Submitted:
16 July 2024
Posted:
17 July 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
- i.
- The sparse availability of commercial turn-key solutions, outside of core scanning systems covering both the data acquisition and analysis/interpretation.
- ii.
- Difficulties in sensing the vertical faces of a mine (which is currently being filled by ground-based and drone-based systems). Though ground-based solutions (tripod-based) have provided data on vertical faces, their deployment in an open pit environment was at -best prototypical. Some truck-mounted systems have been deployed, suggesting safer practices at open pit sites.
- iii.
- The scalability of the results from regional to close-range sensing and vice versa is an ongoing topic of research and has only recently produced comparative studies addressing the effects of scale on data interpretation.
- iv.
- The inability of 3D modelling software systems (e.g., Datamine, MinePlan, Leapfrog, Vulcan) (at least until recently) to take (semi-) quantitative mineralogical data into account, deal with complex colour-coding and display legends for 4D spectral data.
- v.
- Concerns about the repeatability of data over the highly dynamic mining sites and seasonally variable AMD. The consistency of the data over time is a challenge that has yet to be addressed fully.
- vi.
- Methodological limitations for time-relevant data acquisition, visualizations, and processing. Current techniques of data acquisition and processing are still labour-intensive, costly and time-consuming (especially for airborne hyperspectral imaging (HSI) data) and heavily rely on the expertise of the interpreter.
- vii.
- A lack of service providers in the space to offer e.g., UAS-based HSI data collection and interpretation to non-expert users in the mining industry.
- viii.
- And a shortage of well-documented and publicly available case studies with quantified, validated results and clear value propositions.
2. Principles of Spectral Imaging
2.1. Spectral Data Analysis
2.2. Auxiliary Data Acquisition
3. Best-Practice for UAS-Based Spectral Imaging
3.1. Hyperspectral Pushbroom UAS Selection
3.2. Preparation of a Hyperspectral UAS Campaign
3.3. Execution of a Hyperspectral UAS Campaign
3.4. Data Correction and Post-Processing
3.5. Sampling and Validation in Geological Remote Sensing Studies
3.6. Ground Truth Sampling
4. Spectral Imaging Applied to the Resources Sector
- 1)
- Higher spatial resolution would benefit the method and interpretation and add value and the outlook is often directly in favour of using UAS platforms once available.
- 2)
- The use of UAS would enable safer data acquisition compared to ground-based scanning and also to acquire data in areas that cannot be reached using other methods
4.1. Exploration Sector
4.2. Operational Mining and Extraction Sector
4.3. Closure and Rehabilitation
AMD Detection
Environmental Monitoring, Rehabilitation and Revalorization
5. Conclusion and Outlook
The Future of Drone-Based Hyperspectral Imaging
- ix.
- Currently, the turnaround time from flight to data products takes >8h which is not practical within a typical shift-system at a mine site.
- x.
- Commercially available SWIR UASs only operate in nadir mode and are not able to adjust the viewing angle to scan steep terrain or sloping surfaces.
- xi.
- Likewise, the reflectance retrieval for oblique scanning angles (i.e., mine faces or steep terrain) is an active topic of research as is the correction for atmosphere, geometry and illumination effects within near-real-time (within one shift, ca. 4h). Real-time data correction, analysis and visualization of hyperspectral drone data is currently not possible.
- xii.
- Current airtimes of SWIR UASs do not meet mining demands, especially in large-scale mining operations.
- xiii.
- The setup, preparation and operation of a hyperspectral UAS, while research-ready, does not yet meet easy application standards for non-expert users.
- xiv.
- An open issue in geological RS is the scaling effect and how the signal evolves from a microscopic to an outcrop scale, and eventually to regional scale as captured by satellite data with moderate spatial resolution. While there have been sporadic studies in the literature about the subject [107,146,212,213], the scaling effect on mineral mapping is not fully understood.
- xv.
- In today’s operational hyperspectral UAS community, there are few interactions between hardware suppliers and the people in charge of processing the data. An often-under-communicated fact is that systems can show high amounts of spatial and spectral misregistration, resulting in the observation of spectral and spatial mixtures and in data analysts trying to solve the issue of non-linear spectral mixtures from the wrong end (software solutions) instead of the hardware optimization. Countless articles are trying to solve non-linear mixing of the data, typically concluding that ground physical properties are the reason for spectral mixing while hardware plays a similarly strong role [214,215,216,217,218,219,220]. Spatial misregistrations are an enormous contributor to non-linear spectral signature mixing and need to be taken into account in all processing steps. It is proposed that only <10% pixel spatial misregistration of the spectral fidelty of each pixel is upheld [221,222]. With the advent of hyperspectral UAS systems flooding the market, including mining, spectral hardware providers are therefore encouraged to provide test reports, calibration reports and necessary guidance for their system so that both the potentials and limitations of each collected dataset can be gauged effectively and taken into account for the accuracy and robustness of derived results and maps.
- xvi.
- Lastly, HSI data analysis is complex and data products are not easy to produce, interpret, or reproduce.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Application area | Target minerals or endmember | Imaging system | Methodology | Results (products) | Reference |
|---|---|---|---|---|---|
| Alteration mineral mapping | A suite of minerals active in the VNIR-SWIR | Airborne AVIRIS | Tetracorder | Mineral classification maps | [223] |
| Mineral exploration and mapping | Alteration minerals | PRISMA | Adaptive Coherence Estimator | Mineral classification maps | [224] |
| Mineral exploration and ore targeting | Kaolinite, white mica, amphiboles, and iron oxides | Airborne Hyspex + simulated EnMAP | Spectral feature fitting (SFF) | Classification map over the mining site | [225] |
| Mineral exploration and ore targeting | Carbonates and iron oxides (Gossans) | PRISMA | Composite ratios | Relative abundance maps over Pb-Zn deposit | [226] |
| Mineral mapping | White mica, chlorite-epidote, kaolinite, alunite, pyrophyllite | Gaofen-5 | MTMF & minimum wavelength mapping | Mineral abundances and mineral chemistry maps | [227] |
| Land cover classification around mining areas | Land cover | Gaofen-5 | Convolutional neural networks | Classification maps | [204] |
| Mining dust mapping | Iron oxides dust | Airborne HyMap | Partial least square analysis + absorption feature analysis | Dust quantity on mangroves leaves | [198] |
| Foliar dust mapping | Dust over leaves | Landsat + Hyperion | NDVI | Dust per unit area (g/m2) | [197] |
| Acidic mine waste mapping | Jarosite, schwertmannite, ferrihydrite, goethite, hematite | Airborne AVIRIS | Tetracorder | Mineral classification map | [155] |
| Tailing mineralogy mapping | Copiapite, jarosite, ferrihydrite, goethite, hematite | Airborne Probe1 (Hymap) | Linear spectral unmixing | Mineral abundance maps | [168] |
| Mine residue chemistry mapping | Al content of mine residues | Sentinel-2 + field sampling | Conditional Gaussian co-simulation | Al2O3 concentration | [228] |
| Geochemical composition mapping of tailings | Geochemistry of the tailing | Airborne HySpex | regression modeling | Metal concentration maps | [201] |
| Mine waste mineralogy mapping | Iron oxides and sulphates | Airborne HyMap | Sequential spectral unmixing | Estimation of sulphides oxidation intensity linked to climate variability | [165] |
| Mine waste mineralogy mapping | Alunite, jarosite, copiapite, ferrihydrite, maghemite, schwertmannite, lepidocrocite, etc. | Airborne ProspecTIR simulated HypsIRI (AVIRIS) |
Spectral Hourglass Wizard of ENVI combined with SAM + Composite ratios | Mineral classification map + iron oxide feature depth | [181] |
| Mineral mapping applied to mine-scale geometallurgy | Clays, sulphates and carbonates | Drone-borne Headwall system | Spectral angle mapper (SAM) | Mineral classification map | [80] |
| Multiscale mapping of rock outcrops of a mine | Chlorite, white mica, calcite, jarosite, dickite, gypsum | Field-based AisaFENIX + WV-3 data | Spectral angle mapper + multi-range spectral feature fit (MRSFF) | Mineral classification map + mineral chemistry | [229] |
| Multiscale mapping of rock outcrops of a mine | White mica, jarosite | Airborne and ground-based ProSpecTIR | Mixture-tuned matchfilter (MTMF) | Mineral classification map | [230] |
| Acid Mine Drainage and geo-environmental mapping | Iron sulphates and oxyhydroxides, | Airborne HyMap | MTMF | Mineral classification | [159] |
| Acid mine drainage mapping | Copiapite, natrojarosite, jarosite, hematite, goethite, alunogen, epsomite | Airborne AVIRIS | Tetracorder | Mineral classification map | [167] |
| Mine tailings mapping | Oxidized tailings and vegetation (green and dead) | Airborne hyperspectral | constrained spectral unmixing | Fractional abundance maps | [166] |
| Mine waste mapping | Iron oxides | Hyperion, Landsat | Band ratio (iron feature depth) + USGS MICA (Material Identification and Characterization Algorithm) |
Iron oxides abundance map + classification map | [179] |
| Acid mine drainage | Pioneer vegetation cover | Airborne HyMap | fully constrained linear spectralunmixing | Abundance map | [209] |
| Acid mine drainage | pH-sensitive mineral | Airborne HyMap | Partial least square analysis | pH maps | [162,169] |
| Acid mine drainage | pH-sensitive mineral | Airborne HyMap | iterative linear spectral unmixing analysis (ISMA) | Mineral classification maps + pH maps | [163] |
| Acid mine drainage | Iron sulphates and oxyhydroxides, | Airborne HyMap | Spectral Hourglass Wizard of ENVI combined with SAM | Mineral classification maps | [164] |
| Acid mine drainage | Iron sulphates and oxyhydroxides, | Airborne Hyspex | SAM, minimum wavelength mapping | Mineral classification maps | [161] |
| Red dust mapping | Red mud dust waste | CHRIS-Proba hyperspectral satellite + airborne MIVIS | Spectral Feature Fitting, Unsupervised classification, radiative transfer model | Mineral classification maps | [199] |
| Acidmine Drainage | physicochemical and mineralogical properties of the water and sediments | UAV-based hyperspectral (Rikola) | machine learning model (supervised random forest regression) | pH map, Fe concentration, and redox conditions of water | [160] |
| Acid mine drainage | hydrochemical parameters of mining lakes | Airborne CASI | Absorption feature analysis | pH maps of the lakes | [187] |
| Mine discharge mapping | Magnesium sulphate salts | Airborne HyMap | Constrained energy minimisation (CEM) |
Composition and extent of MgSO4 efflorescence | [190] |
| Mine wastes mapping | Selenium contamination | Airborne AVIRIS | MTMF | classification map | [192] |
