Submitted:
18 July 2024
Posted:
22 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pathophysiology and Neuroinflammatory Mechanisms
3. Role of Microglia in Neuroinflammation
3.1. Microglia: Definition and Functions
3.2. Activation of Microglia in Alzheimer's Disease
4. Neuroinflammatory Signaling Pathways in Alzheimer's Disease
5. Therapeutic Approaches Targeting Microglia and Neuroinflammation
5.1. Suppression of the Microglial Priming
5.2. Suppression of the Inflammatory Reaction
5.3. Control of Microglia's Phenotypic Alterations
6. Conclusion and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X. X., Tian, Y., Wang, Z. T., Ma, Y. H., Tan, L., & Yu, J. T. (2021). The Epidemiology of Alzheimer's Disease Modifiable Risk Factors and Prevention. The journal of prevention of Alzheimer's disease, 8(3), 313–321. [CrossRef]
- 2023 Alzheimer's disease facts and figures. (2023). Alzheimer's & dementia : the journal of the Alzheimer's Association, 19(4), 1598–1695. [CrossRef]
- Knapskog, A. B., Engedal, K., Selbæk, G., & Øksengård, A. R. (2021). Alzheimers sykdom – diagnostikk og behandling [Alzheimer’s disease – diagnosis and treatment]. Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke, 141(7), 10.4045/tidsskr.20.0919. [CrossRef]
- Ávila-Villanueva, M., Gómez-Ramírez, J., Ávila, J., & Fernández-Blázquez, M. A. (2022). Loneliness as Risk Factor for Alzheimer´s disease. Current aging science, 15(3), 293–296. [CrossRef]
- Weber, C., Dilthey, A., & Finzer, P. (2023). The role of microbiome-host interactions in the development of Alzheimer´s disease. Frontiers in cellular and infection microbiology, 13, 1151021. [CrossRef]
- García-Osta, A., Dong, J., Moreno-Aliaga, M. J., & Ramirez, M. J. (2022). p27, The Cell Cycle and Alzheimer´s Disease. International journal of molecular sciences, 23(3), 1211. [CrossRef]
- Zhao, J., & Huai, J. (2023). Role of primary aging hallmarks in Alzheimer´s disease. Theranostics, 13(1), 197–230. [CrossRef]
- Friedli, M. J., & Inestrosa, N. C. (2021). Huperzine A and Its Neuroprotective Molecular Signaling in Alzheimer's Disease. Molecules (Basel, Switzerland), 26(21), 6531. [CrossRef]
- Del Campo, M., Vermunt, L., Peeters, C. F. W., Sieben, A., Hok-A-Hin, Y. S., Lleó, A., Alcolea, D., van Nee, M., Engelborghs, S., van Alphen, J. L., Arezoumandan, S., Chen-Plotkin, A., Irwin, D. J., van der Flier, W. M., Lemstra, A. W., & Teunissen, C. E. (2023). CSF proteome profiling reveals biomarkers to discriminate dementia with Lewy bodies from Alzheimer´s disease. Nature communications, 14(1), 5635. [CrossRef]
- Toups, K., Hathaway, A., Gordon, D., Chung, H., Raji, C., Boyd, A., Hill, B. D., Hausman-Cohen, S., Attarha, M., Chwa, W. J., Jarrett, M., & Bredesen, D. E. (2022). Precision Medicine Approach to Alzheimer's Disease: Successful Pilot Project. Journal of Alzheimer's disease : JAD, 88(4), 1411–1421. [CrossRef]
- Guzman-Martinez, L., Calfío, C., Farias, G. A., Vilches, C., Prieto, R., & Maccioni, R. B. (2021). New Frontiers in the Prevention, Diagnosis, and Treatment of Alzheimer's Disease. Journal of Alzheimer's disease : JAD, 82(s1), S51–S63. [CrossRef]
- Jia, J., Zhang, Y., Shi, Y., Yin, X., Wang, S., Li, Y., Zhao, T., Liu, W., Zhou, A., & Jia, L. (2023). A 19-Year-Old Adolescent with Probable Alzheimer's Disease. Journal of Alzheimer's disease : JAD, 91(3), 915–922. [CrossRef]
