Submitted:
03 August 2024
Posted:
06 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Biological Properties
3. Osseointegration
4. Mechanical Properties of Implants
5. Strength and Flexibility
6. Aesthetics
7. Cost Considerations
8. Manufacturing Cost
9. Clinical Performance
10. Long-Term Success Rates
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siddiqi, A.; Payne, A.G.T.; De Silva, R.K.; Duncan, W. Titanium allergy: Could it affect dental implant integration? Clin. Oral Implant. Res. 2011, 22, 673–680. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, N.P.J.; Feilzer, A.J.; Kleverlaan, C.J.; Bontkes, H.; Gibbs, S.; Rustemeyer, T.A. Retrospective study on titanium sensitivity: Patch test materials and manifestations. Contact Dermat. 2018, 79, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.M.; Warshaw, E.M. Hypersensitivity reactions to titanium: Diagnosis and management. Dermatitis 2015, 26, 7–25. [Google Scholar] [CrossRef]
- Brånemark, I.P.; Hansson, O.B.; Adell, R.; Breine, U.; Lindström, J.; Hallén, O.; Ohman, A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scandinavian Journal of Plastic and Reconstructive Surgery. Supplementum 1977, 16, 1–132. [Google Scholar]
- Cochran, D.L.; Jackson, J.M.; Jones, A.A.; Jones, J.D.; Kaiser, D.A.; Taylor, T.D.; Weber, H.P.; Higginbottom, F.L.; Richardson, J.R.; Oates, T. A 5-Year Prospective Multicenter Clinical Trial of Non-Submerged Dental Implants with a Titanium Plasma-Sprayed Surface in 200 Patients. J. Periodontol. 2011, 82, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Ravald, N.; Dahlgren, S.; Teiwik, A.; Gröndahl, K. Long-term evaluation of Astra Tech and Brånemark implants in patients treated with full-arch bridges. The results after 12–15 years. Clin. Oral Implant. Res. 2013, 24, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Audley, J.A. The use of zirconia as a refractory material. Nature 1917, 99, 375–376. [Google Scholar]
- Chopra, D.; Jayasree, A.; Guo, T.; Gulati, K.; Ivanovski, S. Advancing dental implants: Bioactive and therapeutic modifications of zirconia. Bioact. Mater. 2022, 13, 161–178. [Google Scholar] [CrossRef]
- Hanawa, T. Zirconia versus titanium in dentistry: A review. Dent. Mater. J. 2020, 39, 24–36. [Google Scholar] [CrossRef]
- Webber, L.P.; Chan, H.L.; Wang, H.L. Will zirconia implants replace titanium implants? Applied Sciences 2021, 11, 6776. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Goodman, S.B.; Kumar, M.; Bose, S. Improving biocompatibility for the next generation of metallic implants. Prog. Mater. Sci. 2023, 133, 101053. [Google Scholar] [CrossRef] [PubMed]
- Yumashev, A.; Karapetyan, A.; Garnova, N.; Berestova, A. Characteristics of biocompatible coatings on dental implants. J. Glob. Pharma Technol. 2020, 12, 30. [Google Scholar]
- Shingade, A.; Dhatrak, P. Biomaterials used in dental applications to improve success rate of implantation: A review. AIP Conf. Proc. 2021, 2358, 090019. [Google Scholar] [CrossRef]
- Singh, P.V.; Reche, A.; Paul, P.; Agarwal, S. Zirconia: Facts and Perspectives for Biomaterials in Dental Implantology. Cureus 2023, 15, e46828. [Google Scholar] [CrossRef] [PubMed]
- Nikkerdar, N.; Golshah, A.; Mobarakeh, M.S.; Fallahnia, N.; Azizie, B.; Shoohanizad, E. Recent progress in application of zirconium oxide in dentistry. J. Med. Pharm. Chem. Res. 2024, 6, 1042–1071. [Google Scholar]
- Abraham, A.M.; Venkatesan, S. A review on application of biomaterials for medical and dental implants. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 2023, 237, 249–273. [Google Scholar] [CrossRef]
- Rathee, G.; Bartwal, G.; Rathee, J.; Mishra, Y.K.; Kaushik, A.; Solanki, P.R. Emerging Multimodal Zirconia Nanosystems for High-Performance Biomedical Applications. Adv. NanoBiomed Res. 2021, 1, 2100039. [Google Scholar] [CrossRef]
- Bordenave, J.M.G. Zirconia Implants vs Titanium Implants. Materials 2021, 14, 7886. [Google Scholar] [CrossRef]
- Kim, J.; Kang, I.G.; Cheon, K.H.; Lee, S.; Park, S.; Kim, H.E.; Han, C.M. Stable sol–gel hydroxyapatite coating on zirconia dental implant for improved osseointegration. J. Mater. Sci. Mater. Med. 2021, 32, 1–10. [Google Scholar] [CrossRef]
- Khurshid, Z.; Hafeji, S.; Tekin, S.; Habib, S.R.; Ullah, R.; Sefat, F.; Zafar, M.S. Titanium, zirconia, and polyetheretherketone [PEEK] as a dental implant material. In Dental implants; Woodhead Publishing, 2020; pp. 5–35. [Google Scholar]
- Tretto, P.H.W.; Dos Santos, M.B.F.; Spazzin, A.O.; Pereira, G.K.R.; Bacchi, A. Assessment of stress/strain in dental implants and abutments of alternative materials compared to conventional titanium alloy—3D nonlinear finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 372–383. [Google Scholar] [CrossRef]