| Tailing geochemical mapping | Copper contents of the soil | Gaofen-5 | piecewise partial least square regression (P-PLSR) | Copper contents (ppm) | [231] |
| Mine waste mapping | Hematite, Goethite, Limonite, Lepidocrocite, Jarosite, Copiapite | WorldView2 and 3 and Sentinel 2, HSI lab data | Random forest trained on lab data, band indices | Mineral classification maps | [183] |
| Acid mine drainage, pH indicators | Humic coal, jarosite, goethite, lignite, pyrite, clays | Airborne HSI HyMap, in-situ field and lab point spectrometry, | MRSFF, multiple regression model linking the fit images from MRSFF to ground truth pH from 15x15m homogeneous areas in HyMap | Per pixel endmember and pH maps | [176,178] |
| Acid mine drainage | Jarosite/ Iron, Clay A, Clay B, Goethite/ Iron | HSI UAV, VNIR 504-900nm |
Band ratios (750 / 880nm) and SAM classification with supervised EMs extraction | Endmember classification maps and band ratio mapes | [78] |
| Alteration mineral mapping | 7 lithological VMS groups representing alteration and mineralization | HSI ground-based (400-2500nm) and WorldView-2 | Bi-Triangle Side Feature Fitting (BFF) and SAM, among others | Endmember classification maps | [184] |
| Copper grade modelling for sorting applications | indirect relation to copper grade via SWIR-active mineralogy | Hyperspectral point spectrometer (ASD Fieldspec3) | Multivariate logistic regression with cut-off grade of 0.4% Cu, using calculated NIR features from NIR active mineralogy as predictors | Calculated waste probability per sample, no imaging data | [232] |
| Copper ore sorting ore vs. waste | White mica group minerals, tourmaline, chlorite, nontronite, kaolinite | Hyperspectral imagery in the SWIR 8940 – 2500nm); applicable to UAV-HSI imaging | SAM and minimum wavelength position feature modelling, PCA using resulting classification maps as input | Mineral classification maps, absorption position maps, white mica crystallinity index, PCA-based mineral groups for samples (not imaging) | [233] |
| Mineral, mineral, chemistry, grain size and alteration score mapping | Montmorillonite, Kaolinite, Muscovite, Gypsum, Prehnite, Pumpellyite, Epidote, Amphibole, Chlorite, Tourmaline, Inferred sulfides and quartz | HSI imaging SWIR laboratory system, applicable to UAV-HSI imaging | second derivative for absorption feature minimum position. And strength modelling. Rule-based method to distinguish biotite and chlorite. Feature ratio for white mica thickness. | Mineral occurrence maps for user-defined EMs, white mica chemistry and thickness maps, epidote chemistry maps, | [113,114,234] |
| Acid mine drainage and pH | pH, goethite, schwertmannite, hematite and jarosite | Drone-borne VNIR data | SVM for masking of water surface, random forest regression for pH estimate, | Estimated per-pixel pH of water surface; SAM-based mineral classification of sediment cover | [61] |
| Long range outcrop exploration | Site 1: dolomite, tremolite, calciteSite 2: chloritic, sericitic, white mica | Ground-based long-range SPECIM, outcrops and mine faces, VNIR-SWIR | MNF smoothing, MWL |
MWL maps of carbonate feature (tremolite– dolomite- calcite) (site 2) and 2200nm feature position (site 2) | [59] |
| Long range mine face alteration mapping | Carbonate, clay and iron oxide minerals, chloritic and sericitic alteration | Tripod- and lab-based SPECIM, VNIR-SWIR, and drone-borne HSI VNIR | Spectral indices, decision tree classifier based on multifeatured MWL, RF classifier trained on labelled field sample | Mineral alteration maps via RF and DT, false colour RGB of mineral indices | [22,235] |
| Carbonate lithology | CO3 and AlOH feature mapping, dolomite and calcite | Drone-borne HySpex VNIR-SWIR | Feature modelling using MWL | Lithological unit map base don CO3 feature map | [84] |
| HSI exploration, surface alteration mapping | White mica composition and crystallinity, smectite clay composition | ASTER and airborne HSI HyMap | Feature modelling of diagnostic absorptions (position, depth, width, geometry) | Mineral abundance and composition maps | [9,124] |
| Acid mine drainage | Ferric(III) iron, goethite | Simulated Sentinel-2, 4-band VNIR PlanetScope, Drone-borne VNIR, VNIR-SWIR handheld point spectrometry | Band ratio, linear regression | Ferric (Fe(III) iron) band ratio (665/560nm) | [60] |
| Exploration REE mapping | Neodymium | Drone-based VNIR (500-900nm) | MWL | REE feature depth mapping | [77] |
| Multitemporal tailings dam monitoring |
Tailings surface changes, including standing water | Sentinel-2 (20m/px); Landsat 8 (15m/px), aerial photography (<0.5m/px), Google Earth satellite data (<1m/px), Planet scope (3m/px) | Visual monitoring of surface changes, normalised difference water index |
Water occurrence maps, Sediment Index maps | [19] |
| Uranium exploration | Alteration mapping | Airborne HyMap, (450-2500nm) | MTMF and SAM | Mapping of Ca- bearing silicate endmembers in the SWIR and Fe-bearing oxy-hydroxide weathering products of sulphides in the VNIR | [236] |
| Alteration mineral mapping |
Hematite, Sulfur + Alunite + Aluminous Clays, Wet brines, Gypsum, Ulexite | EO1 Hyperion, ALI, ASTER | MNF transformation, endmembers via pixel purity index, linear spectral unmixing, SAM, | Endmember group classification maps | [11] |
| Mine waste mapping | Secondary iron minerals, 900nm iron feature | Hyperion/OLI and EnMAP/Sentinel-2 | Iron feature depth index (IFD), USGS MICA | Iron feature depth ratio map, Mineral classification map based on USGS MICA algorithm | [15] |
| Iron ore mapping |
iron oxides such as magnetite, hematite and goethite (vitreous and ochreous) | diamond drill core, drill chips and pulps , scanned via spectral imaging with HyLoggerTM, Corescan or via point spectrometry (pulps) |
Distinction of goethite variation via FWHM of the 900 nm 6A1→4T1 crystal field absorption feature Fe-oxide depth and width |
Distinction indicator between banded iron formation (BIF)-hosted iron ore deposits and bedded iron deposits (BID), respectively, named martite–goethite and martite–microplaty hematite and the channel iron deposits (CID) | [64] |
| Alteration mineral mapping |
Epithermal alteration mineral endmembers | Airborne HyMap | Feature modelling | Endmember classification maps and minimum wavelength feature modelling |
[71] |
| Iron anomaly mapping | Iron mineral group vs. gabbro distribution, connected to local magnetic anomalies | Drone-borne HSI and MSI data | Band ratios, MNF, SAM, k-means | Iron index mapping, endmember classification maps | [79] |
| Alteration mineral mapping | Advanced argillic mineral endmembers | Airborne AVIRIS | USGS Tetracorder expert system, including feature modelling | Endmember classification maps | [97] |
| Iron ore mapping | Goethite, opal, composition and abundance of ferric oxide, ferrous iron, white mica and Al smectites, kaolin, and carbonates | Airborne HyMapTM and laboratory-based Core and drill chip spectra (HyLoggingTM) | Feature modelling, band ratios, | e.g., Fe oxide index maps, mineral endmember maps, mineral chemistry based on feature mapping, Fe wt% modelling | [99,100,126,127] |
| Alteration mineral mapping | white mica, Al smectite, kaolinite, ferric/ferrous minerals, biotite, actinolite, epidote, chlorite, tourmaline, and jarosite, | Airborne HyMap | Feature modelling, here called multifeature extraction | Mineral abundance and chemistry mapping based on feature mapping, e.g., biotite composition mapping | [101] |
| Alteration mineral mapping | Hydrothermal alteration minerals, jarosite, illite, kaolinite, limonite | PRISMA | Adaptive Coherence Estimator | Endmember classification maps | [102] |
| Alteration mineral mapping | Carbonates and gossan mapping | PRISMA | Minimum wavelength mapping | Minimum wavelength maps for mineral endmember features | [103] |
| Alteration mineral mapping | Advanced argillic, prophylitic and argillic alteration mapping | Gaofen-5 | MTMF technique and the absorption feature wavelength position mapping | Endmember classification maps, minimum wavelength maps for mineral endmembers | [104] |
| Alteration mineral mapping | Illite, muscovite, jarosite, kaolinite | Airborne, core (laboratory) and mine face ProSpecTIR-VS (SPECIM instruments), VNIR-SWIR | Endmember extraction using PPI + n-D approach, partial linear unmixing via MTMF | Endmember classification maps | [107] |
| Geotechnical evaluation mapping | Kaolinite, montmorillonite, whica mica, hornblende, nontronite, | Drone- and tripod mounted Headwall | SAM | Endmember classification maps | [128] |
| Heap leach mapping | kaolinite, muscovite, and gypsum | Drone-borne Headwall (VNIR-SWIR) | SAM | Endmember classification maps | [203] |
| Clay mineral and stratigraphic mapping | Kaolinite, illite, smectite, nontronite, chlorite, talc | Tripod-mounted SPECIM, SWIR | “Automated feature extraction”, minimum wavelength mapping | Endmember maps based on feature wavelength position, depth and width | [130] |
| Mineral mapping | Mafic, pyroxenite, peridotite, basalt, gossan, gabbro, sediments, alluvial material, alluvial rusted surfaces | Airborne SPECIM (VNIR-SWIR), simulated EnMap | Endmember extraction via spatial spectral endmember extraction (SSEE), iterative spectral mixture analysis (ISMA) |
Endmember classification maps | [141] |
| Alteration mineral mapping | Kaolinite, Muscovite, Montmorillonite, Gypsum, Chlorite, Serpentine, Calcite | Airborne HyMapTM, tripod-mounted HySpex (VNIR-SWIR), laboratory based Corescan’s Hyperspectral Core Imager Mark IIITM | Minimum wavelength mapping, USGS PRISM MICA | Endmember classification maps, minimum wavelength maps for white mica | [145,146] |
| Iron ore mineral mapping |
Rock types: Martite, Goethite, BIF, Chert, Shale, Manganiferous shale, Kaolinite | Tripod-mounted SPECIM, VNIR-SWIR | SAM, SVM, derivative analysis | Colour-composite maps, Endmember classification maps, ferric iron mineral maps | [147,150] |
| Iron ore mineral mapping |
Mineralised martite (ore) distinction from shale and banded iron (BIF) (waste) | Tripod-mounted SPECIM, VNIR-SWIR | SAM, and two machine learning methods operating within a fully probabilistic Gaussian process (GP) framework – the squared exponential (SE) and the observation angle dependent (OAD) covariance functions (kernel). | Endmember classification maps | [148] |
| Bauxite residue mapping | Iron oxide and Al2O3 | Sentinel-2, PRISMA | Band ratio, multivariate geostatistical analysis based on field samples | Iron oxide maps, Al2O3 concentration mapping | [194] |
| Acid mine drainage | Pb, Zn, As | Airborne HyMap | Pearson correlation based on laboratory-based data spectral feature absorption modelling | Spectral parameter maps defined to show correlations to heavy metal content | [196] |
References
- Clark, R.N. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. Remote sensing for the earth sciences: Manual of remote sensing 1999, 3, 3–58. [Google Scholar] [CrossRef]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and Hyperspectral Geologic Remote Sensing: A Review. International Journal of Applied Earth Observation and Geoinformation 2012. [CrossRef]
- Hunt, G.R. Spectroscopic Properties of Rocks and Minerals. In Practical Handbook of Physical Properties of Rocks and Minerals; Carmichael, R.S., Ed.; CRC Press, 1982; pp. 599–669 ISBN 0-8493-3703-8.