- Tecalco-Cruz, A. C., Pedraza-Chaverri, J., Briones-Herrera, A., Cruz-Ramos, E., López-Canovas, L., & Zepeda-Cervantes, J. (2022). Protein degradation-associated mechanisms that are affected in Alzheimer´s disease. Molecular and cellular biochemistry, 477(3), 915–925. [CrossRef]
- Dubois, B., von Arnim, C. A. F., Burnie, N., Bozeat, S., & Cummings, J. (2023). Biomarkers in Alzheimer's disease: role in early and differential diagnosis and recognition of atypical variants. Alzheimer's research & therapy, 15(1), 175. [CrossRef]
- Gustavsson, A., Norton, N., Fast, T., Frölich, L., Georges, J., Holzapfel, D., Kirabali, T., Krolak-Salmon, P., Rossini, P. M., Ferretti, M. T., Lanman, L., Chadha, A. S., & van der Flier, W. M. (2023). Global estimates on the number of persons across the Alzheimer's disease continuum. Alzheimer's & dementia : the journal of the Alzheimer's Association, 19(2), 658–670. [CrossRef]
- De Sousa, R. A. L., & Improta-Caria, A. C. (2022). Regulation of microRNAs in Alzheimer´s disease, type 2 diabetes, and aerobic exercise training. Metabolic brain disease, 37(3), 559–580. [CrossRef]
- Lane, D. J. R., Metselaar, B., Greenough, M., Bush, A. I., & Ayton, S. J. (2021). Ferroptosis and NRF2: an emerging battlefield in the neurodegeneration of Alzheimer's disease. Essays in biochemistry, 65(7), 925–940. [CrossRef]
- Yang, H., Luo, Y., Hu, Q., Tian, X., & Wen, H. (2021). Benefits in Alzheimer's Disease of Sensory and Multisensory Stimulation. Journal of Alzheimer's disease : JAD, 82(2), 463–484. [CrossRef]
- Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S. H., Villemagne, V. L., Aisen, P., Vendruscolo, M., Iwatsubo, T., Masters, C. L., Cho, M., Lannfelt, L., Cummings, J. L., & Vergallo, A. (2021). The Amyloid-β Pathway in Alzheimer's Disease. Molecular psychiatry, 26(10), 5481–5503. [CrossRef]
- Dhapola, R., Hota, S. S., Sarma, P., Bhattacharyya, A., Medhi, B., & Reddy, D. H. (2021). Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer's disease. Inflammopharmacology, 29(6), 1669–1681. [CrossRef]
- Song, T., Song, X., Zhu, C., Patrick, R., Skurla, M., Santangelo, I., Green, M., Harper, D., Ren, B., Forester, B. P., Öngür, D., & Du, F. (2021). Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing research reviews, 72, 101503. [CrossRef]
- Teleanu, D. M., Niculescu, A. G., Lungu, I. I., Radu, C. I., Vladâcenco, O., Roza, E., Costăchescu, B., Grumezescu, A. M., & Teleanu, R. I. (2022). An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. International journal of molecular sciences, 23(11), 5938. [CrossRef]
- Wang, C., Chen, S., Guo, H., Jiang, H., Liu, H., Fu, H., & Wang, D. (2022). Forsythoside A Mitigates Alzheimer's-like Pathology by Inhibiting Ferroptosis-mediated Neuroinflammation via Nrf2/GPX4 Axis Activation. International journal of biological sciences, 18(5), 2075–2090. [CrossRef]
- Chausse, B., Kakimoto, P. A., & Kann, O. (2021). Microglia and lipids: how metabolism controls brain innate immunity. Seminars in cell & developmental biology, 112, 137–144. [CrossRef]
- Pan, R. Y., He, L., Zhang, J., Liu, X., Liao, Y., Gao, J., Liao, Y., Yan, Y., Li, Q., Zhou, X., Cheng, J., Xing, Q., Guan, F., Zhang, J., Sun, L., & Yuan, Z. (2022). Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell metabolism, 34(4), 634–648.e6. [CrossRef]
- Merighi, S., Nigro, M., Travagli, A., & Gessi, S. (2022). Microglia and Alzheimer's Disease. International journal of molecular sciences, 23(21), 12990. [CrossRef]