- Hassouna, M.; Al-Zordk, W.; Aboshilib, M.; Ghazy, M. Clinical and radiographic prospective study of customized one-piece titanium and one-piece fusion-sputtered zirconia implants: five-year mean follow-up. BMC Oral Health 2022, 22, 531. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Bhatnagar, D.; Bansal, D.; Batra, H.; Goyal, N. Recent advancements in nanomaterials for biomedical implants. Biomed. Eng. Adv. 2022, 3, 100029. [Google Scholar] [CrossRef]
- Heimann, R.; Niinomi, M.; Schnabelrauch, M. Types and properties of biomaterials. In Materials for Medical Applications; 2020; pp. 132–154. [Google Scholar]
- Matos, G.R.M. Surface roughness of dental implant and osseointegration. Journal of Maxillofacial and Oral Surgery 2021, 20, PMC7855123. [Google Scholar] [CrossRef] [PubMed]
- Pandey, C.; Rokaya, D.; Bhattarai, B.P. Contemporary concepts in osseointegration of dental implants: a review. BioMed Res. Int. 2022, 2022, 6170452. [Google Scholar] [CrossRef] [PubMed]
- Kittur, N.; Oak, R.; Dekate, D.; Jadhav, S.; Dhatrak, P. Dental implant stability and its measurements to improve osseointegration at the bone-implant interface: A review. Mater. Today: Proc. 2021, 43, 1064–1070. [Google Scholar] [CrossRef]
- Kligman, S.; Ren, Z.; Chung, C.H.; Perillo, M.A.; Chang, Y.C.; Koo, H.; Li, C. The impact of dental implant surface modifications on osseointegration and biofilm formation. J. Clin. Med. 2021, 10, 1641. [Google Scholar] [CrossRef] [PubMed]
- Amengual-Penafiel, L.; Córdova, L.A.; Jara-Sepúlveda, M.C.; Branes-Aroca, M.; Marchesani-Carrasco, F.; Cartes-Velásquez, R. Osteoimmunology drives dental implant osseointegration: A new paradigm for implant dentistry. Jpn. Dent. Sci. Rev. 2021, 57, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jansen, J.A.; Walboomers, X.F.; van den Beucken, J.J. Mechanical aspects of dental implants and osseointegration: A narrative review. J. Mech. Behav. Biomed. Mater. 2020, 103, 103574. [Google Scholar] [CrossRef]
- Kreve, S.; Ferreira, I.; da Costa Valente, M.L.; Dos Reis, A.C. Relationship between dental implant macrodesign and osseointegration: a systematic review. Oral Maxillofac. Surg. 2024, 28, 1–14. [Google Scholar] [CrossRef]
- Cooper, L.F.; Shirazi, S. Osseointegration—the biological reality of successful dental implant therapy: a narrative review. Frontiers of Oral and Maxillofacial Medicine 2022, 4. [Google Scholar] [CrossRef]
- Hao, C.P.; Cao, N.J.; Zhu, Y.H.; Wang, W. The osseointegration and stability of dental implants with different surface treatments in animal models: a network meta-analysis. Sci. Rep. 2021, 11, 13849. [Google Scholar] [CrossRef] [PubMed]
- Overmann, A.L.; Aparicio, C.; Richards, J.T.; Mutreja, I.; Fischer, N.G.; Wade, S.M.; Dey, D. Orthopaedic osseointegration: Implantology and future directions. J. Orthop. Res. ® 2020, 38, 1445–1454. [Google Scholar] [CrossRef]
- Sharanraj, V.; Ramesha, C.M.; Kavya, K.; Kumar, V.; Sadashiva, M.; Chandan, B.R.; Naveen Kumar, M. Zirconia: as a biocompatible biomaterial used in dental implants. Adv. Appl. Ceram. 2021, 120, 63–68. [Google Scholar] [CrossRef]
- Lin, H.; Yin, C.; Mo, A. Zirconia based dental biomaterials: structure, mechanical properties, biocompatibility, surface modification, and applications as implant. Frontiers in Dental Medicine. Front. Dent. Med 2021, 2. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, L. Zirconia materials for dental implants: a literature review. Frontiers in Dental Medicine. Front. Dent. Med 2021, 2. [Google Scholar] [CrossRef]
- Eftekhar Ashtiani, R.; Alam, M.; Tavakolizadeh, S.; Abbasi, K. The role of biomaterials and biocompatible materials in implant-supported dental prosthesis. Evid. -Based Complement. Altern. Med. 2021, 2021, 3349433. [Google Scholar] [CrossRef]
- Sharifianjazi, F.; Pakseresht, A.H.; Asl, M.S.; Esmaeilkhanian, A.; Jang, H.W.; Shokouhimehr, M. Hydroxyapatite consolidated by zirconia: applications for dental implant. J. Compos. Compd. 2020, 2, 26–34. [Google Scholar] [CrossRef]
- Pereverzyev, V. Osseointegration and biocompatibility of zirconia implants. Res. Berg Rev. Sci. Technol. 2021, 1, 1–8. [Google Scholar]
- Sadowsky, S.J. Has zirconia made a material difference in implant prosthodontics? A review. Dent. Mater. 2020, 36, 1–8. [Google Scholar] [CrossRef]
- Aragoneses, J.; Valverde, N.L.; Fernandez-Dominguez, M.; Mena-Alvarez, J.; Rodriguez, C.; Gil, J.; Aragoneses, J.M. Relevant aspects of titanium and zirconia dental implants for their fatigue and osseointegration behaviors. Materials 2022, 15, 4036. [Google Scholar] [CrossRef]
- Milone, D.; Fiorillo, L.; Alberti, F.; Cervino, G.; Filardi, V.; Pistone, A.; Risitano, G. Stress distribution and failure analysis comparison between Zirconia and Titanium dental implants. Procedia Struct. Integr. 2022, 41, 680–691. [Google Scholar] [CrossRef]
- da Silva Remísio, M.J.; Borges, T.; Castro, F.; Alexandre Gehrke, S.; Hasse Fernandes, J.C.; Vicentis de Oliveira Fernandes, G. Histologic osseointegration level comparing titanium and zirconia dental implants: Meta-analysis of preclinical studies. International Journal of Oral & Maxillofacial Implants 2023, 38. [Google Scholar]
