, 145, 13–21. [Google Scholar]
- Pastukhov, Y.F.; Ekimova, I.V. The Thermophysiology of Paradoxical Sleep. Neurosci. Behav. Physi 2012, 42, 933–947. [Google Scholar] [CrossRef]
- Patel, A.K.; Reddy, V.; Shumway, K.R.; Araujo, J.F. Physiology, Sleep Stages. In StatPearls; StatPearls Publishing, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK526132/.
- Paulin, M.G.; Cahill-Lane, J. Events in Early Nervous System Evolution. Top. Cogn. Sci. 2021, 13, 25–44. [Google Scholar] [CrossRef]
- Paus, T.; Zatorre, R.J.; Hofle, N.; Caramanos, Z.; Gotman, J.; Petrides, M.; Evans, A.C. Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J. Cogn. Neurosci. 1997, 9, 392–408. [Google Scholar] [CrossRef]
- Payne, J.D.; Nadel, L. Sleep, dreams, and memory consolidation: the role of the stress hormone cortisol. Learn. Mem. 2004, 11, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.D.; Stickgold, R.; Swanberg, K.; Kensinger, E.A. Sleep preferentially enhances memory for emotional components of scenes. Psychol. Sci. 2008, 19, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Peever, J.; Fuller, P.M. The biology of REM sleep. Curr. Biol. 2017, 27, R1237–R1248. [Google Scholar] [CrossRef]
- Perea Bartolomé, M.V.; Ladera Fernández, V. El talamo: aspectos neurofuncionales [Neurofunctional aspects of the thalamus]. Rev. Neurol. 2004, 38, 687–693. [Google Scholar] [CrossRef]
- Peterson, M.J.; Benca, R.M. Sleep in mood disorders. Sleep Med. Clin. 2008, 3, 231–249. [Google Scholar] [CrossRef]
- Peterson, N.D.; Henke, P.G.; Hayes, Z. Limbic system function and dream content in university students. J. Neuropsychiatry Clin. Neurosci. 2002, 14, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, M.; Beyeler, A. Valence coding in amygdala circuits. Curr. Opin. Behav. Sci. 2019, 26, 97–106. [Google Scholar] [CrossRef]
- Pignatelli, M.; Ryan, T.J.; Roy, D.S.; Lovett, C.; Smith, L.M.; Muralidhar, S.; Tonegawa, S. Engram Cell Excitability State Determines the Efficacy of Memory Retrieval. Neuron 2019, 101, 274–284.e5. [Google Scholar] [CrossRef]
- Pilon, M.; Desautels, A.; Montplaisir, J.; Zadra, A. Auditory arousal responses and thresholds during REM and NREM sleep of sleepwalkers and controls. Sleep Med. 2012, 13, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Poe, G.R.; Foote, S.; Eschenko, O.; Johansen, J.P.; Bouret, S.; Aston-Jones, G.; Harley, C.W.; Manahan-Vaughan, D.; Weinshenker, D.; Valentino, R.; Berridge, C.; Chandler, D.J.; Waterhouse, B.; Sara, S.J. Locus coeruleus: a new look at the blue spot. Nat. Rev. Neurosci. 2020, 21, 644–659. [Google Scholar] [CrossRef]
- Poe, G.R.; Nitz, D.A.; McNaughton, B.L.; Barnes, C.A. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res. 2000, 855, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Pollmächer, T.; Schreiber, W.; Gudewill, S.; Vedder, H.; Fassbender, K.; Wiedemann, K.; Trachsel, L.; Galanos, C.; Holsboer, F. Influence of endotoxin on nocturnal sleep in humans. The American journal of physiology 1993, 264, R1077–R1083. [Google Scholar] [CrossRef]
- Pompeiano, M.; Cirelli, C.; Arrighi, P.; Tononi, G. c-Fos expression during wakefulness and sleep. Neurophysiol. Clin. (NCCN) 1995, 25, 329–341. [Google Scholar] [CrossRef]
- Pompeiano, M.; Cirelli, C.; Ronca-Testoni, S.P.; Tononi, G. NGFI-A expression in the rat brain after sleep deprivation. Mol. Brain Res. 1997, 46, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Pompeiano, M.; Cirelli, C.; Tononi, G. Effects of sleep deprivation on fos-like immunoreactivity in the rat brain. Arch. Ital. Biol. 1992, 130, 325–335. [Google Scholar]
- Pompeiano, M.; Cirelli, C.; Tononi, G. Immediate-early genes in spontaneous wakefulness and sleep: expression of c-fos and NGFI-A mRNA and protein. J. Sleep Res. 1994, 3, 80–96. [Google Scholar] [CrossRef]
- Popper, K. The Logic of Scientific Discovery; Routledge Classics; London and New York, 2002. [Google Scholar]
- Post, D.M.; Palkovacs, E.P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos. Trans. R. Soc. B, Biol. Sci. 2009, 364, 1629–1640. [Google Scholar] [CrossRef]
- Price, L.J.; Kremen, I. Variations in behavioral response threshold within the REM period of human sleep. Psychophysiology 1980, 17, 133–140. [Google Scholar] [CrossRef]
- Pringle, J.W.S. On the parallel between learning and evolution. Behav. 1951, 3, 174–215. [Google Scholar] [CrossRef]
- Vellapandian, P.S.C. Hypothalamic-Pituitary-Adrenal (HPA) Axis: Unveiling the Potential Mechanisms Involved in Stress-Induced Alzheimer’s Disease and Depression. Cureus 2024, 16, e67595. [Google Scholar] [CrossRef]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Hall, W.C.; LaMantia, A.-S.; McNamara, J.O.; Williams, S.M. (Eds.) Neuroscience, third ed.; Sinauer Associates; Sunderland, 2004. [Google Scholar]
- Rafferty, J.P. Ediacaran Period. 2018. Available online: https://www.britannica.com/science/Ediacaran-Period (accessed on 16 Apr, 2024).