- Hunt, G.R. Spectral Signatures of Particulate Minerals in the Visible and near Infrared. Geophysics 1977. [Google Scholar] [CrossRef]
- Hunt, G.R.; Ashley, R.P. Spectra of Altered Rocks in the Visible and near Infrared. Economic Geology 1979, 74, 1613–1629. [Google Scholar] [CrossRef]
- Hecker, C.; van Ruitenbeek, F.J.A.; van der Werff, H.M.A.; Bakker, W.H.; Hewson, R.D.; van der Meer, F.D. Spectral Absorption Feature Analysis for Finding Ore: A Tutorial on Using the Method in Geological Remote Sensing. IEEE Geosci Remote Sens Mag 2019, 7, 51–71. [Google Scholar] [CrossRef]
- Manolakis, D.; Lockwood, R.; Cooley, T. Hyperspectral Imaging Remote Sensing: Physics, Sensors, Algorithms; Cambridge University Press: Cambridge, 2016; ISBN 978-1-107-08366-0. [Google Scholar]
- Bedini, E. Mineral Mapping in the Kap Simpson Complex, Central East Greenland, Using HyMap and ASTER Remote Sensing Data. Advances in Space Research 2011. [Google Scholar] [CrossRef]
- Cudahy, T.; Jones, M.; Thomas, M.; Laukamp, C.; Caccetta, M.; Hewson, R.; Rodger, A.; Verral, M. Next Generation Mineral Mapping: Queensland Airborne HyMap and Satellite ASTER Surveys 2006-2008, Report Number: CSIRO Report P2007/364; Perth, 2008.
- Maroufi Naghadehi, K.; Hezarkhani, A.; Asadzadeh, S. Mapping the Alteration Footprint and Structural Control of Taknar IOCG Deposit in East of Iran, Using ASTER Satellite Data. International Journal of Applied Earth Observation and Geoinformation 2014, 33, 57–66. [Google Scholar] [CrossRef]
- Hubbard, B.E.; Crowley, J.K. Mineral Mapping on the Chilean–Bolivian Altiplano Using Co-Orbital ALI, ASTER and Hyperion Imagery: Data Dimensionality Issues and Solutions. Remote Sens Environ 2005, 99, 173–186. [Google Scholar] [CrossRef]
- Kruse, F.A. Mineral Mapping with AVIRIS and EO-1 Hyperion. Summaries of the 12th Annual Jet Propulsion Laboratory Airborne Geoscience Workshop, Pasadena, California, Pasadena, JPL Publication, 2003. [Google Scholar]
- Clark, R.N.; Swayze, G.A.; Gallagher, A. Mapping the Mineralogy and Lithology of Canyonlands, Utah with Imaging Spectrometer Data and the Multiple Spectral Feature Mapping Algorithm. In Proceedings of the Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop; Denver, CO, United States; 1992; pp. 11–13. [Google Scholar]
- Clark, R.N. Mapping Minerals, Amorphous Materials, Environmental Materials, Vegetation, Water, Ice and Snow, and Other Materials: The USGS Tricorder Algorithm. In Proceedings of the Clark, Roger, N. SwaySummaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshopze, Gregg A.; Denver, CO, United States, 1995; pp. 39–40.
- Mielke, C.; Boesche, N.; Rogass, C.; Kaufmann, H.; Gauert, C.; de Wit, M. Spaceborne Mine Waste Mineralogy Monitoring in South Africa, Applications for Modern Push-Broom Missions: Hyperion/OLI and EnMAP/Sentinel-2. Remote Sens (Basel) 2014, 6790–6816. [Google Scholar] [CrossRef]
- Tang, L.; Werner, T.T. Global Mining Footprint Mapped from High-Resolution Satellite Imagery. Commun Earth Environ 2023, 4, 134. [Google Scholar] [CrossRef]
- Rana, N.M.; Ghahramani, N.; Evans, S.G.; McDougall, S.; Small, A.; Take, W.A. A Comprehensive Global Database of Tailings Flows. 2021. [Google Scholar]
- Rana, N.M.; Ghahramani, N.; Evans, S.G.; McDougall, S.; Small, A.; Take, W.A. Catastrophic Mass Flows Resulting from Tailings Impoundment Failures. Eng Geol 2021, 292, 106262. [Google Scholar] [CrossRef]
- Torres-Cruz, L.A.; O’Donovan, C. Public Remotely Sensed Data Raise Concerns about History of Failed Jagersfontein Dam. Sci Rep 2023, 13, 4953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xing, J.; Li, J.; Du, S.; Qin, Q. A New Method for the Extraction of Tailing Ponds from Very High-Resolution Remotely Sensed Images: PSVED. Int J Digit Earth 2023, 16, 2681–2703. [Google Scholar] [CrossRef]
- Kruse, F.; Boardman, J.; Huntington, J. Comparison of Airborne and Satellite Hyperspectral Data for Geologic Mapping; SPIE, 2002; Vol. 4725;
- Thiele, S.T.; Lorenz, S.; Kirsch, M.; Cecilia Contreras Acosta, I.; Tusa, L.; Herrmann, E.; Möckel, R.; Gloaguen, R. Multi-Scale, Multi-Sensor Data Integration for Automated 3-D Geological Mapping. Ore Geol Rev 2021, 136, 104252. [Google Scholar] [CrossRef]
- Jackisch, R. Drone-Based Surveys of Mineral Deposits. Nat Rev Earth Environ 2020, 1, 187–187. [Google Scholar] [CrossRef]
- Park, S.; Choi, Y. Applications of Unmanned Aerial Vehicles in Mining from Exploration to Reclamation: A Review. Minerals 2020, 10, 663. [Google Scholar] [CrossRef]
- Mallet, C.; David, N. Digital Terrain Models Derived from Airborne LiDAR Data. In Optical Remote Sensing of Land Surface; Elsevier, 2016; pp. 299–319.
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for Uncertainty in DEMs from Repeat Topographic Surveys: Improved Sediment Budgets. Earth Surf Process Landf 2010, 35, 136–156. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward Reconstruction of 3D Surfaces and Topography with a Camera: Accuracy and Geoscience Application. J Geophys Res Earth Surf 2012, 117. [Google Scholar] [CrossRef]
- Travelletti, J.; Delacourt, C.; Allemand, P.; Malet, J.-P.; Schmittbuhl, J.; Toussaint, R.; Bastard, M. Correlation of Multi-Temporal Ground-Based Optical Images for Landslide Monitoring: Application, Potential and Limitations. ISPRS Journal of Photogrammetry and Remote Sensing 2012, 70, 39–55. [Google Scholar] [CrossRef]
- Barbarella, M.; Fiani, M. Monitoring of Large Landslides by Terrestrial Laser Scanning Techniques: Field Data Collection and Processing. Eur J Remote Sens 2013, 46, 126–151. [Google Scholar] [CrossRef]
- Mallet, C.; David, N. Digital Terrain Models Derived from Airborne LiDAR Data. In Optical Remote Sensing of Land Surface; Elsevier, 2016; pp. 299–319.