- Overmann, A.L.; Forsberg, J.A. The state of the art of osseointegration for limb prosthesis. Biomed. Eng. Lett. 2020, 10, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Wang, G.; Li, J.J. Advances in implant surface modifications to improve osseointegration. Mater. Adv. 2021, 2, 6901–6927. [Google Scholar] [CrossRef]
- Safarov, M.T.; Tashpulatova, K.M.; Ruzimbetov, H.B. Modern representation about osteointegration of dental implants. Tadqiqotlar Uz. 2023. [Google Scholar]
- Albrektsson, T.; Tengvall, P.; Amengual, L.; Coli, P.; Kotsakis, G.A.; Cochran, D. Osteoimmune regulation underlies oral implant osseointegration and its perturbation. Front. Immunol. 2023, 13, 1056914. [Google Scholar]
- Han, A.; Tsoi, J.K.; Lung, C.Y.; Matinlinna, J.P. An introduction of biological performance of zirconia with different surface characteristics: A review. Dent. Mater. J. 2020, 39, 523–530. [Google Scholar] [CrossRef]
- Kunrath, M.F.; Gupta, S.; Lorusso, F.; Scarano, A.; Noumbissi, S. Oral tissue interactions and cellular response to zirconia implant-prosthetic components: A critical review. Materials 2021, 14, 2825. [Google Scholar] [CrossRef]
- Kohal, R.J.; Dennison, D.K. Clinical longevity of zirconia implants with the focus on biomechanical and biological outcome. Current Oral Health Reports 2020. [Google Scholar] [CrossRef]
- Patil, N.A.; Kandasubramanian, B. Biological and mechanical enhancement of zirconium dioxide for medical applications. Ceramics International 2020. [Google Scholar] [CrossRef]
- Molaei, M.; Attarzadeh, N.; Fattah-Alhosseini, A. Tailoring the biological response of zirconium implants using zirconia bioceramic coatings: A systematic review. J. Trace Elem. Med. Biol. 2021, 66, 126756. [Google Scholar]
- Sun, L.; Hong, G. Surface modifications for zirconia dental implants: A review. Frontiers in Dental Medicine 2021, 2. [Google Scholar] [CrossRef]
- Ban, S. Classification and properties of dental zirconia as implant fixtures and superstructures. Materials 2021, 14, 4879. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Waddell, J.N.; Li, K.C.; Sharma, L.A.; Prior, D.J.; Duncan, W.J. Is titanium–zirconium alloy a better alternative to pure titanium for oral implant? Composition, mechanical properties, and microstructure analysis. Saudi Dent. J. 2021, 33, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Pushp, P.; Dasharath, S.M.; Arati, C. Classification and applications of titanium and its alloys. Materials Today: Proceedings 2022, 54. [Google Scholar] [CrossRef]
- El Khalloufi, M.; Drevelle, O.; Soucy, G. Titanium: An overview of resources and production methods. Minerals 2021, 11, 1425. [Google Scholar] [CrossRef]
- Dong, Y.P.; Tang, J.C.; Wang, D.W.; Wang, N.; He, Z.D.; Li, J.; Yan, M. Additive manufacturing of pure Ti with superior mechanical performance, low cost, and biocompatibility for potential replacement of Ti-6Al-4V. Materials & Design 2020, 196, 109142. [Google Scholar]
- Wojtas, D.; Wierzbanowski, K.; Chulist, R.; Pachla, W.; Bieda-Niemiec, M.; Jarzębska, A.; Sztwiertnia, K. Microstructure-strength relationship of ultrafine-grained titanium manufactured by unconventional severe plastic deformation process. J. Alloys Compd. 2020, 837, 155576. [Google Scholar] [CrossRef]
- Meng, A.; Chen, X.; Nie, J.; Gu, L.; Mao, Q.; Zhao, Y. Microstructure evolution and mechanical properties of commercial pure titanium subjected to rotary swaging. J. Alloys Compd. 2021, 859, 158222. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Nagumothu, R.; Parfenov, E.; Valiev, R. Development of nanostructured titanium implants for biomedical implants–A short review. Mater. Today: Proc. 2021, 46, 1195–1200. [Google Scholar] [CrossRef]
- Okazaki, Y.; Ishino, A. Microstructures and mechanical properties of laser-sintered commercially pure Ti and Ti-6Al-4V alloy for dental applications. Materials 2020, 13, 609. [Google Scholar] [CrossRef]
- Anene, F.A.; Aiza Jaafar, C.N.; Zainol, I.; Azmah Hanim, M.A.; Suraya, M.T. Biomedical materials: A review of titanium based alloys. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2021, 235, 3792–3805. [Google Scholar] [CrossRef]
- Choi, S.W.; Jeong, J.S.; Won, J.W.; Hong, J.K.; Choi, Y.S. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation. J. Mater. Sci. Technol. 2021, 66, 193–201. [Google Scholar] [CrossRef]
- Burger, W.; Kiefer, G. Alumina, zirconia and their composite ceramics with properties tailored for medical applications. J. Compos. Sci. 2021, 5, 306. [Google Scholar] [CrossRef]