- Ramón, F.; Hernández-Falcón, J.; Nguyen, B.; Bullock, T.H. Slow wave sleep in crayfish. PNAS 2004, 101, 11857–11861. [Google Scholar] [CrossRef] [PubMed]
- Rattenborg, N.C.; Lima, S.L.; Amlaner, C.J. Facultative control of avian unihemispheric sleep under the risk of predation. Behav. Brain Res. 1999a, 105, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Rattenborg, N.C.; Lima, S.L.; Amlaner, C.J. Half-awake to the risk of predation. Nature 1999b, 397, 397–398. [Google Scholar] [CrossRef]
- Rattenborg, N.C.; Ungurean, G. The evolution and diversification of sleep. Trends Ecol. Evol. 2023, 38, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Rattenborg, N.C.; van der Meij, J.; Beckers, G.J.L.; Lesku, J.A. Local Aspects of Avian Non-REM and REM Sleep. Front. Neurosci. 2019, 13, 567. [Google Scholar] [CrossRef]
- Rattenborg, N.C.; Martinez-Gonzalez, D.; Roth, T.C., 2nd; Pravosudov, V.V. Hippocampal memory consolidation during sleep: a comparison of mammals and birds. Biol. Rev. Camb. Philos. Soc. 2011, 86, 658–691. [Google Scholar] [CrossRef]
- Rattenborg, N.C. Do birds sleep in flight? Die Naturwissenschaften 2006, 93, 413–425. [Google Scholar] [CrossRef]
- Rattenborg, N.C.; Voirin, B.; Cruz, S. M.; Tisdale, R.; Dell’Omo, G.; Lipp, H.P.; Wikelski, M.; Vyssotski, A.L. Evidence that birds sleep in mid-flight. Nat. Commun. 2016, 7, 12468. [Google Scholar] [CrossRef]
- Reite, M.L.; Rhodes, J.M.; Kavan, E.; Adey, W.R. Normal sleep patterns in macaque monkey. Archives of neurology 1965, 12, 133–144. [Google Scholar] [CrossRef]
- Reite, M.; Stynes, A.J.; Vaughn, L.; Pauley, J.D.; Short, R.A. Sleep in infant monkeys: normal values and behavioral correlates. Physiol. Behav. 1976, 16, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, S.; Goyal, V.; Mello, C.V.; Pavlides, C. Brain gene expression during REM sleep depends on prior waking experience. Learn. Mem. 1999, 6, 500–508. [Google Scholar] [CrossRef]
- Ribeiro, S. The Oracle of Night: The History and Science of Dreams; Pantheon, New York, 2021. [Google Scholar]
- Rice, D.; Barone, S., Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. EHP 2000, 108 Suppl 3, 511–533. [Google Scholar] [CrossRef] [PubMed]
- Riemann, D.; Berger, M. EEG sleep in depression and in remission and the REM sleep response to the cholinergic agonist RS 86. Neuropsychopharmacology 1989, 2, 145–152. [Google Scholar] [CrossRef]
- Riemann, D.; Dressle, R.J.; Benz, F.; Palagini, L.; Feige, B. The Psychoneurobiology of Insomnia: Hyperarousal and REM Sleep Instability. Clin. transl. neurosci. 2023, 7, 30. [Google Scholar] [CrossRef]
- Riemann, D.; Krone, L.B.; Wulff, K.; Nissen, C. Sleep, insomnia, and depression. Neuropsychopharmacology 2020, 45, 74–89. [Google Scholar] [CrossRef] [PubMed]
- Riemann, D.; Spiegelhalder, K.; Nissen, C.; Hirscher, V.; Baglioni, C.; Feige, B. REM sleep instability--a new pathway for insomnia? Pharmacopsychiatry 2012, 45, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Robison, R.A.; Crick, R.E.; Johnson, M.E. Cambrian Period. 2024. Available online: https://www.britannica.com/science/Cambrian-Period (accessed on 16 Apr, 2024).
- Rodenbeck, A.; Hajak, G. Neuroendocrine dysregulation in primary insomnia. Rev. Neurol. (Paris) 2001, 157, S57–S61. [Google Scholar]
- Rolls, E.T. The cingulate cortex and limbic systems for emotion, action, and memory. Brain Struct. Funct. 2019, 224, 3001–3018. [Google Scholar] [CrossRef]
- Ross, J.A.; Van Bockstaele, E.J. The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives. Front. Psychiatry 2021, 11, 601519. [Google Scholar] [CrossRef]
- Ruckebusch, Y.; Gaujoux, M.; Eghbali, B. Sleep cycles and kinesis in the foetal lamb. Electroencephalogr. Clin. Neurophysiol. 1977, 42, 226–237. [Google Scholar] [CrossRef]
- Ryan, T.J.; Frankland, P.W. Forgetting as a form of adaptive engram cell plasticity. Nat. Rev. Neurosci. 2022, 23, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Saalmann, Y.B.; Kastner, S. The cognitive thalamus. Front. Syst. Neurosci. 2015, 9, 39. [Google Scholar] [CrossRef]
- Sagan, C. The Dragons of Eden: Speculations on the Evolution of Human Intelligence; Ballantine Books; New York, 1978. [Google Scholar]
- Sagan, C. O Mundo Assombrado Pelos Demônios: A Ciência Vista Como Uma Vela no Escuro [The Demon-Haunted World: Science as a Candle in the Dark]; Companhia Das Letras; São Paulo, 1996. [Google Scholar]
- Sah, P.; Faber, E.S.; Lopez De Armentia, M.; Power, J. The amygdaloid complex: anatomy and physiology. Physiol. Rev. 2003, 83, 803–834. [Google Scholar] [CrossRef]
- Sallinen, M.; Kaartinen, J.; Lyytinen, H. Processing of auditory stimuli during tonic and phasic periods of REM sleep as revealed by event-related brain potentials. J. Sleep Res. 1996, 5, 220–228. [Google Scholar] [CrossRef]
- Samson, D.R.; Crittenden, A.N.; Mabulla, I.A.; Mabulla, A.Z.P.; Nunn, C.L. Chronotype variation drives night-time sentinel-like behaviour in hunter-gatherers. Proc. Biol. Sci. 2017, 284, 20170967. [Google Scholar] [CrossRef]
- Sanford, L.D.; Yang, L.; Liu, X.; Tang, X. Effects of tetrodotoxin (TTX) inactivation of the central nucleus of the amygdala (CNA) on dark period sleep and activity. Brain Res. 2006, 1084, 80–88. [Google Scholar] [CrossRef]
- Saper, C.B.; Fuller, P.M.; Pedersen, N.P.; Lu, J.; Scammell, T.E. Sleep state switching. Neuron 2010, 68, 1023–1042. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Suzuki, M.; Mieda, M.; Tsujino, N.; Roth, B.; Sakurai, T. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PloS one 2011, 6, e20360. [Google Scholar] [CrossRef]
- Schmid, D.A.; Brunner, H.; Lauer, C.J.; Uhr, M.; Yassouridis, A.; Holsboer, F.; Friess, E. Acute cortisol administration increases sleep depth and growth hormone release in patients with major depression. J. Psychiatr. Res. 2008, 42, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.N.; Sciarillo, X.A.; Nudelman, J.L.; Cheer, J.F.; Roesch, M.R. Anterior cingulate cortex signals attention in a social paradigm that manipulates reward and shock. Curr. Biol. 2020, 30, 3724–3735.e2. [Google Scholar] [CrossRef]
- Schwartz, J.R.; Roth, T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr. Neuropharmacol. 2008, 6, 367–378. [Google Scholar] [CrossRef]
- Seol, J.; Lee, J.; Park, I.; Tokuyama, K.; Fukusumi, S.; Kokubo, T.; Yanagisawa, M.; Okura, T. Bidirectional associations between physical activity and sleep in older adults: a multilevel analysis using polysomnography. Sci. Rep. 2022, 12, 15399. [Google Scholar] [CrossRef] [PubMed]
- Serway, R.A.; Jewett, J.W., Jr. Physics for Scientists and Engineers with Modern Physics, ninth ed.; Brooks/Cole; Boston, 2014. [Google Scholar]
- Shepherd, J.T.; Rusch, N.J.; Vanhoutte, P.M. Effect of cold on the blood vessel wall. Gen. Pharmacol. 1983, 14, 61–64. [Google Scholar] [CrossRef]