- Thakur, S., Dhapola, R., Sarma, P., Medhi, B., & Reddy, D. H. (2023). Neuroinflammation in Alzheimer's Disease: Current Progress in Molecular Signaling and Therapeutics. Inflammation, 46(1), 1–17. [CrossRef]
- Sun, N., Victor, M. B., Park, Y. P., Xiong, X., Scannail, A. N., Leary, N., Prosper, S., Viswanathan, S., Luna, X., Boix, C. A., James, B. T., Tanigawa, Y., Galani, K., Mathys, H., Jiang, X., Ng, A. P., Bennett, D. A., Tsai, L. H., & Kellis, M. (2023). Human microglial state dynamics in Alzheimer's disease progression. Cell, 186(20), 4386–4403.e29. [CrossRef]
- Al-Ghraiybah, N. F., Wang, J., Alkhalifa, A. E., Roberts, A. B., Raj, R., Yang, E., & Kaddoumi, A. (2022). Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. International journal of molecular sciences, 23(18), 10572. [CrossRef]
- Rajesh, Y., & Kanneganti, T. D. (2022). Innate Immune Cell Death in Neuroinflammation and Alzheimer's Disease. Cells, 11(12), 1885. [CrossRef]
- Jorfi, M., Maaser-Hecker, A., & Tanzi, R. E. (2023). The neuroimmune axis of Alzheimer's disease. Genome medicine, 15(1), 6. [CrossRef]
- Wang, M., Zhang, H., Liang, J., Huang, J., & Chen, N. (2023). Exercise suppresses neuroinflammation for alleviating Alzheimer's disease. Journal of neuroinflammation, 20(1), 76. [CrossRef]
- Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T. K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., Itzkovitz, S., Colonna, M., Schwartz, M., & Amit, I. (2017). A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. Cell, 169(7), 1276–1290.e17. [CrossRef]
- Hansen, D. V., Hanson, J. E., & Sheng, M. (2018). Microglia in Alzheimer's disease. The Journal of cell biology, 217(2), 459–472. [CrossRef]
- Qin, Q., Teng, Z., Liu, C., Li, Q., Yin, Y., & Tang, Y. (2021). TREM2, microglia, and Alzheimer's disease. Mechanisms of ageing and development, 195, 111438. [CrossRef]
- Sarlus, H., & Heneka, M. T. (2017). Microglia in Alzheimer's disease. The Journal of clinical investigation, 127(9), 3240–3249. [CrossRef]
- Baik, S. H., Kang, S., Lee, W., Choi, H., Chung, S., Kim, J. I., & Mook-Jung, I. (2019). A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease. Cell metabolism, 30(3), 493–507.e6. [CrossRef]
- Singh D. (2022). Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer's disease. Journal of neuroinflammation, 19(1), 206. [CrossRef]
- Li, Y., Xia, X., Wang, Y., & Zheng, J. C. (2022). Mitochondrial dysfunction in microglia: a novel perspective for pathogenesis of Alzheimer's disease. Journal of neuroinflammation, 19(1), 248. [CrossRef]
- Crapser, J. D., Spangenberg, E. E., Barahona, R. A., Arreola, M. A., Hohsfield, L. A., & Green, K. N. (2020). Microglia facilitate loss of perineuronal nets in the Alzheimer's disease brain. EBioMedicine, 58, 102919. [CrossRef]
- Andronie-Cioara, F. L., Ardelean, A. I., Nistor-Cseppento, C. D., Jurcau, A., Jurcau, M. C., Pascalau, N., & Marcu, F. (2023). Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. International journal of molecular sciences, 24(3), 1869. [CrossRef]
- Gerrits, E., Brouwer, N., Kooistra, S. M., Woodbury, M. E., Vermeiren, Y., Lambourne, M., Mulder, J., Kummer, M., Möller, T., Biber, K., Dunnen, W. F. A. D., De Deyn, P. P., Eggen, B. J. L., & Boddeke, E. W. G. M. (2021). Distinct amyloid-β and tau-associated microglia profiles in Alzheimer's disease. Acta neuropathologica, 141(5), 681–696. [CrossRef]