- Al-Bermani, A.S.A.; Quigley, N.P.; Ha, W.N. Do zirconia single-retainer resin-bonded fixed dental prostheses present a viable treatment option for the replacement of missing anterior teeth? A systematic review. J. Prosthet. Dent. 2023, 130, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Olhero, S.M.; Mesquita-Guimarães, J.; Baltazar, J.; Pinho-da-Cruz, J.; Gouveia, S. Conventional versus additive manufacturing in the structural performance of dense alumina-zirconia ceramics: 20 years of research, challenges and future perspectives. J. Manuf. Process. 2022, 77, 838–879. [Google Scholar] [CrossRef]
- Alqutaibi, A.Y.; Ghulam, O.; Krsoum, M.; Binmahmoud, S.; Taher, H.; Elmalky, W.; Zafar, M.S. Revolution of current dental zirconia: A comprehensive review. Molecules 2022, 27, 1699. [Google Scholar] [CrossRef]
- Quigley, N.P.; Loo, D.S.S.; Choy, C.; Ha, W.N. Clinical efficacy of methods for bonding to zirconia: A systematic review. J. Prosthet. Dent. 2021, 125, 231–240. [Google Scholar] [CrossRef]
- Szawioła-Kirejczyk, M.; Chmura, K.; Gronkiewicz, K.; Gala, A.; Loster, J.E.; Ryniewicz, W. Adhesive cementation of zirconia based ceramics-surface modification methods literature review. Coatings 2022, 12, 1067. [Google Scholar] [CrossRef]
- Hernandez, B.A.; Freitas, J.P.; Capello Sousa, E.A. Fatigue life estimation of dental implants using a combination of the finite element method and traditional fatigue criteria. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2023, 237, 975–984. [Google Scholar] [CrossRef]
- Milošev, I.; Levašič, V.; Kovač, S.; Sillat, T.; Virtanen, S.; Tiainen, V.M.; Trebše, R. Metals for joint replacement. In Joint replacement technology; Woodhead Publishing, 2021; pp. 65–122. [Google Scholar]
- Wang, N.; Meenashisundaram, G.K.; Chang, S.; Fuh, J.Y.H.; Dheen, S.T.; Kumar, A.S. A comparative investigation on the mechanical properties and cytotoxicity of Cubic, Octet, and TPMS gyroid structures fabricated by selective laser melting of stainless steel 316L. Journal of the Mechanical Behavior of Biomedical Materials 2022, 129, 105151. [Google Scholar] [CrossRef]
- Arjunan, A.; Baroutaji, A.; Praveen, A.S.; Robinson, J.; Wang, C. Classification of biomaterial functionality. Encyclopedia of Smart Materials; Elsevier, 2021; pp. 86–102. [Google Scholar] [CrossRef]
- Mwita, W.M. Characterization of Titanium Alloy Processed by Constrained Bending and Straightening Severe Plastic Deformation. Ph.D. Thesis, University of Johannesburg, 2020. Available online: https://hdl.handle.net/10210/41831.
- Gosse, N. Directed Energy Deposition Processing of Alpha-Beta, Near-Alpha, and Beta Titanium Alloys. 2022. Available online: http://hdl.handle.net/10222/81577.
- Wang, L.; Ding, X.; Feng, W.; Gao, Y.; Zhao, S.; Fan, Y. Biomechanical study on implantable and interventional medical devices. Acta Mech. Sin. 2021, 37, 875–894. [Google Scholar] [CrossRef]
- Makhetha, W.M.I. The effect of LPBF postprocessing solutions on material properties to meet functional Ti-6Al-4V requirements. PhD Thesis, 2023. Available online: http://hdl.handle.net/10019.1/126915.
- Arjunan, A.; Baroutaji, A.; Praveen, A.S.; Robinson, J.; Wang, C. Classification of Biomaterial Functionality. Reference Module in Materials Science and Materials Engineering. 2020. [Google Scholar] [CrossRef]
- Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D.S.; Mehrotra, D. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J. Oral Biol. Craniofacial Res. 2020, 10, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.F.R.P.; Fernandes, M.H.F.V.; Daguano, J.K.M.B.; Rodas, A.C.D.; Amarante, J.E.V.; Dos Santos, C. Effect of the surface finish on the mechanical properties and cellular adhesion in [Ce, Y]-TZP/Al2O3 ceramic composites for denture implants. J. Mech. Behav. Biomed. Mater. 2022, 134, 105363. [Google Scholar]
- Ma, Q.; Ding, Q.; Zhang, L.; Sun, Y.; Xie, Q. Surface characteristics and flexural strength of porous-surface designed zirconia manufactured via stereolithography. J. Prosthodont. 2023, 32, e81–e89. [Google Scholar] [CrossRef]
- Revilla-León, M.; Husain, N.A.H.; Ceballos, L.; Özcan, M. Flexural strength and Weibull characteristics of stereolithography additive manufactured versus milled zirconia. J. Prosthet. Dent. 2021, 125, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, P.; Dong, P.; Zeng, Y.; Chen, J. Investigation on 3D printing ZrO2 implant abutment and its fatigue performance simulation. Ceram. Int. 2021, 47, 1053–1062. [Google Scholar] [CrossRef]
- Bagherifard, A.; Joneidi Yekta, H.; Akbari Aghdam, H.; Motififard, M.; Sanatizadeh, E.; Ghadiri Nejad, M.; Khandan, A. Improvement in osseointegration of tricalcium phosphate-zircon for orthopedic applications: An in vitro and in vivo evaluation. Med. Biol. Eng. Comput. 2020, 58, 1681–1693. [Google Scholar] [CrossRef]
- Ispas, A.; Iosif, L.; Murariu-Măgureanu, C.; Craciun, A.; Constantiniuc, M. Zirconia in dental medicine: A brief overview of its properties and processing techniques. Hum. Vet. Med. 2021, 13, 33–39. [Google Scholar]
- Alghazzawi, T.F.; Janowski, G.M.; Eberhardt, A.W. An experimental study of flexural strength and hardness of zirconia and their relation to crown failure loads. J. Prosthet. Dent. 2022, 131, 320–328. [Google Scholar] [CrossRef]