- Barbarella, M.; Fiani, M.; Lugli, A. Uncertainty in Terrestrial Laser Scanner Surveys of Landslides. Remote Sens (Basel) 2017, 9, 113. [Google Scholar] [CrossRef]
- Giordan, D.; Hayakawa, Y.; Nex, F.; Remondino, F.; Tarolli, P. Review Article: The Use of Remotely Piloted Aircraft Systems (RPASs) for Natural Hazards Monitoring and Management. Natural Hazards and Earth System Sciences 2018, 18, 1079–1096. [Google Scholar] [CrossRef]
- Godone, D.; Giordan, D.; Baldo, M. Rapid Mapping Application of Vegetated Terraces Based on High Resolution Airborne LiDAR. Geomatics, Natural Hazards and Risk 2018, 9, 970–985. [Google Scholar] [CrossRef]
- Rossi, G.; Tanteri, L.; Tofani, V.; Vannocci, P.; Moretti, S.; Casagli, N. Multitemporal UAV Surveys for Landslide Mapping and Characterization. Landslides 2018, 15, 1045–1052. [Google Scholar] [CrossRef]
- Glenn, N.F.; Streutker, D.R.; Chadwick, D.J.; Thackray, G.D.; Dorsch, S.J. Analysis of LiDAR-Derived Topographic Information for Characterizing and Differentiating Landslide Morphology and Activity. Geomorphology 2006, 73, 131–148. [Google Scholar] [CrossRef]
- Lucieer, A.; Jong, S.M. de; Turner, D. Mapping Landslide Displacements Using Structure from Motion (SfM) and Image Correlation of Multi-Temporal UAV Photography. Progress in Physical Geography: Earth and Environment 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Ciurleo, M.; Cascini, L.; Calvello, M. A Comparison of Statistical and Deterministic Methods for Shallow Landslide Susceptibility Zoning in Clayey Soils. Eng Geol 2017, 223, 71–81. [Google Scholar] [CrossRef]
- Mora, O.; Lenzano, M.; Toth, C.; Grejner-Brzezinska, D.; Fayne, J. Landslide Change Detection Based on Multi-Temporal Airborne LiDAR-Derived DEMs. Geosciences (Basel) 2018, 8, 23. [Google Scholar] [CrossRef]
- Zheng, J.; Yao, W.; Lin, X.; Ma, B.; Bai, L. An Accurate Digital Subsidence Model for Deformation Detection of Coal Mining Areas Using a UAV-Based LiDAR. Remote Sens (Basel) 2022, 14, 421. [Google Scholar] [CrossRef]
- Trevisani, S.; Cavalli, M.; Marchi, L. Surface Texture Analysis of a High-Resolution DTM: Interpreting an Alpine Basin. Geomorphology 2012, 161–162, 26–39. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS Journal of Photogrammetry and Remote Sensing 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Pellicani, R.; Argentiero, I.; Manzari, P.; Spilotro, G.; Marzo, C.; Ermini, R.; Apollonio, C. UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy). Geosciences (Basel) 2019, 9, 248. [Google Scholar] [CrossRef]
- Yin, D.; Wang, L. Individual Mangrove Tree Measurement Using UAV-Based LiDAR Data: Possibilities and Challenges. Remote Sens Environ 2019, 223, 34–49. [Google Scholar] [CrossRef]
- Guo, Q.; Su, Y.; Hu, T.; Zhao, X.; Wu, F.; Li, Y.; Liu, J.; Chen, L.; Xu, G.; Lin, G.; et al. An Integrated UAV-Borne Lidar System for 3D Habitat Mapping in Three Forest Ecosystems across China. Int J Remote Sens 2017, 38, 2954–2972. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR System with Application to Forest Inventory. Remote Sens (Basel) 2012, 4, 1519–1543. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y. Reviews of Unmanned Aerial Vehicle (Drone) Technology Trends and Its Applications in the Mining Industry. Geosystem Engineering 2016, 19, 197–204. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A Review of UAV Monitoring in Mining Areas: Current Status and Future Perspectives. Int J Coal Sci Technol 2019, 6, 320–333. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Souza Filho, C.R. A Review on Spectral Processing Methods for Geological Remote Sensing. International Journal of Applied Earth Observation and Geoinformation 2016, 47, 69–90. [Google Scholar] [CrossRef]
- Bedini, E. The Use of Hyperspectral Remote Sensing for Mineral Exploration: A Review. Journal of Hyperspectral Remote Sensing v 2017, 7, 189–211. [Google Scholar] [CrossRef]
- Fox, N.; Parbhakar-Fox, A.; Moltzen, J.; Feig, S.; Goemann, K.; Huntington, J. Applications of Hyperspectral Mineralogy for Geoenvironmental Characterisation. Miner Eng 2017, 107, 63–77. [Google Scholar] [CrossRef]
- Buckley, S.J.; Kurz, T.H.; Howell, J.A.; Schneider, D. Terrestrial Lidar and Hyperspectral Data Fusion Products for Geological Outcrop Analysis. Comput Geosci 2013, 54, 249–258. [Google Scholar] [CrossRef]
- Krupnik, D.; Khan, S. Close-Range, Ground-Based Hyperspectral Imaging for Mining Applications at Various Scales: Review and Case Studies. Earth Sci Rev 2019, 198, 102952. [Google Scholar] [CrossRef]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correctionworkflows. Remote Sens (Basel) 2018, 10, 1–42. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Kalacska, M.; Inamdar, D.; Soffer, R.; Lucanus, O.; Gorman, J.; Naprstek, T.; Schaaf, E.S.; Ifimov, G.; Elmer, K.; et al. Implementation of a UAV–Hyperspectral Pushbroom Imager for Ecological Monitoring. Drones 2019, 3, 1–24. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Kalacska, M.; Løke, T.; Schläpfer, D.; Coops, N.C.; Lucanus, O.; Leblanc, G. Assessing the Impact of Illumination on UAV Pushbroom Hyperspectral Imagery Collected under Various Cloud Cover Conditions. Remote Sens Environ 2021, 258, 112396. [Google Scholar] [CrossRef]
- Dering, G.M.; Micklethwaite, S.; Thiele, S.T.; Vollgger, S.A.; Cruden, A.R. Review of Drones, Photogrammetry and Emerging Sensor Technology for the Study of Dykes: Best Practises and Future Potential. Journal of Volcanology and Geothermal Research 2019, 373, 148–166. [Google Scholar] [CrossRef]
- Jakob, S.; Zimmermann, R.; Gloaguen, R. Processing of Drone-Borne Hyperspectral Data for Geological Applications. In Proceedings of the 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS); IEEE, August 2016; pp. 1–5. [Google Scholar]
- Jakob, S.; Zimmermann, R.; Gloaguen, R. The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo-A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data. Remote Sens (Basel) 2017. [Google Scholar] [CrossRef]
- Lorenz, S.; Salehi, S.; Kirsch, M.; Zimmermann, R.; Unger, G.; Sørensen, E.V.; Gloaguen, R. Radiometric Correction and 3D Integration of Long-Range Ground-Based Hyperspectral Imagery for Mineral Exploration of Vertical Outcrops. Remote Sens (Basel) 2018. [Google Scholar] [CrossRef]
- Chalkley, R.; Crane, R.A.; Eyre, M.; Hicks, K.; Jackson, K.-M.; Hudson-Edwards, K.A. A Multi-Scale Feasibility Study into Acid Mine Drainage (AMD) Monitoring Using Same-Day Observations. Remote Sens (Basel) 2022, 15, 76. [Google Scholar] [CrossRef]
- Flores, H.; Lorenz, S.; Jackisch, R.; Tusa, L.; Contreras, I.; Zimmermann, R.; Gloaguen, R. UAS-Based Hyperspectral Environmental Monitoring of Acid Mine Drainage Affected Waters. Minerals 2021, 11, 182. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Remote Sensing Models and Methods for Image Processing; 3rd ed.; Elsevier Inc., 2006; ISBN 9780080480589.
- Gupta, R.P. Remote Sensing Geology; 3rd ed.; Springer, 2017; ISBN 978-3662558744.
- Rodger, A.; Ramanaidou, E.; Laukamp, C.; Lau, I. A Qualitative Examination of the Iron Boomerang and Trends in Spectral Metrics across Iron Ore Deposits in Western Australia. Applied Sciences 2022, 12, 1547. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Souza Filho, C.R. A Review on Spectral Processing Methods for Geological Remote Sensing. International Journal of Applied Earth Observation and Geoinformation 2016, 47, 69–90. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sens Environ 1993. [Google Scholar] [CrossRef]
- Yuhas, R.H.; Goetz, A.F.H.; Boardman, J.W. Discrimination among Semi-Arid Landscape Endmembers Using the Spectral Angle Mapper (SAM) Algorithm. In Proceedings of the In JPL, Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop p 147-149 (SEE N94-16666 03-42); 1992; pp. 147–149.
- Laukamp, C.; Rodger, A.; LeGras, M.; Lampinen, H.; Lau, I.C.; Pejcic, B.; Stromberg, J.; Francis, N.; Ramanaidou, E. Mineral Physicochemistry Underlying Feature-Based Extraction of Mineral Abundance and Composition from Shortwave, Mid and Thermal Infrared Reflectance Spectra. Minerals 2021, 11, 347. [Google Scholar] [CrossRef]
- van Ruitenbeek, F.J.A.; Bakker, W.H.; van der Werff, H.M.A.; Zegers, T.E.; Oosthoek, J.H.P.; Omer, Z.A.; Marsh, S.H.; van der Meer, F.D. Mapping the Wavelength Position of Deepest Absorption Features to Explore Mineral Diversity in Hyperspectral Images. Planet Space Sci 2014, 101, 108–117. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Souza Filho, C.R. Iterative Curve Fitting: A Robust Technique to Estimate the Wavelength Position and Depth of Absorption Features From Spectral Data. IEEE Transactions on Geoscience and Remote Sensing 2016, 54, 5964–5974. [Google Scholar] [CrossRef]
- van der Meer, F.; Kopačková, V.; Koucká, L.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Bakker, W.H. Wavelength Feature Mapping as a Proxy to Mineral Chemistry for Investigating Geologic Systems: An Example from the Rodalquilar Epithermal System. International Journal of Applied Earth Observation and Geoinformation 2018, 64, 237–248. [Google Scholar] [CrossRef]
- Kokaly, R.F. PRISM: Processing Routines in IDL for Spectroscopic Measurements (Installation Manual and User’s Guide, Version 1.0=. 2011. [Google Scholar]
- Clark, R.N. Imaging Spectroscopy: Earth and Planetary Remote Sensing with the USGS Tetracorder and Expert Systems. J Geophys Res 2003, 108, 1–2. [Google Scholar] [CrossRef]
- Swayze, G.A.; Clark, R.N.; Goetz, A.F.H.; Chrien, T.G.; Gorelick, N.S. Effects of Spectrometer Band Pass, Sampling, and Signal-to-noise Ratio on Spectral Identification Using the Tetracorder Algorithm. J Geophys Res 2003, 108, 5105. [Google Scholar] [CrossRef]
- Rodarmel, C.; Shan, J. Principal Component Analysis for Hyperspectral Image Classification. Surveying and Land Information Science 2002. [Google Scholar]
- TERN A TERN Landscape Assessment Initiative Effective Field Calibration and Validation Practices, Version 1.3. 2018.