- Rangaraju, S., Dammer, E. B., Raza, S. A., Rathakrishnan, P., Xiao, H., Gao, T., Duong, D. M., Pennington, M. W., Lah, J. J., Seyfried, N. T., & Levey, A. I. (2018). Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer's disease. Molecular neurodegeneration, 13(1), 24. [CrossRef]
- Fassler, M., Rappaport, M. S., Cuño, C. B., & George, J. (2021). Engagement of TREM2 by a novel monoclonal antibody induces activation of microglia and improves cognitive function in Alzheimer's disease models. Journal of neuroinflammation, 18(1), 19. [CrossRef]
- Chen, H., Guo, Z., Sun, Y., & Dai, X. (2023). The immunometabolic reprogramming of microglia in Alzheimer's disease. Neurochemistry international, 171, 105614. [CrossRef]
- Zhao, X., Sun, J., Xiong, L., She, L., Li, L., Tang, H., Zeng, Y., Chen, F., Han, X., Ye, S., Wang, W., Wang, X., & Liang, G. (2023). β-amyloid binds to microglia Dectin-1 to induce inflammatory response in the pathogenesis of Alzheimer's disease. International journal of biological sciences, 19(10), 3249–3265. [CrossRef]
- Sangineto, M., Ciarnelli, M., Cassano, T., Radesco, A., Moola, A., Bukke, V. N., Romano, A., Villani, R., Kanwal, H., Capitanio, N., Duda, L., Avolio, C., & Serviddio, G. (2023). Metabolic reprogramming in inflammatory microglia indicates a potential way of targeting inflammation in Alzheimer's disease. Redox biology, 66, 102846. [CrossRef]
- Medrano-Jiménez, E., Meza-Sosa, K. F., Urbán-Aragón, J. A., Secundino, I., Pedraza-Alva, G., & Pérez-Martínez, L. (2022). Microglial activation in Alzheimer's disease: The role of flavonoids and microRNAs. Journal of leukocyte biology, 112(1), 47–77. [CrossRef]
- Lepiarz-Raba, I., Gbadamosi, I., Florea, R., Paolicelli, R. C., & Jawaid, A. (2023). Metabolic regulation of microglial phagocytosis: Implications for Alzheimer's disease therapeutics. Translational neurodegeneration, 12(1), 48. [CrossRef]
- Sala Frigerio, C., Wolfs, L., Fattorelli, N., Thrupp, N., Voytyuk, I., Schmidt, I., Mancuso, R., Chen, W. T., Woodbury, M. E., Srivastava, G., Möller, T., Hudry, E., Das, S., Saido, T., Karran, E., Hyman, B., Perry, V. H., Fiers, M., & De Strooper, B. (2019). The Major Risk Factors for Alzheimer's Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques. Cell reports, 27(4), 1293–1306.e6. [CrossRef]
- McDonald CL, Hennessy E, Rubio-Araiz A, Keogh B, McCormack W, McGuirk P, et al.. Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of alzheimer's disease. Brain Behav Immun (2016) 58:191–200. [CrossRef]
- Zhou C, Sun X, Hu Y, Song J, Dong S, Kong D, et al.. Genomic deletion of TLR2 induces aggravated white matter damage and deteriorated neurobehavioral functions in mouse models of alzheimer's disease. Aging (2019) 11(17):7257–73. [CrossRef]
- Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi K. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of alzheimer's disease. J Neuroinflammation. (2008) 5:23. [CrossRef]
- Song M, Jin J, Lim JE, Kou J, Pattanayak A, Rehman JA, et al.. TLR4 mutation reduces microglial activation, increases abeta deposits and exacerbates cognitive deficits in a mouse model of alzheimer's disease. J Neuroinflammation. (2011) 8:92. [CrossRef]
- Kaushal V, Dye R, Pakavathkumar P, Foveau B, Flores J, Hyman B, et al.. Neuronal NLRP1 inflammasome activation of caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated caspase-6 activation. Cell Death Differ (2015) 22(10):1676–86. [CrossRef]
- Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al.. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol (2008) 9(8):857–65. [CrossRef]
- Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al.. NLRP3 is activated in alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature (2013) 493(7434):674–8. [CrossRef]
- Milner MT, Maddugoda M, Gotz J, Burgener SS, Schroder K. The NLRP3 inflammasome triggers sterile neuroinflammation and alzheimer's disease. Curr Opin Immunol (2021) 68:116–24. [CrossRef]
- Barczuk J, Siwecka N, Lusa W, Rozpedek-Kaminska W, Kucharska E, Majsterek I. Targeting NLRP3-mediated neuroinflammation in alzheimer's disease treatment. Int J Mol Sci (2022) 23(16):8979. [CrossRef]
- Bravo J, Ribeiro I, Terceiro AF, Andrade EB, Portugal CC, Lopes IM, et al.. Neuron-microglia contact-dependent mechanisms attenuate methamphetamine-induced microglia reactivity and enhance neuronal plasticity. Cells (2022) 11(3):355. [CrossRef]
- Rabaneda-Lombarte N, Serratosa J, Bove J, Vila M, Saura J, Sola C. The CD200R1 microglial inhibitory receptor as a therapeutic target in the MPTP model of parkinson's disease. J Neuroinflammation. (2021) 18(1):88. [CrossRef]
- Liu LQ, Liu XR, Zhao JY, Yan F, Wang RL, Wen SH, et al.. Brain-selective mild hypothermia promotes long-term white matter integrity after ischemic stroke in mice. CNS Neurosci Ther (2018) 24(12):1275–85. [CrossRef]
- Hou, Y., Wei, Y., Lautrup, S., Yang, B., Wang, Y., Cordonnier, S., Mattson, M. P., Croteau, D. L., & Bohr, V. A. (2021). NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer's disease via cGAS-STING. Proceedings of the National Academy of Sciences of the United States of America, 118(37), e2011226118. [CrossRef]
- Govindarajulu, M., Ramesh, S., Beasley, M., Lynn, G., Wallace, C., Labeau, S., Pathak, S., Nadar, R., Moore, T., & Dhanasekaran, M. (2023). Role of cGAS-Sting Signaling in Alzheimer's Disease. International journal of molecular sciences, 24(9), 8151. [CrossRef]
- Wang, Y., Lin, Y., Wang, L., Zhan, H., Luo, X., Zeng, Y., Wu, W., Zhang, X., & Wang, F. (2020). TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer's disease mice. Aging, 12(20), 20862–20879. [CrossRef]
- Hampel, H., Caraci, F., Cuello, A. C., Caruso, G., Nisticò, R., Corbo, M., Baldacci, F., Toschi, N., Garaci, F., Chiesa, P. A., Verdooner, S. R., Akman-Anderson, L., Hernández, F., Ávila, J., Emanuele, E., Valenzuela, P. L., Lucía, A., Watling, M., Imbimbo, B. P., Vergallo, A., … Lista, S. (2020). A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer's Disease. Frontiers in immunology, 11, 456. [CrossRef]
- Uddin, M. S., Kabir, M. T., Jalouli, M., Rahman, M. A., Jeandet, P., Behl, T., Alexiou, A., Albadrani, G. M., Abdel-Daim, M. M., Perveen, A., & Ashraf, G. M. (2022). Neuroinflammatory Signaling in the Pathogenesis of Alzheimer's Disease. Current neuropharmacology, 20(1), 126–146. [CrossRef]
- Czapski, G. A., & Strosznajder, J. B. (2021). Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. International journal of molecular sciences, 22(21), 11677. [CrossRef]
- Chen, Y., & Yu, Y. (2023). Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation. Journal of neuroinflammation, 20(1), 165. [CrossRef]
- Chen, C., Liao, J., Xia, Y., Liu, X., Jones, R., Haran, J., McCormick, B., Sampson, T. R., Alam, A., & Ye, K. (2022). Gut microbiota regulate Alzheimer's disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut, 71(11), 2233–2252. [CrossRef]