- Choi, S.M.; Choi, H.; Lee, D.H.; Hong, M.H. Comparative finite element analysis of mandibular posterior single zirconia and titanium implants: A 3-dimensional finite element analysis. J. Adv. Prosthodont. 2021, 13, 396. [Google Scholar] [CrossRef]
- Insua, A.; Galindo-Moreno, P.; Miron, R.J.; Wang, H.L.; Monje, A. Emerging factors affecting peri-implant bone metabolism. Periodontology 2000 2024, 94, 27–78. [Google Scholar] [CrossRef] [PubMed]
- Kormas, I.; Pedercini, C.; Pedercini, A.; Raptopoulos, M.; Alassy, H.; Wolff, L.F. Peri-implant diseases: diagnosis, clinical, histological, microbiological characteristics and treatment strategies. A narrative review. Antibiotics 2020, 9, 835. [Google Scholar] [CrossRef] [PubMed]
- Khorshed, A.; Vilarrasa, J.; Monje, A.; Nart, J.; Blasi, G. Digital evaluation of facial peri-implant mucosal thickness and its impact on dental implant aesthetics. Clin. Oral Investig. 2023, 27, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Galarraga-Vinueza, M.E.; Tavelli, L. Soft tissue features of peri-implant diseases and related treatment. Clin. Implant Dent. Relat. Res. 2023, 25, 661–681. [Google Scholar] [CrossRef] [PubMed]
- Ponsford, M.W.; Diekwisch, T.G.H. Peri-implant disease. In Emerging Therapies in Periodontics; Springer International Publishing, 2020. [Google Scholar]
- Romanos, G.E.; Fischer, G.A.; Delgado-Ruiz, R. Titanium wear of dental implants from placement, under loading and maintenance protocols. Int. J. Mol. Sci. 2021, 22, 1067. [Google Scholar] [CrossRef] [PubMed]
- Berryman, Z.; Bridger, L.; Hussaini, H.M.; Rich, A.M.; Atieh, M.; Tawse-Smith, A. Titanium particles: An emerging risk factor for peri-implant bone loss. Saudi Dent. J. 2020, 32, 283–292. [Google Scholar] [CrossRef]
- Kheder, W.; Al Kawas, S.; Khalaf, K.; Samsudin, A.R. Impact of tribocorrosion and titanium particles release on dental implant complications—A narrative review. Jpn. Dent. Sci. Rev. 2021, 57, 182–189. [Google Scholar] [CrossRef]
- Guo, T.; Gulati, K.; Arora, H.; Han, P.; Fournier, B.; Ivanovski, S. Race to invade: Understanding soft tissue integration at the transmucosal region of titanium dental implants. Dent. Mater. 2021, 37, 816–831. [Google Scholar] [CrossRef]
- Souza, J.C.; Apaza-Bedoya, K.; Benfatti, C.A.; Silva, F.S.; Henriques, B. A comprehensive review on the corrosion pathways of titanium dental implants and their biological adverse effects. Metals 2020, 10, 1272. [Google Scholar] [CrossRef]
- Mancini, L.; Barootchi, S.; Thoma, D.S.; Jung, R.E.; Gallucci, G.O.; Wang, H.L.; Tavelli, L. The peri-implant mucosa color: A systematic appraisal of methods for its assessment and clinical significance. Clin. Implant Dent. Relat. Res. 2023, 25, 224–240. [Google Scholar] [CrossRef]
- Poli, P.P.; de Miranda, F.V.; Polo, T.O.B.; Santiago Júnior, J.F.; Lima Neto, T.J.; Rios, B.R.; Faverani, L.P. Titanium allergy caused by dental implants: A systematic literature review and case report. Materials 2021, 14, 5239. [Google Scholar] [CrossRef] [PubMed]
- Gaur, S.; Agnihotri, R.; Albin, S. Bio-tribocorrosion of titanium dental implants and its toxicological implications: A scoping review. The Scientific World Journal 2022, 4498613. [Google Scholar] [CrossRef] [PubMed]
- Boffano, P.; Brucoli, M.; Rocchetti, V. Corrosion features of titanium alloys in dental implants: A systematic review. Journal of Maxillofacial and Oral Surgery 2024, 1–9. [Google Scholar] [CrossRef]
- Comino-Garayoa, R.; Cortés-Bretón Brinkmann, J.; Peláez, J.; López-Suárez, C.; Martínez-González, J.M.; Suárez, M.J. Allergies to titanium dental implants: What do we truly know about them? A scoping review. Biology 2020, 9, 404. [Google Scholar] [CrossRef] [PubMed]
- Bahadır, H.S.; Bayraktar, Y. Evaluation of the repair capacities and color stabilities of a resin nanoceramic and hybrid CAD/CAM blocks. J. Adv. Prosthodont. 2020, 12, 140–149. [Google Scholar] [CrossRef]
- Tunca, M.; Unalan Degirmenci, B. Influence of surface treatments on the bond strength of metal brackets to CAD/CAM materials and discoloration after various refinishing procedures: Scanning electron microscopy and atomic force microscopy study. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopädie 2023, 84 (Suppl. 3), 231–243. [Google Scholar] [CrossRef] [PubMed]
- Stuart-Fox, D.; Newton, E.; Clusella-Trullas, S. Thermal consequences of color and near-infrared reflectance. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160345. [Google Scholar] [CrossRef] [PubMed]
- Manziuc, M.; Kui, A.; Chisnoiu, A.; Labuneț, A.; Negucioiu, M.; Ispas, A.; Buduru, S. Zirconia-reinforced lithium silicate ceramic in digital dentistry: A comprehensive literature review of our current understanding. Medicina 2023, 59, 2135. [Google Scholar] [CrossRef]