- Shrivastava, D.; Jung, S.; Saadat, M.; Sirohi, R.; Crewson, K. How to interpret the results of a sleep study. J. Community Hosp. Intern. Med. Perspect. 2014, 4, 24983. [Google Scholar] [CrossRef]
- Shurley, J.T.; Serafetinides, E.A.; Brooks, R.E.; Elsner, R.; Kenney, D.W. Sleep in Cetaceans: I. The pilot whale, Globicephala scammoni. Psychophysiology 1969, 6, 230. [Google Scholar]
- Shu, D.G.; Chen, L.; Han, J.; Zhang, X.L. An Early Cambrian tunicate from China. Nature 2001, 411, 472–473. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.M.; Tomaszewski, K.S.; Nienhuis, R. Behavioral states in the chronic medullary and midpontine cat. Electroencephalogr. Clin. Neurophysiol. 1986, 63, 274–288. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.; Langley, T.D. Arousal threshold in the cat as a function of sleep phase and stimulus significance. Experientia 1965, 21, 740–741. [Google Scholar] [CrossRef]
- Siegel, J.M.; Manger, P.R.; Nienhuis, R.; Fahringer, H.M.; Pettigrew, J.D. Monotremes and the evolution of rapid eye movement sleep. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1998, 353, 1147–1157. [Google Scholar] [CrossRef]
- Siegel, J.M. Clues to the functions of mammalian sleep. Nature 2005, 437, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.M. REM sleep: a biological and psychological paradox. Sleep Med. Rev. 2011, 15, 139–142. [Google Scholar] [CrossRef]
- Simone, L.; Caruana, F.; Borra, E.; Del Sorbo, S.; Jezzini, A.; Rozzi, S.; Luppino, G.; Gerbella, M. Anatomo-functional organization of insular networks: From sensory integration to behavioral control. Prog. Neurobiol. 2025, 247, 102748. [Google Scholar] [CrossRef]
- Simor, P.; van der Wijk, G.; Nobili, L.; Peigneux, P. The microstructure of REM sleep: Why phasic and tonic? Sleep Med. Rev. 2020, 52, 101305. [Google Scholar] [CrossRef] [PubMed]
- Smith, C. Sleep states, memory processes and synaptic plasticity. Behav. Brain Res. 1996, 78, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Snyder, F. Toward an evolutionary theory of dreaming. Am. J. Psychiatry 1966, 123, 121–142. [Google Scholar] [CrossRef]
- Sokal, A.; Bricmont, J. Imposturas Intelectuais: O Abuso da Ciência Pelos Filósofos Pós-Modernos [Fashionable Nonsense]; BestBolso, Rio de Janeiro, 2016. [Google Scholar]
- Solms, M. Dreaming and REM sleep are controlled by different brain mechanisms. Behavioral and brain sciences 2000, 23, 843–1121. [Google Scholar] [CrossRef]
- Squire, L.R.; Genzel, L.; Wixted, J.T.; Morris, R.G. Memory consolidation. Cold Spring Harb. Perspect. Biol. 2015, 7, a021766. [Google Scholar] [CrossRef]
- Stahl, S.M. The psychopharmacology of energy and fatigue. J. Clin. Psychiatry 2002, 63, 7–8. [Google Scholar] [CrossRef]
- Steiger, A. Sleep and the hypothalamo–pituitary–adrenocortical system. Sleep Med. Rev. 2002, 6, 125–138. [Google Scholar] [CrossRef]
- Steiger, A. Neurochemical regulation of sleep. J. Psychiatr. Res. 2007, 41, 537–552. [Google Scholar] [CrossRef]
- Steiger, A.; Dresler, M.; Kluge, M.; Schüssler, P. Pathology of sleep, hormones and depression. Pharmacopsychiatry 2013, 46, S30–S35. [Google Scholar] [CrossRef] [PubMed]
- Steiger, A.; Pawlowski, M. Depression and Sleep. Int. J. Mol. Sci. 2019, 20, 607. [Google Scholar] [CrossRef]
- Stickgold, R.; Walker, M.P. Sleep-dependent memory consolidation and reconsolidation. Sleep Med. 2007, 8, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Suchecki, D.; Tiba, P.A.; Machado, R.B. REM Sleep Rebound as an Adaptive Response to Stressful Situations. Front. Neurol. 2012, 3, 41. [Google Scholar] [CrossRef]
- Summer, J.; Singh, A. REM Sleep: What It Is and Why It’s Important. 2024. Available online: https://www.sleepfoundation.org/stages-of-sleep/rem-sleep (accessed on 21 Aug, 2024).
- Swaab, D.F.; Dubelaar, E.J.; Hofman, M.A.; Scherder, E.J.; van Someren, E.J.; Verwer, R.W. Brain aging and Alzheimer’s disease; use it or lose it. Prog. Brain Res. 2002, 138, 343–373. [Google Scholar] [CrossRef]
- Swift, K.M.; Gross, B.A.; Frazer, M.A.; Bauer, D.S.; Clark, K.J.D.; Vazey, E.M.; Aston-Jones, G.; Li, Y.; Pickering, A.E.; Sara, S.J.; Poe, G.R. Abnormal Locus Coeruleus Sleep Activity Alters Sleep Signatures of Memory Consolidation and Impairs Place Cell Stability and Spatial Memory. Curr. Biol. 2018, 28, 3599–3609.e4. [Google Scholar] [CrossRef]
- Szeto, H.H.; Hinman, D.J. Prenatal development of sleep-wake patterns in sheep. Sleep 1985, 8, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Šimić, G.; Tkalčić, M.; Vukić, V.; Mulc, D.; Španić, E.; Šagud, M.; Olucha-Bordonau, F.E.; Vukšić, M.; Hof, P.R. Understanding emotions: origins and roles of the amygdala. Biomolecules 2021, 11, 823. [Google Scholar] [CrossRef]
- Tagney, J. Sleep patterns related to rearing rats in enriched and impoverished environments. Brain Res. 1973, 53, 353–361. [Google Scholar] [CrossRef]
- Tainton-Heap, L.A.L.; Kirszenblat, L.C.; Notaras, E.T.; Grabowska, M.J.; Jeans, R.; Feng, K.; Shaw, P.J.; van Swinderen, B. A Paradoxical Kind of Sleep in Drosophila melanogaster. Curr. Biol. 2021, 31, 578–590.e6. [Google Scholar] [CrossRef]
- Takahara, M.; Nittono, H.; Hori, T. Comparison of the event-related potentials between tonic and phasic periods of rapid eye movement sleep. Psychiatry Clin. Neurosci. 2002, 56, 257–258. [Google Scholar] [CrossRef]
- Takahashi, K.; Kayama, Y.; Lin, J.S.; Sakai, K. Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience 2010, 169, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Yang, L.; Liu, X.; Sanford, L.D. Influence of tetrodotoxin inactivation of the central nucleus of the amygdala on sleep and arousal. Sleep 2005, 28, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Targum, S.D.; Fava, M. Fatigue as a residual symptom of depression. Innov. Clin. Neurosci. 2011, 8, 40–43. [Google Scholar] [PubMed]
- Theorell-Haglöw, J.; Berne, C.; Janson, C.; Sahlin, C.; Lindberg, E. Associations between short sleep duration and central obesity in women. Sleep 2010, 33, 601–610. [Google Scholar] [CrossRef]
- Toth, L.A.; Krueger, J.M. Alteration of sleep in rabbits by Staphylococcus aureus infection. Infection and immunity 1988, 56, 1785–1791. [Google Scholar] [CrossRef]
- Thornton, A.; Boogert, N.J. Animal Cognition: The Benefits of Remembering. Curr. Biol. 2019, 29, R324–R327. [Google Scholar] [CrossRef]
- Thurber, A.; Jha, S.K.; Coleman, T.; Frank, M.G. A preliminary study of sleep ontogenesis in the ferret (Mustela putorius furo). Behav Brain Res 2008, 189, 41–51. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014, 81, 12–34. [Google Scholar] [CrossRef]
- Torrico, T.J.; Munakomi, S. Neuroanatomy, Thalamus. StatPearls; StatPearls Publishing, 2023; Available online: https://pubmed.ncbi.nlm.nih.gov/31194341/.
