Submitted:
08 August 2024
Posted:
12 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Fluid Model
3. Formulation
4. Exploring Ion Viscosity Effects in Drift Wave Turbulence
5. Isotope Effects on Transport and Confinement: Edge Considerations and Predictive Comparison
6. Density Limit and System Size Dependence: Insights from Gyro-Landau Resonances and Convection
7. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conner, J.W.; Wilson, H.R. Survey of theories of anomalous transport. Plasma Physics and Controlled Fusion 1994, 36, 719. [CrossRef]
- Liewer, P.C. Measurements of microturbulence in tokamaks and comparisons with theories of turbulence and anomalous transport. Nuclear Fusion 1985, 25, 543. [CrossRef]
- Itoh, S.I.; Itoh, K. Hydrogen isotope effect on the Dimits shift. Nuclear Fusion 2016, 56, 106028. [CrossRef]
- Urano, H.; Takizuka, T.; Kikuchi, M.; Nakano, T.; Hayashi, N.; Oyama, N.; Kamada, Y. Publisher’s Note: Small ion-temperature-gradient scale length and reduced heat diffusivity at large hydrogen isotope mass in conventional H-mode plasmas [Phys. Rev. Lett. 109, 125001 (2012)]. Phys. Rev. Lett. 2012, 109, 149901. [CrossRef]
- Rosenbluth, M.N.; Hinton, F.L. Poloidal Flow Driven by Ion-Temperature-Gradient Turbulence in Tokamaks. Phys. Rev. Lett. 1998, 80, 724–727. [CrossRef]
- Wang, G.Q.; Ma, J.; Weiland, J. Zonal flows near marginal stability in drift wave transport. Physica Scripta 2015, 90, 065604. [CrossRef]
- Weiland, J.; Zagorodny, A. On the normalization of transport from ITG Modes. Physics of Plasmas 2016, 23, [https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.4964772/14027143/102307_1_online.pdf]. 102307, . [CrossRef]
- Nozaki, K.; Taniuti, T. Plasma Flow and a Soliton in a Theta Pinch. Journal of the Physical Society of Japan 1979, 46, 970–974. [CrossRef]
- Wakatani, M.; Hasegawa, A. A collisional drift wave description of plasma edge turbulence. The Physics of Fluids 1984, 27, 611–618, [https://pubs.aip.org/aip/pfl/article-pdf/27/3/611/12476138/611_1_online.pdf]. [CrossRef]
- Dimits, A.M.; Bateman, G.; Beer, M.A.; Cohen, B.I.; Dorland, W.; Hammett, G.W.; Kim, C.; Kinsey, J.E.; Kotschenreuther, M.; Kritz, A.H.; Lao, L.L.; Mandrekas, J.; Nevins, W.M.; Parker, S.E.; Redd, A.J.; Shumaker, D.E.; Sydora, R.; Weiland, J. Comparisons and physics basis of tokamak transport models and turbulence simulations. Physics of Plasmas 2000, 7, 969–983, [https://pubs.aip.org/aip/pop/article-pdf/7/3/969/12423001/969_1_online.pdf]. [CrossRef]
- Doyle, E.; Houlberg, W.; Kamada, Y.; Mukhovatov, V.; Osborne, T.; Polevoi, A.; Bateman, G.; Connor, J.; Cordey, J.; Fujita, T.; Garbet, X.; Hahm, T.; Horton, L.; Hubbard, A.; Imbeaux, F.; Jenko, F.; Kinsey, J.; Kishimoto, Y.; Li, J.; Luce, T.; Martin, Y.; Ossipenko, M.; Parail, V.; Peeters, A.; Rhodes, T.; Rice, J.; Roach, C.; Rozhansky, V.; Ryter, F.; Saibene, G.; Sartori, R.; Sips, A.; Snipes, J.; Sugihara, M.; Synakowski, E.; Takenaga, H.; Takizuka, T.; Thomsen, K.; Wade, M.; Wilson, H.; ITPA Transport Physics Topical Group and ITPA Confinement Database and Modelling Topical Group and ITPA Pedestal and Edge Topical Group. Chapter 2: Plasma confinement and transport. Nuclear Fusion 2007, 47, S18. [CrossRef]
- Weiland, J.; Rafiq, T.; Schuster, E. Fast particles in drift wave turbulence. Physics of Plasmas 2023, 30, [https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0147320/17009722/042517_1_5.0147320.pdf]. 042517, . [CrossRef]
- Hasegawa, A. Plasma instabilities and nonlinear effects. Springer Verlag Springer Series on Physics Chemistry Space 1975, 8.
- Waltz, R.; Dominguez, R.; Hammett, G. Gyro-Landau fluid models for toroidal geometry. Physics of Fluids b: Plasma physics 1992, 4, 3138–3151.