- Booysen, R.; Jackisch, R.; Lorenz, S.; Zimmermann, R.; Kirsch, M.; Nex, P.A.M.; Gloaguen, R. Detection of REEs with Lightweight UAV-Based Hyperspectral Imaging. Sci Rep 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Jackisch, R.; Lorenz, S.; Zimmermann, R.; Möckel, R.; Gloaguen, R. Drone-Borne Hyperspectral Monitoring of Acid Mine Drainage: An Example from the Sokolov Lignite District. Remote Sens (Basel) 2018, 10, 385. [Google Scholar] [CrossRef]
- Jackisch; Madriz; Zimmermann; Pirttijärvi; Saartenoja; Heincke; Salmirinne; Kujasalo; Andreani; Gloaguen DroneBorne Hyperspectral and Magnetic Data Integration: Otanmäki FeTiV Deposit in Finland. Remote Sens (Basel) 2019, 11, 2084. [CrossRef]
- Barton, I.F.; Gabriel, M.J.; Lyons-Baral, J.; Barton, M.D.; Duplessis, L.; Roberts, C. Extending Geometallurgy to the Mine Scale with Hyperspectral Imaging: A Pilot Study Using Drone- and Ground-Based Scanning. Min Metall Explor 2021, 38, 799–818. [Google Scholar] [CrossRef]
- JuanManuel, J.R.; Padua, L.; Hruska, J.; Feito, F.R.; Sousa, J.J. An Efficient Method for Generating UAV-Based Hyperspectral Mosaics Using Push-Broom Sensors. IEEE J Sel Top Appl Earth Obs Remote Sens 2021, 14, 6515–6531. [Google Scholar] [CrossRef]
- Goldstein, N.; Wiggins, R.; Woodman, P.; Saleh, M.; Nakanishi, K.; Fox, M.E.; Tannian, B.E.; Ziph-Schatzberg, L.; Soletski, P. Compact Visible to Extended-SWIR Hyperspectral Sensor for Unmanned Aircraft Systems (UAS). In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIV.; Messinger, D.W., Velez-Reyes, M., Eds.; SPIE, May 8 2018; p. 52.
- Chi, J. High-Resolution Hyperspectral Images of Council, Alaska 2019, Arctic Data Center. 2021. [Google Scholar]
- Thiele, S.T.; Bnoulkacem, Z.; Lorenz, S.; Bordenave, A.; Menegoni, N.; Madriz, Y.; Dujoncquoy, E.; Gloaguen, R.; Kenter, J. Mineralogical Mapping with Accurately Corrected Shortwave Infrared Hyperspectral Data Acquired Obliquely from UAVs. Remote Sens (Basel) 2022, 14, 5. [Google Scholar] [CrossRef]
- EASA Commission Implementing Regulation (EU) 2019/947 on the Rules and Procedures for the Operation of Unmanned Aircraft; EASA. 2019.
- EASA European Union Safety Agency. Available online: https://www.easa.europa.eu/en/regulations/unmanned-aircraft-systems-uas (accessed on 18 January 2024).
- EASA Commission Implementing Regulation (EU) 2020/746 of 4 June 2020 Amending Implementing Regulation (EU) 2019/947 as Regards Postponing Dates of Application of Certain Measures in the Context of the COVID-19 Pandemic.
- ICAO International Civil Aviation Organization. (accessed on 18 January 2024).
- Schläpfer, D.; Trim, S. PARGE Version 4. 0 User Manual 2024, 207. [Google Scholar]
- Schläpfer, D.; Raebsamen, J.; Popp, C.; Richter, R.; Trim, S.A.; Vögtli, M. Droacor Topographic Correction Method with Adaptive Diffuse Irradiance Based Shadow Correction. In Proceedings of the IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium; IEEE, July 16 2023; pp. 7332–7335.
- Schläpfer, D.; Popp, C.; Richter, R. Drone Data Atmospheric Correction Concept for Multi- and Hyperspectral Imager - the DROACOR Model. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2020, XLIII-B3-2, 473–478. [CrossRef]
- Schläpfer, D.; Richter, R.; Popp, C.; Nygren, P. DROACOR ® Reflectance Retrieval for Hyperspectral Mineral Exploration Using a Ground-Based Rotating Platforms. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2021, XLIII-B3-2, 209–214. [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The LibRadtran Software Package for Radiative Transfer Calculations (Version 2.0.1). Geosci Model Dev 2016, 9, 1647–1672. [Google Scholar] [CrossRef]
- Demetriades, A. Basic Considerations: Sampling, the Key for a Successful Applied Geochemical Survey for Mineral Exploration and Environmental Purposes. In Treatise on Geochemistry; Elsevier, 2014; pp. 1–31.
- Chan, M.; Mogk, D. Establishing an Ethic of Sampling for Future Generations of Geoscientists. GSA Today 2023, 33, 16–18. [Google Scholar] [CrossRef]
- Schodlok, M.C.; Frei, M.; Segl, K. Implications of New Hyperspectral Satellites for Raw Materials Exploration. Mineral Economics 2022, 35, 495–502. [Google Scholar] [CrossRef]
- Swayze, G.A.; Clark, R.N.; Goetz, A.F.H.; Livo, K.E.; Breit, G.N.; Kruse, F.A.; Sutley, S.J.; Snee, L.W.; Lowers, H.A.; Post, J.L.; et al. Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy. Economic Geology 2014, 109, 1179–1221. [Google Scholar] [CrossRef]
- Sabins, F.F. Remote Sensing for Mineral Exploration. Ore Geol Rev 1999, 14, 157–183. [Google Scholar] [CrossRef]
- Laukamp, C. Rocklea Dome C3DMM. v1. CSIRO. Data Collection. 2020. [Google Scholar]
- Laukamp, C.; Haest, M.; Cudahy, T. The Rocklea Dome 3D Mineral Mapping Test Data Set. Earth Syst Sci Data 2021, 13, 1371–1383. [Google Scholar] [CrossRef]
- Asadzadeh, S.; Chabrillat, S.; Cudahy, T.; Rashidi, B.; de Souza Filho, C.R. Alteration Mineral Mapping of the Shadan Porphyry Cu-Au Deposit (Iran) Using Airborne Imaging Spectroscopic Data: Implications for Exploration Drilling. Economic Geology 2023. [Google Scholar] [CrossRef]
- Bedini, E.; Chen, J. Prospection for Economic Mineralization Using PRISMA Satellite Hyperspectral Remote Sensing Imagery: An Example from Central East Greenland. Journal of Hyperspectral Remote Sensing 2022, 12, 124–130. [Google Scholar] [CrossRef]
- Chirico, R.; Mondillo, N.; Laukamp, C.; Mormone, A.; Di Martire, D.; Novellino, A.; Balassone, G. Mapping Hydrothermal and Supergene Alteration Zones Associated with Carbonate-Hosted Zn-Pb Deposits by Using PRISMA Satellite Imagery Supported by Field-Based Hyperspectral Data, Mineralogical and Geochemical Analysis. Ore Geol Rev 2023, 152, 105244. [Google Scholar] [CrossRef]
- Dong, X.; Gan, F.; Li, N.; Zhang, S.; Li, T. Mineral Mapping in the Duolong Porphyry and Epithermal Ore District, Tibet, Using the Gaofen-5 Satellite Hyperspectral Remote Sensing Data. Ore Geol Rev 2022, 151, 105222. [Google Scholar] [CrossRef]
- Ye, B.; Tian, S.; Cheng, Q.; Ge, Y. Application of Lithological Mapping Based on Advanced Hyperspectral Imager (AHSI) Imagery Onboard Gaofen-5 (GF-5) Satellite. Remote Sens (Basel) 2020, 12, 3990. [Google Scholar] [CrossRef]
- Croudace, I.W.; Rothwell, R.G. Future Developments and Innovations in High-Resolution Core Scanning. In Micro-XRF Studies of Sediment Cores; Springer Dodrecht, 2015; pp. 627–647.
- Kruse, F.A.; Bedell, R.L.; Taranik, J. V.; Peppin, W.A.; Weatherbee, O.; Calvin, W.M. Mapping Alteration Minerals at Prospect, Outcrop and Drill Core Scales Using Imaging Spectrometry. Int J Remote Sens 2011, 33, 1780–1798. [Google Scholar] [CrossRef]
- Rodrigues, S.; Esterle, J. Core Scanner Technologies: Take Everything without Breaking. The APPEA Journal 2016, 56, 595. [Google Scholar] [CrossRef]
- Rodrigues, S.; Fonteneau, L.; Esterle, J. Characterisation of Coal Using Hyperspectral Core Scanning Systems. Int J Coal Geol 2023, 269, 104220. [Google Scholar] [CrossRef]
- Huntington, J.; Whitbourn, L.; Mason, P.; Berman, M.; Schodlok, M.C.; Engineering, R. HyLogging - Voluminous Industrial-Scale Reflectance Spectroscopy of the Earth’s Subsurface. In Proceedings of the Art, Science and Applications of Reflectance Spectroscopy Symposium; Boulder, Colorado; 2010; pp. 23–25. [Google Scholar]
- Schodlok, M.C.; Whitbourn, L.; Huntington, J.; Mason, P.; Green, A.; Berman, M.; Coward, D.; Connor, P.; Wright, W.; Jolivet, M.; et al. HyLogger-3, a Visible to Shortwave and Thermal Infrared Reflectance Spectrometer System for Drill Core Logging: Functional Description. Australian Journal of Earth Sciences 2016, 63. [Google Scholar] [CrossRef]
- Tusa, L.; Andreani, L.; Khodadadzadeh, M.; Contreras, C.; Ivascanu, P.; Gloaguen, R.; Gutzmer, J. Mineral Mapping and Vein Detection in Hyperspectral Drill-Core Scans: Application to Porphyry-Type Mineralization. Minerals 2019, 9, 122. [Google Scholar] [CrossRef]
- Lypaczewski, P.; Rivard, B.; Lesage, G.; Byrne, K.; D’angelo, M.; Lee, R.G. Characterization of Mineralogy in the Highland Valley Porphyry Cu District Using Hyperspectral Imaging, and Potential Applications. Minerals 2020, 10, 1–30. [Google Scholar] [CrossRef]
- Lypaczewski, P.; Rivard, B.; Gaillard, N.; Perrouty, S.; Piette-Lauzière, N.; Bérubé, C.L.; Linnen, R.L. Using Hyperspectral Imaging to Vector towards Mineralization at the Canadian Malartic Gold Deposit, Québec, Canada. Ore Geol Rev 2019, 111, 102945. [Google Scholar] [CrossRef]
- Tuşa, L.; Khodadadzadeh, M.; Contreras, C.; Rafiezadeh Shahi, K.; Fuchs, M.; Gloaguen, R.; Gutzmer, J. Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sens (Basel) 2020, 12, 1218. [Google Scholar] [CrossRef]
- Acosta, I.C.C.; Khodadadzadeh, M.; Tusa, L.; Ghamisi, P.; Gloaguen, R. A Machine Learning Framework for Drill-Core Mineral Mapping Using Hyperspectral and High-Resolution Mineralogical Data Fusion. IEEE J Sel Top Appl Earth Obs Remote Sens 2019, 12, 4829–4842. [Google Scholar] [CrossRef]
- Laakso, K.S.; Haavikko, S.; Korhonen, M.; Köykkä, J.; Middleton, M.; Nykänen, V.; Rauhala, J.; Torppa, A.; Torppa, J.; Törmänen, T. Applying Self-Organizing Maps to Characterize Hyperspectral Drill Core Data from Three Ore Prospects in Northern Finland. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications XIII.; Schulz, K., Nikolakopoulos, K.G., Michel, U., Eds.; SPIE, October 26 2022; p. 39.