- Li, Y., Macyczko, J. R., Liu, C. C., & Bu, G. (2022). ApoE4 reduction: An emerging and promising therapeutic strategy for Alzheimer's disease. Neurobiology of aging, 115, 20–28. [CrossRef]
- Griciuc, A., Federico, A. N., Natasan, J., Forte, A. M., McGinty, D., Nguyen, H., Volak, A., LeRoy, S., Gandhi, S., Lerner, E. P., Hudry, E., Tanzi, R. E., & Maguire, C. A. (2020). Gene therapy for Alzheimer's disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation. Human molecular genetics, 29(17), 2920–2935. [CrossRef]
- Yang, J., Wise, L., & Fukuchi, K. I. (2020). TLR4 Cross-Talk With NLRP3 Inflammasome and Complement Signaling Pathways in Alzheimer's Disease. Frontiers in immunology, 11, 724. [CrossRef]
- Catorce, M. N., & Gevorkian, G. (2016). LPS-induced Murine Neuroinflammation Model: Main Features and Suitability for Pre-clinical Assessment of Nutraceuticals. Current neuropharmacology, 14(2), 155–164. [CrossRef]
- Chou, V., Pearse, R. V., 2nd, Aylward, A. J., Ashour, N., Taga, M., Terzioglu, G., Fujita, M., Fancher, S. B., Sigalov, A., Benoit, C. R., Lee, H., Lam, M., Seyfried, N. T., Bennett, D. A., De Jager, P. L., Menon, V., & Young-Pearse, T. L. (2023). INPP5D regulates inflammasome activation in human microglia. Nature communications, 14(1), 7552. [CrossRef]
- Boza-Serrano, A., Ruiz, R., Sanchez-Varo, R., García-Revilla, J., Yang, Y., Jimenez-Ferrer, I., Paulus, A., Wennström, M., Vilalta, A., Allendorf, D., Davila, J. C., Stegmayr, J., Jiménez, S., Roca-Ceballos, M. A., Navarro-Garrido, V., Swanberg, M., Hsieh, C. L., Real, L. M., Englund, E., Linse, S., … Deierborg, T. (2019). Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer's disease. Acta neuropathologica, 138(2), 251–273. [CrossRef]
- Jain, S., Singh, R., Paliwal, S., & Sharma, S. (2023). Targeting Neuroinflammation as Disease Modifying Approach to Alzheimer's Disease: Potential and Challenges. Mini reviews in medicinal chemistry, 23(22), 2097–2116. [CrossRef]
- Lopes, J. R., Zhang, X., Mayrink, J., Tatematsu, B. K., Guo, L., LeServe, D. S., Abou-El-Hassan, H., Rong, F., Dalton, M. J., Oliveira, M. G., Lanser, T. B., Liu, L., Butovsky, O., Rezende, R. M., & Weiner, H. L. (2023). Nasal administration of anti-CD3 monoclonal antibody ameliorates disease in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 120(37), e2309221120. [CrossRef]
- Bronzuoli, M. R., Iacomino, A., Steardo, L., & Scuderi, C. (2016). Targeting neuroinflammation in Alzheimer's disease. Journal of inflammation research, 9, 199–208. [CrossRef]
- Shi, J., & Huang, S. (2023). Comparative Insight into Microglia/Macrophages-Associated Pathways in Glioblastoma and Alzheimer's Disease. International journal of molecular sciences, 25(1), 16. [CrossRef]
- Dias HK, Brown CL, Polidori MC, Lip GY, Griffiths HR. LDL-lipids from patients with hypercholesterolaemia and alzheimer's disease are inflammatory to microvascular endothelial cells: mitigation by statin intervention. Clin Sci (Lond). (2015) 129(12):1195–206. [CrossRef]
- Verdile G, Keane KN, Cruzat VF, Medic S, Sabale M, Rowles J, et al.. Inflammation and oxidative stress: The molecular connectivity between insulin resistance, obesity, and alzheimer's disease. Mediators Inflamm (2015) 2015:105828. [CrossRef]
- Chen H, Liu S, Ji L, Wu T, Ji Y, Zhou Y, et al.. Folic acid supplementation mitigates alzheimer's disease by reducing inflammation: A randomized controlled trial. Mediators Inflamm (2016) 2016:5912146. [CrossRef]