- Li, X.; Liang, S.; Inokoshi, M.; Zhao, S.; Hong, G.; Yao, C.; Huang, C. Different surface treatments and adhesive monomers for zirconia-resin bonds: A systematic review and network meta-analysis. Jpn. Dent. Sci. Rev. 2024, 60, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Unalan Degirmenci, B.; Degirmenci, A.; Karadag Naldemir, B. Effects of Er, Cr: YSGG laser on repair bond strength of 5-year water-aged and non-aged CAD/CAM ceramics. Int. J. Appl. Ceram. Technol. 2022, 19, 1594–1604. [Google Scholar] [CrossRef]
- Choosuk, S.; Piangsuk, T. The effects of clinical procedures on strength of dental zirconia: A literature review. J. Int. Dent. Med. Res. 2023, 16, 1317–1322. [Google Scholar]
- Didangelou, P.; Dionysopoulos, D.; Papadopoulos, C.; Strakas, D.; Mourouzis, P.; Tolidis, K. Evaluation of repair bond strength of a dental CAD/CAM resin composite after surface treatment with two Er, Cr: YSGG laser protocols following artificial aging. J. Mech. Behav. Biomed. Mater. 2023, 146, 106101. [Google Scholar] [CrossRef]
- Chopra, D.; Guo, T.; Gulati, K.; Ivanovski, S. Load, unload and repeat: Understanding the mechanical characteristics of zirconia in dentistry. Dent. Mater. 2024, 40, e1–e17. [Google Scholar] [CrossRef] [PubMed]
- Kilinc, H.; Sanal, F.A.; Turgut, S. Shear bond strengths of aged and non-aged CAD/CAM materials after different surface treatments. J. Adv. Prosthodont. 2020, 12, 273. [Google Scholar] [CrossRef]
- Machry, R.V.; Dapieve, K.S.; Cadore-Rodrigues, A.C.; Werner, A.; de Jager, N.; Pereira, G.K.R.; Kleverlaan, C.J. Mechanical characterization of a multilayered zirconia: Flexural strength, hardness, and fracture toughness of the different layers. J. Mech. Behav. Biomed. Mater. 2022, 135, 105455. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cokic, S.; Van Meerbeek, B.; Vleugels, J.; Zhang, F. Novel zirconia ceramics for dental implant materials. J. Mater. Sci. Technol. 2025, 210, 97–108. [Google Scholar] [CrossRef]
- Alves, M.F.R.P.; Dos Santos, C.; Elias, C.N.; Amarante, J.E.V.; Ribeiro, S. Comparison between different fracture toughness techniques in zirconia dental ceramics. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2023, 111, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Rohr, N.; Märtin, S.; Fischer, J. Fracture load of zirconia implant supported CAD/CAM resin crowns and mechanical properties of restorative material and cement. J. Prosthodont. Res. 2021, 65, 502–508. [Google Scholar] [CrossRef]
- Magnani, G.; Fabbri, P.; Leoni, E.; Salernitano, E.; Mazzanti, F. New perspectives on zirconia composites as biomaterials. J. Compos. Sci. 2021, 5, 244. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Jiang, H.B. A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef]
- Bergler, M.; Korostoff, J.; Torrecillas-Martinez, L.; Mante, F.K. Ceramic Printing--Comparative Study of the Flexural Strength of 3D-Printed and Milled Zirconia. Int. J. Prosthodont. 2022, 35, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, H.; Yao, H.; Zeng, Y.; Chen, J. Preparation, microstructure, and properties of ZrO2 [3Y]/Al2O3 bioceramics for 3D printing of all-ceramic dental implants by vat photopolymerization. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100023. [Google Scholar] [CrossRef]
- Su, G.; Zhang, Y.; Jin, C.; Zhang, Q.; Lu, J.; Liu, Z.; Ma, J. 3D printed zirconia used as dental materials: a critical review. J. Biol. Eng. 2023, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Camargo, B.; Willems, E.; Jacobs, W.; Van Landuyt, K.; Peumans, M.; Zhang, F.; Van Meerbeek, B. 3D printing and milling accuracy influence full-contour zirconia crown adaptation. Dent. Mater. 2022, 38, 1963–1976. [Google Scholar] [CrossRef] [PubMed]
- Demiralp, E.; Doğru, G.; Yılmaz, H. Additive manufacturing [3D PRINTING] methods and applications in dentistry. Clin. Exp. Health Sci. 2021, 11, 182–190. [Google Scholar] [CrossRef]
- Branco, A.C.; Colaço, R.; Figueiredo-Pina, C.G.; Serro, A.P. Recent advances on 3D-printed zirconia-based dental materials: a review. Materials 2023, 16, 1860. [Google Scholar] [CrossRef]
- Uasuwan, P.; Juntavee, N.; Juntavee, A. Optical characteristics of monochrome and Multilayer fully stabilized Zirconia upon Sintered cooling speed. European Journal of Dentistry 2023, 18, 196–207. [Google Scholar] [CrossRef]
- Ma, B.; Ju, D.; Liu, Q. Design, Simulation, and Performance Research of New Biomaterial Mg30Zn30Sn30Sr5Bi5. Coatings 2022, 12, 531. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.; Singh, M.; Kumar, P. On ZnO nanoparticle reinforced PVDF composite materials for 3D printing of biomedical sensors. Journal of Manufacturing Processes 2020, 60, 268–282. [Google Scholar] [CrossRef]
- Pelz, J. Exploring Process-Structure-Property Relationships via Additive Manufacturing.UC San Diego. ProQuest ID: Pelz_ucsd_0033D_21336. Merritt ID: ark:/13030/m58h5qtc. 2022. Available online: https://escholarship.org/uc/item/4tk041g3.