- Körting, F.; Hernandez, J.E.; Koirala, P.; Lehman, M.; Monecke, T.; Lindblom, D. Development of the HySpex Hyperspectral Drill Core Scanner: Case Study on Exploration Core from the Au-Rich LaRonde-Penna Volcanogenic Massive Sulfide Deposit, Quebec, Canada. In Proceedings of the Hyperspectral Imaging and Applications II.; Barnett, N.J., Gowen, A.A., Liang, H., Eds.; SPIE, January 12 2023; p. 5.
- De La Rosa, R.; Khodadadzadeh, M.; Tusa, L.; Kirsch, M.; Gisbert, G.; Tornos, F.; Tolosana-Delgado, R.; Gloaguen, R. Mineral Quantification at Deposit Scale Using Drill-Core Hyperspectral Data: A Case Study in the Iberian Pyrite Belt. Ore Geol Rev 2021, 139, 104514. [Google Scholar] [CrossRef]
- Mathieu, M.; Roy, R.; Launeau, P.; Cathelineau, M.; Quirt, D. Alteration Mapping on Drill Cores Using a HySpex SWIR-320m Hyperspectral Camera: Application to the Exploration of an Unconformity-Related Uranium Deposit (Saskatchewan, Canada). J Geochem Explor 2017, 172, 71–88. [Google Scholar] [CrossRef]
- Körting, F. Development of a 360° Hyperspectral Drill Core Scanner: Test of Technical Conditions and Validation of High-Resolution near-Field Analysis of Crystalline Basement Rocks Using COSC-1 Core Samples, University of Potsdam, 2019.
- Turner, D.; Rivard, B.; Groat, L. Rare Earth Element Ore Grade Estimation of Mineralized Drill Core from Hyperspectral Imaging Spectroscopy. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium; IEEE, July 2014; pp. 4612–4615. [Google Scholar]
- Silversides, K.L.; Murphy, R.J. Identification of Marker Shale Horizons in Banded Iron Formation: Linking Measurements of Downhole Natural Gamma-ray with Measurements from Reflectance Spectrometry of Rock Cores. Near Surface Geophysics 2017, 15, 141–153. [Google Scholar] [CrossRef]
- Cudahy, T. Mineral Mapping for Exploration: An Australian Journey of Evolving Spectral Sensing Technologies and Industry Collaboration. Geosciences (Basel) 2016, 6, 52. [Google Scholar] [CrossRef]
- Haest, M.; Cudahy, T.; Laukamp, C.; Gregory, S. Quantitative Mineralogy from Infrared Spectroscopic Data. I. Validation of Mineral Abundance and Composition Scripts at the Rocklea Channel Iron Deposit in Western Australia. Economic Geology 2012, 107, 209–228. [Google Scholar] [CrossRef]
- Haest, M.; Cudahy, T.; Laukamp, C.; Gregory, S. Quantitative Mineralogy from Infrared Spectroscopic Data. II. Three-Dimensional Mineralogical Characterization of the Rocklea Channel Iron Deposit, Western Australia. Economic Geology 2012, 107, 229–249. [Google Scholar] [CrossRef]
- Haest, M.; Cudahy, T.; Rodger, A.; Laukamp, C.; Martens, E.; Caccetta, M. Unmixing the Effects of Vegetation in Airborne Hyperspectral Mineral Maps over the Rocklea Dome Iron-Rich Palaeochannel System (Western Australia). Remote Sens Environ 2013, 129, 17–31. [Google Scholar] [CrossRef]
- He, J.; Barton, I. Hyperspectral Remote Sensing for Detecting Geotechnical Problems at Ray Mine. Eng Geol 2021, 292, 106261. [Google Scholar] [CrossRef]
- He, J.; DuPlessis, L.; Barton, I. Heap Leach Pad Mapping with Drone-Based Hyperspectral Remote Sensing at the Safford Copper Mine, Arizona. Hydrometallurgy 2022, 211, 105872. [Google Scholar] [CrossRef]
- Murphy, R.J.; Taylor, Z.; Schneider, S.; Nieto, J. Mapping Clay Minerals in an Open-Pit Mine Using Hyperspectral and LiDAR Data. Eur J Remote Sens 2015, 48, 511–526. [Google Scholar] [CrossRef]
- Chabrillat, S.; Goetz, A.F.H.; Krosley, L.; Olsen, H.W. Use of Hyperspectral Images in the Identification and Mapping of Expansive Clay Soils and the Role of Spatial Resolution. Remote Sens Environ 2002, 82, 431–445. [Google Scholar] [CrossRef]
- Thompson, D.R.; Thorpe, A.K.; Frankenberg, C.; Green, R.O.; Duren, R.; Guanter, L.; Hollstein, A.; Middleton, E.; Ong, L.; Ungar, S. Space-based Remote Imaging Spectroscopy of the Aliso Canyon CH 4 Superemitter. Geophys Res Lett 2016, 43, 6571–6578. [Google Scholar] [CrossRef]
- Kurz, T.H.; Buckley, S.J.; Becker, J.K. Hyperspectral Imaging: A Novel Geological Mapping Technique for Subsurface Construction Sites. In Proceedings of the Proceedings of the World Tunnel Congress 2017 – Surface challenges – Underground solutions; Bergen, Norway, 2017; p. 10.
- Kurz, T.H.; Buckley, S.J.; Howell, J.A.; Schneider, D. Close Range Hyperspectral and Lidar Data Integration for Geological Outcrop Analysis. In Proceedings of the 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing; IEEE, August 2009; pp. 1–4. [Google Scholar]
- Sima, A.A.; Buckley, S.J.; Kurz, T.H.; Schneider, D. Semi-Automated Registration Of Close-Range Hyperspectral Scans Using Oriented Digital Camera Imagery And A 3d Model. The Photogrammetric Record 2014, 29, 10–29. [Google Scholar] [CrossRef]
- Rosa, D.; Dewolfe, M.; Guarnieri, P.; Kolb, J.; LaFlamme, C.; Partin, C.; Salehi, S.; Sørensen, E.V.; Thaarup, S.; Thrane, K.; et al. Architecture and Mineral Potential of the Paleoproterozoic Karrat Group, West Greenland: Results of the 2016 Season; GEUS Rapport 2017/5; Copenhagen, Denmark, 2017.
- Kirsch, M.; Lorenz, S.; Zimmermann, R.; Tusa, L.; Möckel, R.; Hödl, P.; Booysen, R.; Khodadadzadeh, M.; Gloaguen, R. Integration of Terrestrial and Drone-Borne Hyperspectral and Photogrammetric Sensing Methods for Exploration Mapping and Mining Monitoring. Remote Sens (Basel) 2018. [Google Scholar] [CrossRef]
- Salehi, S.; Lorenz, S.; Sørensen, E.V.; Zimmermann, R.; Fensholt, R.; Heincke, B.H.; Kirsch, M.; Gloaguen, R. Integration of Vessel-Based Hyperspectral Scanning and 3D-Photogrammetry for Mobile Mapping of Steep Coastal Cliffs in the Arctic. Remote Sens (Basel) 2018. [Google Scholar] [CrossRef]
- Thiele, S.T.; Lorenz, S.; Kirsch, M.; Gloaguen, R. A Novel and Open-Source Illumination Correction for Hyperspectral Digital Outcrop Models. IEEE Transactions on Geoscience and Remote Sensing 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Feng, J.; Rogge, D.; Rivard, B. Comparison of Lithological Mapping Results from Airborne Hyperspectral VNIR-SWIR, LWIR and Combined Data. International Journal of Applied Earth Observation and Geoinformation 2018, 64, 340–353. [Google Scholar] [CrossRef]
- Rogge, D.; Rivard, B.; Segl, K.; Grant, B.; Feng, J. Mapping of NiCu-PGE Ore Hosting Ultramafic Rocks Using Airborne and Simulated EnMAP Hyperspectral Imagery, Nunavik, Canada. Remote Sens Environ 2014, 152, 302–317. [Google Scholar] [CrossRef]
- Scafutto, R.D.P.M.; de Souza Filho, C.R.; Rivard, B. Characterization of Mineral Substrates Impregnated with Crude Oils Using Proximal Infrared Hyperspectral Imaging. Remote Sens Environ 2016, 179, 116–130. [Google Scholar] [CrossRef]
- Entezari, I.; Rivard, B.; Geramian, M.; Lipsett, M.G. Predicting the Abundance of Clays and Quartz in Oil Sands Using Hyperspectral Measurements. International Journal of Applied Earth Observation and Geoinformation 2017, 59, 1–8. [Google Scholar] [CrossRef]
- Bösche, N.K. Detection of Rare Earth Elements and Rare Earth Oxides with Hyperspectral Spectroscopy. Dissertation, University of Potsdam, 2015.
- Kokaly, R.F.; Graham, G.E.; Hoefen, T.M.; Kelley, K.D.; Johnson, M.R.; Hubbard, B.E. Hyperspectral Surveying for Mineral Resources in Alaska. 2016, 2. [CrossRef]
- Kokaly, R.F.; Hoefen, T.M.; Graham, G.E.; Kelley, K.D.; Johnson, M.R.; Hubbard, B.E.; Goldfarb, R.J.; Buchhorn, M.; Prakash, A. Mineral Information at Micron to Kilometer Scales: Laboratory, Field, and Remote Sensing Imaging Spectrometer Data from the Orange Hill Porphyry Copper Deposit, Alaska, USA. International Geoscience and Remote Sensing Symposium (IGARSS) 2016, 2016-Novem, 5418–5421. [CrossRef]
- Murphy, R.J.; Monteiro, S.T.; Schneider, S. Evaluating Classification Techniques for Mapping Vertical Geology Using Field-Based Hyperspectral Sensors. IEEE Transactions on Geoscience and Remote Sensing 2012, 50, 3066–3080. [Google Scholar] [CrossRef]
- Schneider, S.; Murphy, R.J.; Melkumyan, A.; Nettleton, E. Autonomous Mapping of Mine Face Geology Using Hyperspectral Data. 35th APCOM Symposium - Application of Computers and Operations Research in the Minerals Industry, Proceedings 2011, 865–876.