- Tseng, Y.T.; Zhao, B.; Chen, S.; Ye, J.; Liu, J.; Liang, L.; Ding, H.; Schaefke, B.; Yang, Q.; Wang, L.; Wang, F.; Wang, L. The subthalamic corticotropin-releasing hormone neurons mediate adaptive REM-sleep responses to threat. Neuron 2022, 110, 1223–1239.e8. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, C.; Boto, J.; Martin, S.; Barnaure, I.; Korchi, A.M.; Scheffler, M.; Vargas, M.I. Neuroimaging of acute and chronic unilateral and bilateral thalamic lesions. Insights Imaging 2019, 10, 24. [Google Scholar] [CrossRef]
- Ungurean, G.; Barrillot, B.; Martinez-Gonzalez, D.; Libourel, P.A.; Rattenborg, N.C. Comparative Perspectives that Challenge Brain Warming as the Primary Function of REM Sleep. iScience 2020, 23, 101696. [Google Scholar] [CrossRef]
- Urry, L.A.; Cain, M.L.; Wasserman, S.A.; Minorsky, P.V.; Orr, R.C. Campbell Biology, twelfth ed.; Pearson; New York, 2020. [Google Scholar]
- van Alphen, B.; Yap, M.H.; Kirszenblat, L.; Kottler, B.; van Swinderen, B. A dynamic deep sleep stage in Drosophila. J. Neurosci. 2013, 33, 6917–6927. [Google Scholar] [CrossRef]
- van der Helm, E.; Walker, M.P. Sleep and Emotional Memory Processing. Sleep Med. Clin. 2011, 6, 31–43. [Google Scholar] [CrossRef]
- van Gool, W.A.; Mirmiran, M. Effects of aging and housing in an enriched environment on sleep-wake patterns in rats. Sleep 1986, 9, 335–347. [Google Scholar] [CrossRef]
- van Hasselt, S.J.; Coscia, M.; Allocca, G.; Vyssotski, A.L.; Meerlo, P. Sleep and Thermoregulation in Birds: Cold Exposure Reduces Brain Temperature but Has Little Influence on Sleep Time and Sleep Architecture in Jackdaws (Coloeus monedula). Biology 2024, 13, 229. [Google Scholar] [CrossRef]
- Van Reeth, O.; Weibel, L.; Spiegel, K.; Leproult, R.; Dugovic, C.; Maccari, S. Physiology of sleep (review)–interactions between stress and sleep: from basic research to clinical situations. Sleep Med. Rev. 2000, 4, 201–219. [Google Scholar] [CrossRef]
- Vazquez, J.; Baghdoyan, H.A. Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. Am. j. physiol., Regul. integr. comp. physiol. 2001, 280, R598–R601. [Google Scholar] [CrossRef] [PubMed]
- Vertes, R.P. A life-sustaining function for REM sleep: a theory. Neurosci. Biobehav. Rev. 1986, 10, 371–376. [Google Scholar] [CrossRef]
- Vitti, J.J. Cephalopod cognition in an evolutionary context: implications for ethology. Biosemiotics 2013, 6, 393–401. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Bixler, E.O.; Papanicolaou, D.A.; Kales, A.; Stratakis, C.A.; Vela-Bueno, A.; Gold, P.W.; Chrousos, G.P. Rapid eye movement sleep correlates with the overall activities of the hypothalamic-pituitary-adrenal axis and sympathetic system in healthy humans. J. Clin. Endocrinol. Metab. 1997, 82, 3278–3280. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Chrousos, G.P. Sleep, the hypothalamic-pituitary-adrenal axis, and cytokines: multiple interactions and disturbances in sleep disorders. Endocrinol. Metab. Clin. North Am. 2002, 31, 15–36. [Google Scholar] [CrossRef] [PubMed]
- Vogel, G.; Neill, D.; Kors, D.; Hagler, M. REM sleep abnormalities in a new animal model of endogenous depression. Neurosci. Biobehav. Rev. 1990, 14, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Voss, U. Functions of sleep architecture and the concept of protective fields. Rev. Neurosci. 2004, 15, 33–46. [Google Scholar] [CrossRef]
- Vyazovskiy, V.V.; Delogu, A. NREM and REM Sleep: Complementary Roles in Recovery after Wakefulness. Neuroscientist 2014, 20, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Vyazovskiy, V.V.; Harris, K.D. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat. Rev. Neurosci. 2013, 14, 443–451. [Google Scholar] [CrossRef] [PubMed]
- 1.
- Walton, D. Informal Logic: A Pragmatic Approach; Cambridge University Press; New York, 2008. [Google Scholar]
- Wang, X.; Wu, Q.; Egan, L.; Gu, X.; Liu, P.; Gu, H.; Yang, Y.; Luo, J.; Wu, Y.; Gao, Z.; Fan, J. Anterior insular cortex plays a critical role in interoceptive attention. eLife 2019, 8, e42265. [Google Scholar] [CrossRef]
- Watson, C.J.; Baghdoyan, H.A.; Lydic, R. Neuropharmacology of Sleep and Wakefulness. Sleep Med. Clin. 2010, 5, 513–528. [Google Scholar] [CrossRef]
- Wehr, T.A. A brain-warming function for REM sleep. Neurosci. Biobehav. Rev. 1992, 16, 379–397. [Google Scholar] [CrossRef]
- Weiskopf, D.A. The Theory-Theory of Concepts. 2024. Available online: https://iep.utm.edu/theory-theory-of-concepts/#SH2b (accessed on 21 Aug 2024).