- Labrie, M.; Brugge, J.S.; Mills, G.B.; Zervantonakis, I.K. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat. Rev. Cancer 2022, 22, 323–339. [Google Scholar] [CrossRef]
- Lesch, S.; Benmebarek, M.R.; Cadilha, B.L.; Stoiber, S.; Subklewe, M.; Endres, S.; Kobold, S. Determinants of response and resistance to CAR T-cell therapy. In Seminars in Cancer Biology 2020, 65, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Sego, T.J.; Aponte-Serrano, J.O.; Ferrari Gianlupi, J.; Heaps, S.R.; Breithaupt, K.; Brusch, L.; Glazier, J.A. A modular framework for multiscale, multicellular, spatiotemporal modelling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness. PLoS Comput. Biol. 2020, 16, e1008451. [Google Scholar] [CrossRef] [PubMed]
- Luft, T.; Dreger, P.; Radujkovic, A. Endothelial cell dysfunction: a key determinant for the outcome of allogeneic stem cell transplantation. Bone Marrow Transplantation 2021, 56, 2326–2335; [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Cardozo-Ojeda, E.F.; Schiffer, J.T. Potency and timing of antiviral therapy as determinants of duration of SARS-CoV-2 shedding and intensity of inflammatory response. Science advances 2020, 6, eabc7112. [Google Scholar] [CrossRef]
- Rickard, B.P.; Conrad, C.; Sorrin, A.J.; Ruhi, M.K.; Reader, J.C.; Huang, S.A.; Rizvi, I. Malignant ascites in ovarian cancer: cellular, acellular, and biophysical determinants of molecular characteristics and therapy response. Cancers 2021, 13, 4318. [Google Scholar] [CrossRef]
- Bruni, D.; Angell, H.K.; Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 2020, 20, 662–680. [Google Scholar] [CrossRef] [PubMed]
- Singleton, D.C.; Macann, A.; Wilson, W.R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 2021, 18, 751–772. [Google Scholar] [CrossRef]
- Vitale, I.; Shema, E.; Loi, S.; Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 2021, 27, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi Rad, H.; Monkman, J.; Warkiani, M.E.; Ladwa, R.; O'Byrne, K.; Rezaei, N.; Kulasinghe, A. Understanding the tumor microenvironment for effective immunotherapy. Med. Res. Rev. 2021, 41, 1474–1498. [Google Scholar] [CrossRef]
- Kolarovszki, B.; Ficsor, S.; Frank, D.; Katona, K.; Soos, B.; Turzo, K. Unlocking the potential: laser surface modifications for titanium dental implants. Lasers Med. Sci. 2024, 39, 162. [Google Scholar] [CrossRef]
- Wang, S.; Du, C.; Shen, X.; Wu, X.; Ouyang, S.; Tan, J.; Pan, F. Rational design, synthesis, and prospect of biodegradable magnesium alloy vascular stents. Journal of Magnesium and Alloys 2023, 11, 3012–3037. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Zhao, H.; Niu, J.; Ling, X.; Zhu, C.; Shi, Q. Bioclickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation. Bioactive Materials 2022, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chen, C.; Wang, D.; Shao, Y.; Zhou, W.; Shuai, C.; Yang, Y. Biomedical rare-earth magnesium alloy: Current status and future prospects. Journal of Magnesium and Alloys. 2024. [CrossRef]
- Zhao, C.; Shu, C.; Yu, J.; Zhu, Y. Metal-organic frameworks functionalized biomaterials for promoting bone repair. Mater. Today Bio. 2023, 21, 100717. [Google Scholar] [CrossRef]
- Xia, Z.; Liu, B.; Xiao, Y.; Hu, W.; Deng, M.; Lü, C. Integrating hybrid perovskite nanocrystals into metal–organic framework as efficient S-scheme heterojunction photocatalyst for synergistically boosting controlled radical photopolymerization under 980 nm NIR light. ACS Appl. Mater. Interfaces 2023, 15, 57119–57133. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Wang, Z.; Yang, L.; Li, H.; Chen, G.; Peng, S.; Shuai, C. A collaborative CeO2@ metal-organic framework nanosystem to endow scaffolds with photodynamic antibacterial effect. Mater. Today Chem. 2023, 27, 101336. [Google Scholar] [CrossRef]
- Wu, M.; Xun, M.; Chen, Y. Adaptation of vascular smooth muscle cell to degradable metal stent implantation. ACS Biomater. Sci. Eng. 2023, 7, 4086–4100. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Diao, T.; McGuire, H.; Yao, C.; Yang, L.; Bao, G.; Zheng, Y. Nanomaterials solutions for contraception: Concerns, advances, and prospects. ACS Nano 2023, 17, 20753–20775. [Google Scholar] [CrossRef]
- Huo, D.; Wang, F.; Yang, F.; Lin, T.; Zhong, Q.; Deng, S.P.; Huang, L. Medical titanium surface-modified coatings with antibacterial and anti-adhesive properties for the prevention of implant-associated infections. J. Mater. Sci. Technol. 2024, 179, 208–223. [Google Scholar] [CrossRef]