- Monteiro, S.T.; Nieto, J.; Murphy, R.; Ramakrishnan, R.; Taylor, Z. Combining Strong Features for Registration of Hyperspectral and Lidar Data from Field-Based Platforms. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS); 2013.
- Murphy, R.J.; Monteiro, S.T. Mapping the Distribution of Ferric Iron Minerals on a Vertical Mine Face Using Derivative Analysis of Hyperspectral Imagery (430–970nm). ISPRS Journal of Photogrammetry and Remote Sensing 2013, 75, 29–39. [Google Scholar] [CrossRef]
- Austin, K.; Choros, K.; Job, A.; McAree, R. Real-Time Mining Face Grade Determination Using Hyperspectral Imaging Techniques. MRIWA Project M0518; Brisbane, Queensland, 2021.
- Cardoso-Fernandes, J.; Teodoro, A.C.; Lima, A.; Mielke, C.; Korting, F.; Roda-Robles, E.; Cauzid, J. Multi-Scale Approach Using Remote Sensing Techniques for Lithium Pegmatite Exploration: First Results. In Proceedings of the IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium; IEEE, September 26 2020; pp. 5226–5229.
- Kirsch, M.; Mavroudi, M.; Thiele, S.; Lorenz, S.; Tusa, L.; Booysen, R.; Herrmann, E.; Fatihi, A.; Möckel, R.; Dittrich, T.; et al. Underground Hyperspectral Outcrop Scanning for Automated Mine-face Mapping: The Lithium Deposit of Zinnwald/Cínovec. The Photogrammetric Record 2023, 38, 408–429. [Google Scholar] [CrossRef]
- Meyer, J.M.; Kokaly, R.F.; Holley, E. Hyperspectral Remote Sensing of White Mica: A Review of Imaging and Point-Based Spectrometer Studies for Mineral Resources, with Spectrometer Design Considerations. Remote Sens Environ 2022, 275, 113000. [Google Scholar] [CrossRef]
- Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; et al. Using Imaging Spectroscopy To Map Acidic Mine Waste. Environ Sci Technol 2000, 34, 47–54. [Google Scholar] [CrossRef]
- Dold, B. Acid Rock Drainage Prediction: A Critical Review. J Geochem Explor 2017, 172, 120–132. [Google Scholar] [CrossRef]
- Lottermoser, B. Mine Wastes; 3rd ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; ISBN 978-3-642-12418-1.
- Kemper, T.; Sommer, S. Use of Airborne Hyperspectral Data to Estimate Residual Heavy Metal Contamination and Acidification Potential in the Guadiamar Floodplain Andalusia, Spain after the Aznacollar Mining Accident.; Ehlers, M., Posa, F., Kaufmann, H.J., Michel, U., De Carolis, G., Eds.; October 22 2004; p. 224.
- Chevrel, S.; Kuosmanen, V.; Grösel, K.; Marsh, S.; Tukiainen, T.; Schäffer, U.; Quental, L.; Vosen, P.; Fischer, C.; Loudjani, P.; et al. Assessing and Monitoring the Environmental Impact of Mining Activities in Europe Using Advanced Earth Observation Techniques; European Community, 2003.
- Flores, H.; Lorenz, S.; Jackisch, R.; Tusa, L.; Contreras, I.; Zimmermann, R.; Gloaguen, R. UAS-Based Hyperspectral Environmental Monitoring of Acid Mine Drainage Affected Waters. Minerals 2021, 11, 182. [Google Scholar] [CrossRef]
- Gascueña, A.B. Mineral Exploration of Rock Wastes from Sulfide Mining Using Airborne Hyperspectral Imaging, 2020, Vol. MSc.
- Ong, C.C.H.; Cudahy, T.J. Mapping Contaminated Soils: Using Remotely-Sensed Hyperspectral Data to Predict PH. Eur J Soil Sci 2014, 65, 897–906. [Google Scholar] [CrossRef]
- Zabcic, N.; Rivard, B.; Ong, C.; Mueller, A. Using Airborne Hyperspectral Data to Characterize the Surface PH and Mineralogy of Pyrite Mine Tailings. International Journal of Applied Earth Observation and Geoinformation 2014, 32, 152–162. [Google Scholar] [CrossRef]
- Quental, L.; Sousa, A.J.; Marsh, S.; Brito, G.; Abreu, M.M. Imaging Spectroscopy Answers to Acid Mine Drainage Detection at S. Domingos, Iberian Pyrite Belt, Portugal. Comunicações Geológicas 2011, 98, 61–71. [Google Scholar]
- Riaza, A.; Müller, A. Hyperspectral Remote Sensing Monitoring of Pyrite Mine Wastes: A Record of Climate Variability (Pyrite Belt, Spain). Environ Earth Sci 2010, 61, 575–594. [Google Scholar] [CrossRef]
- Richter, N.; Staenz, K.; Kaufmann, H. Spectral Unmixing of Airborne Hyperspectral Data for Baseline Mapping of Mine Tailings Areas. Int J Remote Sens 2008, 29, 3937–3956. [Google Scholar] [CrossRef]
- Rockwell, B.W.; McDougal, R.R.; Gent, C.A. Remote Sensing for Environmental Site Screening and Watershed Evaluation in Utah Mine Lands—East Tintic Mountains, Oquirrh Mountains, and Tushar Mountains; U.S. Geological Survey Scientific Investigations Report 2004-5241, 2005.
- Shang, J.; Morris, B.; Howarth, P.; Lévesque, J.; Staenz, K.; Neville, B. Mapping Mine Tailing Surface Mineralogy Using Hyperspectral Remote Sensing. Canadian Journal of Remote Sensing 2009, 35, S126–S141. [Google Scholar] [CrossRef]
- Ong, C.; Cudahy, T.J.; Swayze, G. Predicting Acid Drainage Related PhysicochemicalMeasurements Using Hyperspectral Data. In Proceedings of the 3rd EARSeL Workshop on Imaging Spectroscopy; Herrsching, Germany; 2003; pp. 363–373. [Google Scholar]
- Buzzi, J.; Riaza, A.; García-Meléndez, E.; Carrère, V.; Holzwarth, S. Monitoring of River Contamination Derived From Acid Mine Drainage Using Airborne Imaging Spectroscopy (HyMap Data, South-West Spain). River Res Appl 2016, 32, 125–136. [Google Scholar] [CrossRef]
- Riaza, A.; Buzzi, J.; García-Meléndez, E.; Carrère, V.; Müller, A. Monitoring the Extent of Contamination from Acid Mine Drainage in the Iberian Pyrite Belt (SW Spain) Using Hyperspectral Imagery. Remote Sens (Basel) 2011, 3, 2166–2186. [Google Scholar] [CrossRef]
- Farrand, W.H.; Bhattacharya, S. Tracking Acid Generating Minerals and Trace Metal Spread from Mines Using Hyperspectral Data: Case Studies from Northwest India. Int J Remote Sens 2021, 42, 2920–2939. [Google Scholar] [CrossRef]
- Ferrier, G.; Rumsby, B.; Pope, R. Application of Hyperspectral Remote Sensing Data in the Monitoring of the Environmental Impact of Hazardous Waste Derived from Abandoned Mine Sites. Geological Society, London, Special Publications 2007, 283, 107–116. [Google Scholar] [CrossRef]
- Ong, C.C.H.; Cudahy, T.J. Mapping Contaminated Soils: Using Remotely-sensed Hyperspectral Data to Predict PH. Eur J Soil Sci 2014, 65, 897–906. [Google Scholar] [CrossRef]
- Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; et al. Using Imaging Spectroscopy To Map Acidic Mine Waste. Environ Sci Technol 2000, 34, 47–54. [Google Scholar] [CrossRef]
- Notesco, G.; Kopačková, V.; Rojík, P.; Schwartz, G.; Livne, I.; Dor, E. Ben Mineral Classification of Land Surface Using Multispectral LWIR and Hyperspectral SWIR Remote-Sensing Data. A Case Study over the Sokolov Lignite Open-Pit Mines, the Czech Republic. Remote Sens (Basel), 2014. [Google Scholar] [CrossRef]
- Kopačková, V. Using Multiple Spectral Feature Analysis for Quantitative PH Mapping in a Mining Environment. International Journal of Applied Earth Observation and Geoinformation 2014, 28, 28–42. [Google Scholar] [CrossRef]
- Kopackova, V.; Chevrel, S.; Bourguignon, A.; Rojik, P. Mapping Hazardous Low-PH Material in Mining Environment: Multispectral and Hyperspectral Aproaches. International Geoscience and Remote Sensing Symposium (IGARSS) 2012, 2695–2698. [Google Scholar] [CrossRef]
- Mielke, C.; Boesche, N.; Rogass, C.; Kaufmann, H.; Gauert, C.; de Wit, M. Spaceborne Mine Waste Mineralogy Monitoring in South Africa, Applications for Modern Push-Broom Missions: Hyperion/OLI and EnMAP/Sentinel-2. Remote Sens (Basel) 2014, 6790–6816. [Google Scholar] [CrossRef]
- Chalkley, R.; Crane, R.A.; Eyre, M.; Hicks, K.; Jackson, K.-M.; Hudson-Edwards, K.A. A Multi-Scale Feasibility Study into Acid Mine Drainage (AMD) Monitoring Using Same-Day Observations. Remote Sens (Basel) 2023, 15, 76. [Google Scholar] [CrossRef]
- Davies, G.E.; Calvin, W.M. Mapping Acidic Mine Waste with Seasonal Airborne Hyperspectral Imagery at Varying Spatial Scales. Environ Earth Sci 2017, 76, 432. [Google Scholar] [CrossRef]
- Koellner, N. ReMon - Remote Monitoring of Tailings Using Satellites and Drones. Available online: https://www.gfz-potsdam.de/en/section/remote-sensing-and-geoinformatics/projects/remon/ (accessed on 27 April 2020).