- Kounatidis I, Ligoxygakis P. Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol (2012) 2(5):120075. [CrossRef]
- Jones SV, Kounatidis I. Nuclear factor-kappa b and Alzheimer disease, unifying genetic and environmental risk factors from cell to humans. Front Immunol (2017) 8:1805. [CrossRef]
- Shi Z, Hong Y, Zhang K, Wang J, Zheng L, Zhang Z, et al.. BAG-1M co-activates BACE1 transcription through NF-kappaB and accelerates abeta production and memory deficit in alzheimer's disease mouse model. Biochim Biophys Acta Mol Basis Dis (2017) 1863(9):2398–407. [CrossRef]
- Kong F, Jiang X, Wang R, Zhai S, Zhang Y, Wang D. Forsythoside b attenuates memory impairment and neuroinflammation via inhibition on NF-kappaB signaling in alzheimer's disease. J Neuroinflammation. (2020) 17(1):305. [CrossRef]
- Wang C, Fan L, Khawaja RR, Liu B, Zhan L, Kodama L, et al.. Microglial NF-kappaB drives tau spreading and toxicity in a mouse model of tauopathy. Nat Commun (2022) 13(1):1969. [CrossRef]
- de Rivero Vaccari JP, Dietrich WD, Keane RW. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab (2014) 34(3):369–75. [CrossRef]
- Hamelin L, Lagarde J, Dorothee G, Leroy C, Labit M, Comley RA, et al.. Early and protective microglial activation in alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging. Brain (2016) 139(Pt 4):1252–64. [CrossRef]
- Esmaeili MA, Yadav S, Gupta RK, Waggoner GR, Deloach A, Calingasan NY, et al.. Preferential PPAR-alpha activation reduces neuroinflammation, and blocks neurodegeneration in vivo. Hum Mol Genet (2016) 25(2):317–27. [CrossRef]
| Model system | Receptor | Role in AD pathogenesis |
|---|---|---|
| APP/PS1 mice | TLR2 | TLR2 activation inhibition results in increased Aβ accumulation, compromised recognition, and elevated neuroinflammation [51] |
| AD-TLR2KO | TLR2 | Neurobehavioral function deteriorates and white matter damage is exacerbated by TLR2 genetic deletion [52] |
| TLR4M Tg mice | TLR4 | In comparison to TLR4W Tg mice, TLR4 mutations lower the Ab-induced IL-1b, CCL3, and CCL4 expressions in monocytes; Aβ deposition and soluble Aβ42 are increased in the brains of TLR4M Tg mice, and IL-1b, CCL3, and CCL4 expressions are decreased in cognitive function and the hippocampus [53] |
| TLR4w AD mice and TLR4m AD mice | TLR4 | Microglia activation and upregulation-control of cytokines reliant on TLR4 [54] |
| Human neurons | NLRP1 | By activating Casp1 and Casp6, NLRP1 inflammasomes, which are expressed in human central nervous system neurons, contribute to axonal degradation and cognitive impairment [55] |
| NALP3-deficient mice | NLRP3 | Involved in tissue proteinase B release and lysosomal degradation; triggers inflammation and tissue damage in AD [56] |
| APP/PS1 mice | NLRP3 | Encouragement of M2 phenotype conversion in microglia and decrease in Aβ deposition [57] |
| TREM2-WT) or TREM2-R47H | TREM2 | Minimization of Aβ seeding and suppression of microglia linked to illness [58] |
| TREM2 KO and WT C57BL/6J | TREM2 | Tau transport, dispersion, and seeding via microglial cell exosomes are enhanced by TREM2 loss [59] |
| Primary astrocytes and microglia | CD200 | Prevents the glutamate toxicity response and microglial activation caused by meth [60] |
| CD200 +/+ and CD200 −/− mice | CD200 | MPTP experimental mouse model [61] |
| C57BL/6 mice | CD32 | Induce proinflammatory signaling [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