- Weitzman, E.D.; Nogeire, C.; Perlow, M.; Fukushima, D.; Sassin, J.; McGregor, P.; Hellman, L. Effects of a prolonged 3-hour sleep-wake cycle on sleep stages, plasma cortisol, growth hormone and body temperature in man. J. Clin. Endocrinol. Metab. 1974, 38, 1018–1030. [Google Scholar] [CrossRef]
- Weitzman, E.D.; Zimmerman, J.C.; Czeisler, C.A.; Ronda, J. Cortisol secretion is inhibited during sleep in normal man. J. Clin. Endocrinol. Metab. 1983, 56, 352–358. [Google Scholar] [CrossRef]
- Wei, P.; Bao, R. The role of insula-associated brain network in touch. BioMed research international 2013, 734326. [Google Scholar] [CrossRef] [PubMed]
- Werth, J.; Atallah, L.; Andriessen, P.; Long, X.; Zwartkruis-Pelgrim, E.; Aarts, R.M. Unobtrusive sleep state measurements in preterm infants – A review. Sleep Med. Rev. 2017, 32, 109–122. [Google Scholar] [CrossRef]
- Weston, A. A Construção do Argumento [A Rulebook for Arguments]; Editora WMF Martins Fontes; São Paulo, 2009. [Google Scholar]
- Whalen, P.J.; Raila, H.; Bennett, R.; Mattek, A.; Brown, A.; Taylor, J.; van Tieghem, M.; Tanner, A.; Miner, M.; Palmer, A. Neuroscience and facial expressions of emotion: The role of amygdala–prefrontal interactions. Emot. Rev. 2013, 5, 78–83. [Google Scholar] [CrossRef]
- WHO. Depressive disorder (depression). 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 21 Aug, 2024).
- Wichniak, A.; Wierzbicka, A.; Walęcka, M.; Jernajczyk, W. Effects of Antidepressants on Sleep. Curr. Psychiatry Rep. 2017, 19, 63. [Google Scholar] [CrossRef] [PubMed]
- Williams, L. 10 animals that can kill a lion. Discoverwildlife. 2025. Available online: https://www.discoverwildlife.com/animal-facts/mammals/animals-that-can-kill-a-lion (accessed on 26 Aug, 2025).
- Wolpert, L. Depression in an evolutionary context. Philos. Ethics Humanit. Med. 2008, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Deng, H.; Xiao, X.; Zuo, Y.; Sun, J.; Wang, Z. Persistent neuronal activity in anterior cingulate cortex correlates with sustained attention in rats regardless of sensory modality. Sci. Rep. 2017, 7, 43101. [Google Scholar] [CrossRef]
- Xiao, X.; Ding, M.; Zhang, Y.Q. Role of the anterior cingulate cortex in translational pain research. Neurosci. Bull. 2021, 37, 405–422. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Y.Q. A new perspective on the anterior cingulate cortex and affective pain. Neurosci. Biobehav. Rev. 2018, 90, 200–211. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Hopf, F.W.; Li, S.B.; de Lecea, L. In vivo cell type-specific CRISPR knockdown of dopamine beta hydroxylase reduces locus coeruleus evoked wakefulness. Nat. Commun. 2018, 9, 5211. [Google Scholar] [CrossRef]
- Yamazaki, R.; Toda, H.; Libourel, P.A.; Hayashi, Y.; Vogt, K.E.; Sakurai, T. Evolutionary origin of distinct NREM and REM sleep. Front. Psychol. 2020, 11, 567618. [Google Scholar] [CrossRef]
- Yan, D.Q.; Zhang, X.P.; Zhang, W.H.; Deng, N.; Liang, Z.T.; Liu, T.; Wang, G.Y.; Yao, Q.W.; Wang, K.K.; Tong, Z.P. Establishment of a chronic insomnia rat model of sleep fragmentation using unstable platforms surrounded by water. Exp. Ther. Med. 2023, 25, 233. [Google Scholar] [CrossRef] [PubMed]
- Youngstedt, S.D.; O’Connor, P.J.; Dishman, R.K. The effects of acute exercise on sleep: a quantitative synthesis. Sleep 1997, 20, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, C.; Denis, D.; Coleman, J. Both slow wave and rapid eye movement sleep contribute to emotional memory consolidation. Commun. Biol. 2025, 8, 485. [Google Scholar] [CrossRef] [PubMed]
- Zapalac, K.; Miller, M.; Champagne, F.A.; Schnyer, D.M.; Baird, B. The effects of physical activity on sleep architecture and mood in naturalistic environments. Sci. Rep. 2024, 14, 5637. [Google Scholar] [CrossRef]
- Zepelin, H. Kryger, M.H., Roth, T., Dement, W.C., Eds.; Mammalian sleep. In Principles and Practices of Sleep Medicine; Saunders; Philadelphia, 1989; pp. 30–49. [Google Scholar]
- Zepelin, H.; Rechtschaffen, A. Mammalian sleep, longevity, and energy metabolism. Brain, Behav. Evol. 1974, 10, 425–470. [Google Scholar] [CrossRef]
- Zepelin, H.; Siegel, J.M.; Tobler, I. Kryger, M.H., Roth, T., Dement, W.C., Eds.; Mammalian sleep. In Principles and Practices of Sleep Medicine; Saunders, New York, 2005; pp. 91–100. [Google Scholar]
- Zhang, R.; Deng, H.; Xiao, X. The Insular Cortex: An Interface Between Sensation, Emotion and Cognition. Neurosci. Bull. 2024, 40, 1763–1773. [Google Scholar] [CrossRef]
- Zhong, Z.; Yan, F.; Xie, C. Waking Up Brain with Electrical Stimulation to Boost Memory in Sleep: A Neuroscience Exploration. Neurosci. Bull. 2024, 40, 852–854. [Google Scholar] [CrossRef]
- Zimmerman, J.E.; Naidoo, N.; Raizen, D.M.; Pack, A.I. Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci. 2008, 31, 371–376. [Google Scholar] [CrossRef]
- Zinn, P.O.; Habib, A.; Deng, H.; Gecici, N.N.; Elidrissy, H.; Alami Idrissi, Y.; Amjadzadeh, M.; Sherry, N.S. Uncovering Interoceptive Human Insular Lobe Function through Intraoperative Cortical Stimulation-A Review. Brain sciences 2024, 14, 646. [Google Scholar] [CrossRef]
| Facts and inferences* | References | |
|---|---|---|
| Fact No. 1: | Emotions serve to ensure (directly or indirectly) the organism’s survival; among other effects, they make the organism less vulnerable to predation, thereby contributing to its survival. (Emphasis on the fight-or-flight response.) | Chand et al., 2021; Chu et al., 2024; Damasio, 2003, pp. 34-35, 53; Damasio, 2015, pp. 51-53; Damasio, 2019, pp. 56-65; Dhabhar, 2018; Gazzaniga et al., 2016, p. 416; Moyne et al., 2022; Wolpert, 2008. |
| Fact No. 2: | N-REM sleep reduces both environmental alertness and emotional responsiveness, leaving the organism highly vulnerable to predation, thus risking its survival. |
Anafi et al., 2019; Bear et al., 2016, p. 659; Capellini et al., 2008; Gazzaniga et al., 2016, p. 148; Moyne et al., 2022; Nath et al., 2017; Rattenborg and Ungurean, 2023. |
| Fact No. 3: | N-REM sleep is a non-negotiable necessity for organisms with a nervous system, even if decentralized. In other words, N-REM cannot be eliminated in animals with a nervous system, as it is required for the brain to function properly and for the animal to survive. | Cirelli and Tononi, 2008; Jaggard et al., 2021; Kandel et al., 2021, p. 1097; Libourel and Herrel, 2016; Mignot, 2008; Nath et al., 2017; Urry et al., 2020, p. 1094; Vyazovskiy and Harris, 2013; Zimmerman et al., 2008. |