- Stich, T.; Alagboso, F.; Křenek, T.; Kovářík, T.; Alt, V.; Docheva, D. Implant-bone-interface: Reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioeng. Transl. Med. 2022, 7, e10239. [Google Scholar] [CrossRef]
- Cui, C.; Zhao, Y.; Bai, Z.; Yan, J.; Qin, D.; Peng, H.; Li, B. The effect of antibacterial-osteogenic surface modification on the osseointegration of titanium implants: A static and dynamic strategy. ACS Biomaterials Science & Engineering 2024, 10, 4093–4113. [Google Scholar] [CrossRef]
- Wang, D.Y.; Su, L.; Poelstra, K.; Grainger, D.W.; van der Mei, H.C.; Shi, L.; Busscher, H.J. Beyond surface modification strategies to control infections associated with implanted biomaterials and devices: Addressing the opportunities offered by nanotechnology. Biomaterials 2024, 308, 122576. [Google Scholar] [CrossRef] [PubMed]
- Szymczyk-Ziółkowska, P.; Hoppe, V.; Rusińska, M.; Gąsiorek, J.; Ziółkowski, G.; Dydak, K.; Junka, A. The impact of EBM-manufactured Ti6Al4V ELI alloy surface modifications on cytotoxicity toward eukaryotic cells and microbial biofilm formation. Materials 2020, 13, 2822. [Google Scholar] [CrossRef] [PubMed]
- Sultana, A.; Zare, M.; Luo, H.; Ramakrishna, S. Surface engineering strategies to enhance the in situ performance of medical devices including atomic scale engineering. Int. J. Mol. Sci. 2021, 22, 11788. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Tu, C.; Zhou, T.; Yu, Z.; Wang, Y.; Yu, Q.; Yang, G. Antifouling poly(PEGMA) grafting modified titanium surface reduces osseointegration through resisting adhesion of bone marrow mesenchymal stem cells. Acta Biomater. 2022, 153, 585–595. [Google Scholar] [CrossRef] [PubMed]
- DeFlorio, W.; Crawford, K.; Liu, S.; Hua, Y.; Cisneros-Zevallos, L.; Akbulut, M. Facile, fluorine-free fabrication of bacterial antifouling titanium alloy Ti6Al4V surfaces for surgically implanted devices. Surf. Coat. Technol. 2022, 443, 128580. [Google Scholar] [CrossRef]
- Zhang, S.; Long, J.; Chen, L.; Zhang, J.; Fan, Y.; Shi, J.; Huang, Y. Treatment methods toward improving the anti-infection ability of poly(etheretherketone) implants for medical applications. Colloids Surf. B Biointerfaces 2022, 218, 112769. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, A.; Arcuri, L.; Fabbri, G.; Singer, G.; Londono, J. Long-term survival and success of zirconia screw-retained implant-supported prostheses for up to 12 years: A retrospective multicenter study. J. Prosthet. Dent. 2023, 129, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Bottino, M.A.; de Oliveira, F.R.; Sabino, C.F.; Dinato, J.C.; Silva-Concílio, L.R.; Tribst, J.P.M. Survival rate and deformation of external hexagon implants with one-piece zirconia crowns. Metals 2021, 11, 1068. [Google Scholar] [CrossRef]
- Koller, M.; Steyer, E.; Theisen, K.; Stagnell, S.; Jakse, N.; Payer, M. Two-piece zirconia versus titanium implants after 80 months: Clinical outcomes from a prospective randomized pilot trial. Clin. Oral Implant. Res. 2020, 31, 388–396. [Google Scholar] [CrossRef]
- Cinquini, C.; Alfonsi, F.; Marchio, V.; Gallo, F.; Zingari, F.; Bolzoni, A.R.; Barone, A. The use of zirconia for implant-supported fixed complete dental prostheses: A narrative review. Dent. J. 2023, 11, 144. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Schoenbaum, T.R.; Pannu, D.; Knoernschild, K. Survival analysis of zirconia implant-supported, fixed complete dentures: A 5-year retrospective cohort study. The Journal of Prosthetic Dentistry 2023, S0022-3913(23)00288-3. [Google Scholar] [CrossRef] [PubMed]
- Rammelsberg, P.; Bermejo, J.L.; Kappel, S.; Meyer, A.; Zenthöfer, A. Long-term performance of implant-supported metal-ceramic and all-ceramic single crowns. J. Prosthodont. Res. 2020, 64, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Rohr, N.; Hoda, B.; Fischer, J. Surface structure of zirconia implants: An integrative review comparing clinical results with preclinical and in vitro data. Materials 2022, 15, 3664. [Google Scholar] [CrossRef] [PubMed]
- Olander, J.; Wennerberg, A.; Stenport, V.F. Implant-supported single crowns with titanium or zirconia abutments: A retrospective up-to-5-year follow-up study. Int. J. Prosthodont. 2022, 35, 387–395. [Google Scholar] [CrossRef]
- Oyar, P.; Durkan, R.; Deste, G. The effect of the design of a mandibular implant-supported zirconia prosthesis on stress distribution. J. Prosthet. Dent. 2021, 125, 502.e1–502.e11. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