- Waltz, R.E.; Staebler, G.M.; Dorland, W.; Hammett, G.W.; Kotschenreuther, M.; Konings, J.A. A gyro-Landau-fluid transport model. Physics of Plasmas 1997, 4, 2482–2496, [https://pubs.aip.org/aip/pop/article-pdf/4/7/2482/12447394/2482_1_online.pdf]. [CrossRef]
- Hasegawa, A.; Mima, K. Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. The Physics of Fluids 1978, 21, 87–92, [https://pubs.aip.org/aip/pfl/article-pdf/21/1/87/12384514/87_1_online.pdf]. [CrossRef]
- Weiland, J.; Nordman, H. Proc. Varenna-Lausanne Workshop, Chexbres 1988 "Theory of Fusion Plasmas. (Bologna Editrice Compostori) 1988, p. 451.
- Connor, J.W.; Pogutse, O.P. On the relationship between mixing length and strong turbulence estimates for transport due to drift turbulence. Plasma Physics and Controlled Fusion 2001, 43, 155. [CrossRef]
- Dupree, T.H. A Perturbation Theory for Strong Plasma Turbulence. The Physics of Fluids 1966, 9, 1773–1782, [https://aip.scitation.org/doi/pdf/10.1063/1.1761932]. [CrossRef]
- Hahm, T.; Wang, L.; Wang, W.; Yoon, E.; Duthoit, F. Isotopic dependence of residual zonal flows. Nuclear Fusion 2013, 53, 072002. [CrossRef]
- Sugama, H.; Watanabe, T.H.; Horton, W. Collisionless kinetic-fluid model of zonal flows in toroidal plasmas. Physics of Plasmas 2007, 14, 022502, [https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.2435329/16121570/022502_1_online.pdf]. [CrossRef]
- Kim, S.S.; Jhang, H. A conservative gyrofluid model: Effect of closure on energetics. Physics of Plasmas 2020, 27, 092305, [https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0020332/15811813/092305_1_online.pdf]. [CrossRef]
- Zagorodny, A.; Weiland, J. Statistical theory of turbulent transport (non-Markovian effects). Physics of Plasmas 1999, 6, 2359–2372.
- Weiland, J.; Wilhelmsson, H. Coherent non-linear interaction of waves in plasmas. Oxford Pergamon Press International Series on Natural Philosophy 1977, 88.
- Weiland, J.; Wilhelmsson, H. Repetitive Explosive Instabilities. Physica Scripta 1973, 7, 222. [CrossRef]
- Mattor, N.; Parker, S.E. Nonlinear Kinetic Fluid Equations. Phys. Rev. Lett. 1997, 79, 3419–3422. [CrossRef]
- Holod, I.; Weiland, J.; Zagorodny, A. Nonlinear fluid closure:Three mode slab ion temperature gradient problem with diffusion. Physics of Plasmas 2002, 9, 1217–1220, [. [CrossRef]
- Weiland, J. Simulations of the L-H transition on experimental advanced superconducting Tokamak. Physics of Plasmas 2014, 21, [https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.4901597/15780223/122501_1_online.pdf]. 122501, . [CrossRef]
- Weiland, J. The role of zonal flows in reactive fluid closures. Plasma Science and Technology 2018, 20, 074007. [CrossRef]
- Weiland, J.; Zagorodny, J. Drift wave theory for transport in tokamaks. Rev. Mod. Plasma Phys 2019, 3, 8. [CrossRef]
- Rogers, B.N.; Drake, J.F.; Zeiler, A. Phase Space of Tokamak Edge Turbulence, the L-H Transition, and the Formation of the Edge Pedestal. Phys. Rev. Lett. 1998, 81, 4396–4399. [CrossRef]
- Hubbard, A.E.; Boivin, R.L.; Drake, J.F.; Greenwald, M.; In, Y.; Irby, J.H.; Rogers, B.N.; Snipes, J.A. Local variables affecting H-mode threshold on Alcator C-Mod. Plasma Physics and Controlled Fusion 1998, 40, 689. [CrossRef]
- Hubbard, A.E.; Hughes, J.W.; Bespamyatnov, I.O.; Biewer, T.; Cziegler, I.; LaBombard, B.; Lin, Y.; McDermott, R.; Rice, J.E.; Rowan, W.L.; Snipes, J.A.; Terry, J.L.; Wolfe, S.M.; Wukitch, S.; The Alcator C-Mod Group. H-mode pedestal and threshold studies over an expanded operating space on Alcator C-Mod. Physics of Plasmas 2007, 14, 056109, [https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.2714297/13888117/056109_1_online.pdf]. [CrossRef]
- Weiland, J. Stability and Transport in Magnetic Confinement Systems; Springer, New York, Heidelberg, 2012.