| Fact No. 4: | REM sleep currently involves the distinctive neural activation of regions responsible for alertness, attention, and emotional processing (e.g., cingulate cortex, amygdala, hippocampal formation, striatum, and thalamus). In other words, REM sleep is a state of heightened alertness, attention, and emotional responsiveness. | Braun et al., 1997; Caska et al., 2009; Goldstein and Walker, 2014; Peterson et al., 2002; Maquet et al., 1996; Maquet, 2000. |
| Fact No. 5: | Animals show greater alertness after waking up from REM sleep than after waking up from N-REM sleep. This allows a state of high readiness to defend itself from danger. | Kandel et al., 2013, p. 1157; Lima et al., 2005; Horner et al., 1997b; Reite et al., 1965; Snyder, 1966; Ribeiro, 2021; Tseng et al., 2022. |
| Fact No. 6: | REM sleep has specific characteristics that allow the animal to awaken quickly after detecting stimuli associated with predators or dangers (e.g., rapid and specific reactivity to predatory stimuli, rapid increase in pupil size, and rapid increase in the ability to move when detecting a predatory stimulus). Which ensures a successful defense against any events capable of threatening the animal’s life. | Tseng et al., 2022. |
| Fact No. 7: | An organism’s chances of survival depend on the presence of certain attributes that favor its survival. Thus, not all have the same chances (or probability) of survival. | Dawkins, 2015a, pp. 2-3, 6; Mayr, 2001, pp. 188-189; Mayr, 2009, p. 148. |
| Inference No. 1: | The attribute of momentarily increasing alertness, attention, and emotional responsiveness during sleep can contribute to the organism’s survival. | Inference 1 is a logical consequence of facts 1 to 5. |
| Fact No. 8: | During REM sleep, brain metabolism increases by approximately 20% due to the heightened intensity of neural activity. | Bear et al., 2016, p. 660; Peever and Fuller, 2017. |
| Fact No. 9: | Neuronal activity consumes much more energy than neuronal silencing. | Kandel et al., 2013, p. 1157; Lennie, 2003. |
| Fact No. 10: | Non-random elimination is prolific in removing waste. Nothing so costly lasts for several million years unless it serves an important function. | McFadden, 2022, p. 268; Meredith et al., 2011. |
| Fact No. 11: | REM sleep has existed for several million years. Numerous lines of evidence indicate the possibility that REM sleep originated early in animal evolution, approximately 450 million years ago, that is, long before the branch of amniotes. | Brown et al., 2006; Frank et al., 2012; Jaggard et al., 2021; Kanaya et al., 2020; Leung et al., 2019; Medeiros et al., 2021; Meisel et al., 2011; Nath et al., 2017; Ramón et al., 2004; Tainton-Heap et al., 2021; van Alphen et al., 2013. |
| Inference No. 2: | The high energy expenditure of REM sleep and its persistence over millions of years imply that it plays an important role in the survival of organisms that possess it. In other words, REM sleep requires a strong evolutionary justification. | Inference 2 is a logical consequence of facts 8 to 11. |
| Inference No. 3: | The primary function of REM sleep is to compensate for the high vulnerability of N-REM sleep. REM sleep is an important biological mechanism that helps increase the organism’s chances of survival—a strong evolutionary justification. | Inference 3 is a logical consequence of facts 1 to 11 and inferences 1 and 2. |
| Inference No. 4: | If (for some reason) the organism is more vulnerable and REM sleep parameters do not adapt to compensate for this vulnerability, the protective function of REM sleep will be less efficient, risking its survival. | Inference 4 is a logical consequence of inference 3. |
| Inference No. 5: | If (for some reason) the organism is more protected and REM sleep parameters do not adapt to save energy, the protective function of REM sleep will be energetically inefficient. It will spend resources that could be invested in survival, such as collecting food and seeking shelter. | Inference 5 is a logical consequence of inference 3 and facts 8 and 9. |
| Inference No. 6: | REM sleep parameters (duration, latency, and density) should depend on any factors that affect the organism’s protection or vulnerability. They must adapt to conserve energy (when the organism is already protected due to another factor besides REM sleep) or to invest more energy to intensify the protective function (when the organism is vulnerable). | Inference 6 is a logical consequence of inferences 3, 4, and 5 and fact 10. |
| General hypotheses | Specific hypotheses | Status● | References |
|---|---|---|---|
| REM sleep is highly adaptive. | Hypothesis 1: organisms that have REM sleep during bihemispheric N-REM sleep have a better chance of surviving than those that do not have it. | Logically confirmed.* | McKinnon et al., 2022; Tseng et al., 2022. (And this Article itself.) |
| Hypothesis 2: REM sleep is a necessary adaptation for organisms that sleep with both cerebral hemispheres. | Factually and logically confirmed. | Frank et al., 2012; Jaggard et al., 2021; Leung et al., 2019; Medeiros et al., 2021; Tainton-Heap et al., 2021; van Alphen et al., 2013. (And this Article itself.) | |
| Hypothesis 3: given the high vulnerability of deep sleep (or quiet sleep), there was a strong evolutionary pressure for animals to develop vigilant sleep (or active sleep). | Factually and logically confirmed. | Frank et al., 2012; Jaggard et al., 2021; Leung et al., 2019; Medeiros et al., 2021; Tainton-Heap et al., 2021; van Alphen et al., 2013. (And this Article itself.) | |
| Hypothesis 4: predation played a significant role in the evolution of REM sleep. | Factually and logically confirmed. | Capellini et al., 2008; Tseng et al., 2022. (And this Article itself.) | |
| REM sleep is cyclical due to its protective function. | Hypothesis 5: the presence of more than one REM episode offers more efficient protection, increasing the organism’s chances of survival. | Logically confirmed.* | This Article itself. (See the arguments I developed in Section 4.2.) |
| The primary biological function of REM sleep is to reduce the vulnerability caused by N-REM sleep. | Hypothesis 6: REM sleep activates neural regions involved in threat detection. |
Factually confirmed. | Bear et al., 2016, p. 670; Corsi-Cabrera et al., 2016; Damasio, 2003, p. 58; Dang-Vu et al., 2010; Davis and Whalen, 2001; Deboer et al., 1998; Eagleman and Vaughn, 2021; Gazzaniga et al., 2016, p. 95; Maquet et al., 1996; Nofzinger et al., 1997; Pignatelli and Beyeler, 2019; Rolls, 2019; Snyder, 1966; Sah et al., 2003; Whalen et al., 2013. |