- Snyder, P.; Groebner, R.; Hughes, J.; Osborne, T.; Beurskens, M.; Leonard, A.; Wilson, H.; Xu, X. A first-principles predictive model of the pedestal height and width: development, testing and ITER optimization with the EPED model. Nuclear Fusion 2011, 51, 103016. [CrossRef]
- ITER Physics Expert Group on Confinement and Transport and ITER Physics Expert Group on Confinement Modelling and Database and ITER Physics Basis Editors. Chapter 2: Plasma confinement and transport. Nuclear Fusion 1999, 39, 2175. [CrossRef]
- Weiland, J.; Nordman, H. Enhanced confinement regimes in transport code simulations of toroidal drift wave transport. Nuclear Fusion 1991, 31, 390. [CrossRef]
- Greenwald, M.; Terry, J.; Wolfe, S.; Ejima, S.; Bell, M.; Kaye, S.; Neilson, G. A new look at density limits in tokamaks. Nuclear Fusion 1988, 28, 2199. [CrossRef]
- Borrass, K.; Loarte, A.; Maggi, C.; Mertens, V.; Monier, P.; Monk, R.; Ongena, J.; Rapp, J.; Saibene, G.; Sartori, R.; Schweinzer, J.; Stober, J.; Suttrop, W.; Workprogramme collaborators, E. Recent H-mode density limit studies at JET. Nuclear Fusion 2004, 44, 752. [CrossRef]
- Gates, D.A.; Delgado-Aparicio, L. Origin of Tokamak Density Limit Scalings. Phys. Rev. Lett. 2012, 108, 165004. [CrossRef]
- Zanca, P.; Sattin, F.; Escande, D.; Pucella, G.; Tudisco, O. A unified model of density limit in fusion plasmas. Nuclear Fusion 2017, 57, 056010. [CrossRef]
- Giacomin, M.; Pau, A.; Ricci, P.; Sauter, O.; Eich, T.; the ASDEX Upgrade team.; Contributors, J.; the TCV team. First-Principles Density Limit Scaling in Tokamaks Based on Edge Turbulent Transport and Implications for ITER. Phys. Rev. Lett. 2022, 128, 185003. [CrossRef]
- Singh, R.; Diamond, P.H. Zonal shear layer collapse and the power scaling of the density limit: old L-H wine in new bottles. Plasma Physics and Controlled Fusion 2022, 64, 084004. [CrossRef]
- Rafiq, T.; Weiland, J. Self-consistent core-pedestal ITER scenario modeling. Nuclear Fusion 2021, 61, 116005. [CrossRef]
- Rafiq, T.; Kritz, A.H.; Tangri, V.; Pankin, A.Y.; Voitsekhovitch, I.; Budny, R.V.; JET EFDA Contributors. Integrated modeling of temperature profiles in L-mode tokamak discharges. Physics of Plasmas 2014, 21, 122505, [https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.4903464/15780800/122505_1_online.pdf]. [CrossRef]
- Rafiq, T.; Wang, Z.; Morosohk, S.; Schuster, E.; Weiland, J.; Choi, W.; Kim, H.T. Validating the Multi-Mode Model’s Ability to Reproduce Diverse Tokamak Scenarios. Plasma 2023, 6, 435–458. [CrossRef]
- Rafiq, T.; Wilson, C.; Clauser, C.; Schuster, E.; Weiland, J.; Anderson, J.; Kaye, S.; Pankin, A.; LeBlanc, B.; Bell, R. Predictive modeling of NSTX discharges with the updated multi-mode anomalous transport module. Nuclear Fusion 2024, 64, 076024. [CrossRef]
- Weiland, J.; Rafiq, T.; Schuster, E. Nonlinearities in magnetic confinement, ionospheric physics, and population explosion leading to profile resilience. submitted to Physics of Plasmas 2024.
- Rafiq, T.; Kritz, A.H.; Weiland, J.; Pankin, A.Y.; Luo, L. Physics basis of Multi-Mode anomalous transport module. Physics of Plasmas 2013, 20, 032506, [https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.4794288/14795596/032506_1_online.pdf]. [CrossRef]
- Houlberg, W.A.; Shaing, K.C.; Hirshman, S.P.; Zarnstorff, M.C. Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio. Physics of Plasmas 1997, 4, 3230–3242, [https://pubs.aip.org/aip/pop/article-pdf/4/9/3230/12664245/3230_1_online.pdf]. [CrossRef]
- Ding, S.; Garofalo, A.M.; Wang, H.Q.; Weisberg, D.B.; Li, Z.Y.; Jian, X.; Eldon, D.; Victor, B.S.; Marinoni, A.; Hu, Q.M.; Carvalho, I.S.; Odstrčil, T.; Wang, L.; Hyatt, A.W.; Osborne, T.H.; Gong, X.Z.; Qian, J.P.; Huang, J.; McClenaghan, J.; Holcomb, C.T.; Hanson, J.M. A high-density and high-confinement tokamak plasma regime for fusion energy. Nature 2024, 629, 555–560.
- Zagorodny, A.; Weiland, J. Closure at the Irreducible Part of the Fourth Moment for the Case of Constant Coefficients in the Fokker-Planck Equation. AIP Conference Proceedings 2011, 1392, 24–32, [https://pubs.aip.org/aip/acp/article-pdf/1392/1/24/11579434/24_1_online.pdf]. [CrossRef]
- Chandrasekhar, S. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 1943, 15, 1–89. [CrossRef]
- Coppi, B.; Rosenbluth, M.; Sudan, R. Nonlinear interactions of positive and negative energy modes in rarefied plasmas (I). Annals of Physics 1969, 55, 207–247. [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