| Hypothesis 7: REM sleep activates neural regions involved in emotional processing. | Factually confirmed. | Bear et al., 2016, p. 670; Corsi-Cabrera et al., 2016; Damasio, 2003, p. 58; Dang-Vu et al., 2010; Gazzaniga et al., 2016, p. 95; Jumah and Dossani, 2022; Maquet et al., 1996; Nofzinger et al., 1997; Pignatelli and Beyeler, 2019; Rolls, 2019; Snyder, 1966; Sah et al., 2003; Whalen et al., 2013. | |
| Hypothesis 8: REM sleep activates neural regions involved in attention. | Factually confirmed. | Bear et al., 2016, p. 670; Corsi-Cabrera et al., 2016; Damasio, 2003, p. 58; Dang-Vu et al., 2010; Davis and Whalen, 2001; Deboer et al., 1998; Eagleman and Vaughn, 2021; Gazzaniga et al., 2016, p. 95; Jumah and Dossani, 2022; Maquet et al., 1996; Nofzinger et al., 1997; Pignatelli and Beyeler, 2019; Rolls, 2019; Snyder, 1966. | |
| Hypothesis 9: REM sleep activates neural regions involved in pain processing. | Factually confirmed. | Devinsky et al., 1995; Kandel et al., 2013, p. 545; Maquet et al., 1996; Paus et al., 1997; Schneider et al., 2020; Wu et al., 2017; Xiao and Zhang, 2018; Xiao et al., 2021. | |
| Hypothesis 10: REM sleep is necessary when N-REM sleep occurs in both hemispheres. | Factually confirmed. | Fuchs et al., 2009; Lyamin et al., 2018; Mascetti, 2016; Rattenborg et al., 1999a; Rattenborg et al., 1999b; Rattenborg, 2006; Rattenborg et al., 2016. | |
| Hypothesis 11: REM sleep is dispensable when N-REM sleep occurs only in one hemisphere. (Dispensable in the sense that the organism already has sufficient protection provided by an active hemisphere. “Dispensable” does not mean that it cannot appear (with some duration) in some species. Non-random elimination may not have had time to remove REM sleep in organisms in which it makes no sense.) | Factually confirmed. | Fuchs et al., 2009; Lyamin et al., 2008; Lyamin et al., 2018; Mascetti, 2016; Mukhametov, 1995; Mukhametov et al., 1977; Mukhametov et al., 1988; Rattenborg et al., 1999a; Rattenborg et al., 1999b; Rattenborg, 2006; Rattenborg et al., 2016. | |
| Hypothesis 12: in organisms that only have unihemispheric sleep, REM sleep is useless. Either it does not exist or there are some remnants due to the evolutionary past. | Factually confirmed. | Lyamin et al., 2008; Lyamin et al., 2018; Mukhametov, 1995; Mukhametov et al., 1977; Mukhametov et al., 1988; Shurley et al., 1969. | |
| Hypothesis 13: in organisms that possess both bihemispheric and unihemispheric sleep, suppression of REM sleep during unihemispheric sleep will generally not accompany REM sleep rebound. | Factually confirmed. | Lyamin et al., 2018. | |
| Hypothesis 14: in organisms that possess both bihemispheric and unihemispheric sleep, suppression of REM sleep during unihemispheric sleep can rarely cause a small rebound of REM sleep. | Factually confirmed. | Lyamin et al., 2018. | |
| Hypothesis 15: upon awakening from REM sleep, the body presents full alertness and sensory and motor efficiency. | Factually confirmed. | Kandel et al., 2013, p. 1157; Lima et al., 2005; Horner et al., 1997b; Reite et al., 1965; Snyder, 1966; Ribeiro, 2021; Tseng et al., 2022. | |
| Hypothesis 16: REM sleep makes waking up easier. | Factually confirmed. | Ermann et al., 1993; Ficca et al., 2004; Klemm, 2011; Ribeiro, 2021; Tseng et al., 2022. | |
| Hypothesis 17: spontaneous awakenings occur more frequently during, or shortly after, REM sleep. | Factually confirmed. | Ermann et al., 1993; Ficca et al., 2004; Klemm, 2011; Ribeiro, 2021; Tseng et al., 2022. | |
| Hypothesis 18: REM sleep does not suffer a “negative rebound”. Sleeping more one night increases REM sleep time, but does not reduce REM sleep time in the subsequent night. | Factually confirmed. | Le Bon, 2020; Ribeiro, 2021. | |
| Hypothesis 19: REM sleep suppression does not compromise any neural function other than protective function. | Factually confirmed. | Bear et al., 2016, p. 665; Feriante and Araujo, 2023; Kandel et al., 2013, p. 1157; Matsuda et al., 2021; McCarthy et al., 2016; Nollet et al., 2019; Pagel and Parnes, 2001; Ribeiro, 2021. | |
| The parameters of REM sleep depend on the organism’s vulnerability. | Hypothesis 20: The parameters of REM sleep—its duration, latency to the first episode, and density—depend on information provided by all varieties of neural maps: interoceptive, proprioceptive, and exteroceptive. | Factually confirmed. | Anderson and Bradley, 2013; Baglioni et al., 2016; Berger and Riemann, 1993; Borniger et al., 2018; Chamorro et al., 2014; Driver et al., 1994; Driver and Taylor, 2000; Elrokhsi et al., 2020; Fang et al., 1995; Gutwein and Fishbein, 1980a; Gutwein and Fishbein, 1980b; Hague et al., 2003; Hrozanova et al., 2020; Imeri and Opp, 2009; Kishi et al., 2023; Kitamura et al., 2021; Kiyono et al., 1981; Krueger and Majde, 1994; Liu et al., 2008; McCarley, 1982; Mirmiran et al., 1982; Myllymäki et al., 2011; Nair et al., 2022; Palagini et al., 2013; Pollmächer et al., 1993; Riemann et al., 2020; Riemann and Berger, 1989; Schmid et al., 2008; Seol et al., 2022; Smith, 1996; Steiger and Pawlowski, 2019; Steiger et al., 2013; Tagney, 1973; Theorell-Haglöw et al., 2010; Toth and Krueger, 1988; van Gool and Mirmiran, 1986; Wichniak et al., 2017; Zapalac et al., 2024. |
| Hypothesis 21: total REM sleep time is shorter in organisms with higher body fat. | Factually confirmed. | Chamorro et al., 2014; Elrokhsi et al., 2020; Liu et al., 2008; Theorell-Haglöw et al., 2010. | |
| Hypothesis 22: the latency to the first REM episode is greater in organisms with greater body fat. | Factually confirmed. | Chamorro et al., 2014; Liu et al., 2008. | |
| Hypothesis 23: the density (or intensity) of REM sleep is lower in organisms with greater body fat. | Factually confirmed. | Liu et al., 2008. | |
| Hypothesis 24: non-obese sedentary individuals have more REM sleep time compared to more active individuals. | Factually confirmed. | Hague et al., 2003; Seol et al., 2022; Zapalac et al., 2024. | |
| Hypothesis 25: non-obese sedentary individuals have a shorter latency to the first REM episode compared to more active individuals. | Factually confirmed. | Hague et al., 2003; Seol et al., 2022; Zapalac et al., 2024. | |
| Hypothesis 26: non-obese sedentary individuals have greater REM sleep density compared to more active individuals. | Not confirmed nor refuted.✤ | ||
| Hypothesis 27: total REM sleep time is shorter in organisms with greater muscle strength or in those who exercised recently. | Factually confirmed. | Brand et al., 2010; Driver et al., 1994; Driver and Taylor, 2000; Hague et al., 2003; Hrozanova et al., 2020; Kubitz et al., 1996; Myllymäki et al., 2011; Seol et al., 2022; Youngstedt et al., 1997; Zapalac et al., 2024. | |
| Hypothesis 28: the latency to the first REM episode is greater in organisms with greater muscular strength or in those who exercised recently. | Factually confirmed. | Driver et al., 1994; Driver and Taylor, 2000; Hague et al., 2003; Seol et al., 2022; Youngstedt et al., 1997; Zapalac et al., 2024. | |
| Hypothesis 29: REM sleep density is lower in organisms with greater muscular strength or in those who exercised recently. | Not confirmed nor refuted.✤ | ||
| Hypothesis 30: recent exposure to a new environment (or new stimuli) increases REM sleep time. | Factually confirmed. | Borniger et al., 2018; Gutwein and Fishbein, 1980a; Gutwein and Fishbein, 1980b; Kiyono et al., 1981; Mirmiran et al., 1982; Nair et al., 2022; Smith, 1996; Tagney, 1973; van Gool and Mirmiran, 1986. | |
| Hypothesis 31: recent exposure to a new environment (or new stimuli) reduces the latency to the first REM episode. | Factually confirmed. | Mirmiran et al., 1982; Nair et al., 2022. | |
| Hypothesis 32: recent exposure to a new environment (or new stimuli) increases REM sleep density. | Not confirmed nor refuted.✤ | ||
| Hypothesis 33: depression increases REM sleep time. | Factually confirmed. | Anderson and Bradley, 2013; Baglioni et al., 2016; Berger and Riemann, 1993; Cheeta et al., 1997; Palagini et al., 2013; Steiger and Pawlowski, 2019; Steiger et al., 2013; Vogel et al., 1990; Wichniak et al., 2017. |
|
| Hypothesis 34: depression reduces the latency to the first REM episode. | Factually confirmed. | Anderson and Bradley, 2013; Baglioni et al., 2016; Berger and Riemann, 1993; Cheeta et al., 1997; Lam, 2006; McCarley, 1982; Palagini et al., 2013; Riemann and Berger, 1989; Steiger and Pawlowski, 2019; Steiger et al., 2013; Vogel et al., 1990; Wichniak et al., 2017. | |
| Hypothesis 35: depression increases REM sleep density. | Factually confirmed. | Anderson and Bradley, 2013; Baglioni et al., 2016; Berger and Riemann, 1993; Friess et al., 2004; Kishi et al., 2023; Lam, 2006; McCarley, 1982; Palagini et al., 2013; Steiger and Pawlowski, 2019; Steiger et al., 2013; Wichniak et al., 2017. | |
| Hypothesis 36: stress reduces REM sleep time or suppress it. | Factually confirmed. | Feng et al., 2023; Friess et al., 2004; Hrozanova et al., 2020; Papale et al., 2005; Schmid et al., 2008. | |
| Hypothesis 37: stress increases the latency to the first REM episode. | Factually confirmed. | Feng et al., 2023; Friess et al., 2004; Goldberg et al., 2020; Goodenough et al., 1975. | |
| Hypothesis 38: stress increases REM sleep density. | Factually confirmed. | Barbato et al., 1994; Barbato, 2023; Feinberg et al., 1987; Feng et al., 2023; Ficca et al., 2004; Goodenough et al., 1975; Lauer et al., 1987; Rodenbeck and Hajak, 2001. | |
| Hypothesis 39: when other factors remain unchanged, combined vulnerabilities produce more intense effects on REM sleep parameters. | Factually and logically confirmed. | Anderson and Bradley, 2013; Arias et al., 2020; Berger and Riemann, 1993; Kishi et al., 2023; McCarley, 1982; Palagini et al., 2013; Ribeiro, 2021; Riemann et al., 2020; Riemann and Berger, 1989; Schmid et al., 2008; Stahl, 2002; Steiger and Pawlowski, 2019; Steiger et al., 2013; Suchecki et al., 2012; Targum and Fava, 2011; Wichniak et al., 2017; Wolpert, 2008. (And this Article itself.) | |
| Hypothesis 40: when other factors remain unchanged, combined protections produce more intense effects on REM sleep parameters. | Factually and logically confirmed. | Chand et al., 2021; Feinberg et al., 1987; Oken et al., 2006. (And this Article itself.) | |
| Hypothesis 41: REM sleep density is a measure of the organism’s level of alertness. Which is directly related to the amount of stress, because stress reduces the organism’s vulnerability by increasing vigilance. | Factually and logically confirmed. | Barbato et al., 1994; Barbato, 2023; Chand et al., 2021; Feinberg et al., 1987; Lam, 2006; Oken et al., 2006. (And this Article itself.) | |
| Hypothesis 42: bodily immature neonates have more REM sleep compared to bodily mature neonates. | Factually confirmed. | Balzamo et al., 1972; Blumberg, 2015; Chen et al., 2022; Cui et al., 2019; Grigg-Damberger and Wolfe, 2017; Jouvet-Mounier et al., 1970; Reite et al., 1976; Ruckebusch et al., 1977; Szeto and Hinman, 1985; Thurber et al., 2008. | |
| Hypothesis 43: bodily immature neonates have a shorter latency to the first REM episode compared to bodily mature neonates. | Not confirmed nor refuted.✤ | ||
| Hypothesis 44: bodily immature neonates have greater REM sleep density compared to bodily mature neonates. | Not confirmed nor refuted.✤ | ||
| Hypothesis 45: in premature births, REM sleep is even more abundant than in newborns. | Factually confirmed. | Chen et al., 2022; Graven and Browne, 2008; Mizrahi, 2004; Okawa et al., 2017; Werth et al., 2017. | |
| Hypothesis 46: in premature births, the latency to the first REM episode is even shorter than in neonates. | Not confirmed nor refuted.✤ | ||
| Hypothesis 47: in premature births, REM sleep density is even greater than in newborns. | Not confirmed nor refuted.✤ | ||
| REM sleep evolved from a brief awakening from N-REM sleep. | Hypothesis 48: REM sleep emerged as an error in the neurobiological mechanisms that control the transition from sleep to wakefulness, causing a brief awakening from N-REM sleep. | Logically plausible.✣ | This Article itself. (See the arguments I developed in Section 4.5.) |
| Hypothesis 49: primeval REM sleep evolved from a brief awakening to an ease of awakening. | Logically plausible.✣ | This Article itself. (See the arguments I developed in Section 4.5.) |
|
| Hypothesis 50: after evolving into an ease of awakening, primeval REM sleep began to include more than one REM episode. | Logically plausible.✣ | This Article itself. (See the arguments I developed in Section 4.5.) |
|
| Hypothesis 51: intense muscle atonia appeared after primeval REM sleep began to include more than one REM episode. | Logically plausible.✣ | This Article itself. (See the arguments I developed in Section 4.5.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