- Hildebrand, J.C. Acid Mine Drainage and Tailing Monitoring Using Satellite Imagery for VMS-Type Deposits in the Republic of Cyprus. Scientific Technical Report STR ; 22/08, Humboldt University, Berlin, 2022.
- Koerting, F.M. Hybrid Imaging Spectroscopy Approaches for Open Pit Mining - Applications for Virtual Mine Face Geology. Dr. rer. nat, University of Potsdam, 2021.
- Koerting, F.; Rogass, C.; Koellner, N.; Horning, M.; Altenberger, U. Mineral Spectra and Chemistry of 37 Copper-Bearing Surface Samples from Apliki Copper-Gold-Pyrite Mine in the Republic of Cyprus. 2019. [Google Scholar]
- Koerting, F.; Koellner, N.; Mielke, C.; Rogass, C.; Kuras, A.; Altenberger, U.; Kaestner, F.; Hildebrand, C. Hyperspectral Imaging Data of the Northern Mine Face and of Laboratory Samples of the Copper-Gold-Pyrite Mine Apliki, Nicosia District, Republic of Cyprus; Potsdam, Germany. 2021. [Google Scholar]
- Gläßer, C.; Groth, D.; Frauendorf, J. Monitoring of Hydrochemical Parameters of Lignite Mining Lakes in Central Germany Using Airborne Hyperspectral Casi-Scanner Data. Int J Coal Geol 2011, 86, 40–53. [Google Scholar] [CrossRef]
- Swayze, G.A.; Kokaly, R.F.; Higgins, C.T.; Clinkenbeard, J.P.; Clark, R.N.; Lowers, H.A.; Sutley, S.J. Mapping Potentially Asbestos-Bearing Rocks Using Imaging Spectroscopy. Geology 2009, 37, 763–766. [Google Scholar] [CrossRef]
- Bruno, R.; Kasmaeeyazdi, S.; Tinti, F.; Mandanici, E.; Balomenos, E. Spatial Component Analysis to Improve Mineral Estimation Using Sentinel-2 Band Ratio: Application to a Greek Bauxite Residue. Minerals 2021, 11. [Google Scholar] [CrossRef]
- Pfitzner, K.S.; Harford, A.J.; Whiteside, T.G.; Bartolo, R.E. Mapping Magnesium Sulfate Salts from Saline Mine Discharge with Airborne Hyperspectral Data. Science of The Total Environment 2018, 640–641, 1259–1271. [Google Scholar] [CrossRef]
- Yin, F.; Wu, M.; Liu, L.; Zhu, Y.; Feng, J.; Yin, D.; Yin, C.; Yin, C. Predicting the Abundance of Copper in Soil Using Reflectance Spectroscopy and GF5 Hyperspectral Imagery. International Journal of Applied Earth Observation and Geoinformation 2021, 102, 102420. [Google Scholar] [CrossRef]
- Mars, J.C.; Crowley, J.K. Mapping Mine Wastes and Analyzing Areas Affected by Selenium-Rich Water Runoff in Southeast Idaho Using AVIRIS Imagery and Digital Elevation Data. Remote Sens Environ 2003, 84, 422–436. [Google Scholar] [CrossRef]
- Kasmaeeyazdi, S.; Dinelli, E.; Braga, R. Mapping Co–Cr–Cu and Fe Occurrence in a Legacy Mining Waste Using Geochemistry and Satellite Imagery Analyses. Applied Sciences 2022, 12, 1928. [Google Scholar] [CrossRef]
- Kasmaeeyazdi, S.; Braga, R.; Tinti, F.; Mandanici, E. Mapping Bauxite Mining Residues Using Remote Sensing Techniques. In Proceedings of the International Conference on Raw Materials and Circular Economy; MDPI: Basel Switzerland, January 11 2022; p. 91.
- Koellner, N. ReMon - Remote Monitoring of Tailings Using Satellites and Drones 2020.
- Choe, E.; van der Meer, F.; van Ruitenbeek, F.; van der Werff, H.; de Smeth, B.; Kim, K.-W. Mapping of Heavy Metal Pollution in Stream Sediments Using Combined Geochemistry, Field Spectroscopy, and Hyperspectral Remote Sensing: A Case Study of the Rodalquilar Mining Area, SE Spain. Remote Sens Environ 2008, 112, 3222–3233. [Google Scholar] [CrossRef]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Kumar, S.; Chowdary, V.M.; Singh, C.P.; Sahoo, S.; Basumatary, S. Assessment of Foliar Dust Using Hyperion and Landsat Satellite Imagery for Mine Environmental Monitoring in an Open Cast Iron Ore Mining Areas. J Clean Prod 2019, 218, 993–1006. [Google Scholar] [CrossRef]
- Ong, C.C.H.; Cudahy, T.J.; Caccetta, M.S.; Piggott, M.S. Deriving Quantitative Dust Measurements Related to Iron Ore Handling from Airborne Hyperspectral Data. Mining Technology 2003, 112, 158–163. [Google Scholar] [CrossRef]
- Pascucci, S.; Belviso, C.; Cavalli, R.M.; Palombo, A.; Pignatti, S.; Santini, F. Using Imaging Spectroscopy to Map Red Mud Dust Waste: The Podgorica Aluminum Complex Case Study. Remote Sens Environ 2012, 123, 139–154. [Google Scholar] [CrossRef]
- Maurais, J.; Orban, F.; Dauphinais, E.; Ayotte, P. Monitoring Moisture Content and Evaporation Kinetics from Mine Slurries through Albedo Measurements to Help Predict and Prevent Dust Emissions. R Soc Open Sci 2021, 8, 210414. [Google Scholar] [CrossRef] [PubMed]
- Ogen, Y.; Denk, M.; Glaesser, C.; Eichstaedt, H. A Novel Method for Predicting the Geochemical Composition of Tailings with Laboratory Field and Hyperspectral Airborne Data Using a Regression and Classification-Based Approach. Eur J Remote Sens 2022, 55, 453–470. [Google Scholar] [CrossRef]
- Merrill, J.; Voisin, L. Application of the HyLogger-3 to the Characterization of Mineral and Metallurgical Residues. In Proceedings of the APCOM 2015; Fairbanks, AK; 2015. [Google Scholar]
- He, J.; DuPlessis, L.; Barton, I. Heap Leach Pad Mapping with Drone-Based Hyperspectral Remote Sensing at the Safford Copper Mine, Arizona. Hydrometallurgy 2022, 211, 105872. [Google Scholar] [CrossRef]
- Guan, R.; Li, Z.; Li, T.; Li, X.; Yang, J.; Chen, W. Classification of Heterogeneous Mining Areas Based on ResCapsNet and Gaofen-5 Imagery. Remote Sens (Basel) 2022, 14, 3216. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, D.; Zhang, L.; Jiao, Q.; Li, Q. Application of Hyperspectral Remote Sensing for Environment Monitoring in Mining Areas. Environ Earth Sci 2012, 65, 649–658. [Google Scholar] [CrossRef]
- Buczyńska, A.; Blachowski, J.; Bugajska-Jędraszek, N. Analysis of Post-Mining Vegetation Development Using Remote Sensing and Spatial Regression Approach: A Case Study of Former Babina Mine (Western Poland). Remote Sens (Basel) 2023, 15, 719. [Google Scholar] [CrossRef]
- Weiersbye, I.; Margalit, N.; Feingersh, T.; Revivo, G.; Stark, R.; Zur, Y.; Heller, D.; Braun, O.; Cukrowska, E. Use of Airborne Hyper-Spectral Remote Sensing (HSRS) to Focus Remediation and Monitor Vegetation Processes on Gold Mining Landscapes in South Africa.; 2006; pp. 601–611.
- Song, W.; Song, W.; Gu, H.; Li, F. Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas. Int J Environ Res Public Health 2020, 17, 1846. [Google Scholar] [CrossRef]
- Götze, C.; Beyer, F.; Gläßer, C. Pioneer Vegetation as an Indicator of the Geochemical Parameters in Abandoned Mine Sites Using Hyperspectral Airborne Data. Environ Earth Sci 2016, 75, 613. [Google Scholar] [CrossRef]
- Pi-Puig, T.; Solé, J.; Gómez Cruz, A. Mineralogical Study and Genetic Model of Efflorescent Salts and Crusts from Two Abandoned Tailings in the Taxco Mining District, Guerrero (Mexico). Minerals 2020, 10, 871. [Google Scholar] [CrossRef]
- Percival, J.B.; White, H.P.; Goodwin, T.A.; Parsons, M.B.; Smith, P.K. Mineralogy and Spectral Reflectance of Soils and Tailings from Historical Gold Mines, Nova Scotia. Geochemistry: Exploration, Environment, Analysis 2014, 14, 3–16. [Google Scholar] [CrossRef]
- Blumberg, A.; Schodlok, M.C. The Synergistic Use of Multi-Scale Remote Sensing Data for the Identification of Hydrothermal Alteration Patterns in Los Frailes, Spain. International Journal of Applied Earth Observation and Geoinformation 2022, 114, 103034. [Google Scholar] [CrossRef]
- Asadzadeh, S.; Souza Filho, C.R. de; Nanni, M.R.; Batezelli, A. Multi-Scale Mapping of Oil-Sands in Anhembi (Brazil) Using Imaging Spectroscopy. International Journal of Applied Earth Observation and Geoinformation 2019, 82, 101894. [Google Scholar] [CrossRef]
- Boardman, J.W. Geometric Mixture Analysis of Imaging Spectrometry Data. In Proceedings of the Proceedings of IGARSS ’94 - 1994 IEEE International Geoscience and Remote Sensing Symposium; Pasadena, CA, USA, 1994; pp. 2369–2371.
- Boardman, J.W. Automating Spectral Unmixing of AVIRIS Data Using Convex Geometry Concepts. In Proceedings of the JPL, Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop; p. p 11-14; 1995; pp. 11–14.
- Heylen, R.; Parente, M.; Gader, P. A Review of Nonlinear Hyperspectral Unmixing Methods. IEEE J Sel Top Appl Earth Obs Remote Sens 2014, 7, 1844–1868. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Imbiriba, T.; Bermudez, J.C.M.; Richard, C.; Chanussot, J.; Drumetz, L.; Tourneret, J.-Y.; Zare, A.; Jutten, C. Spectral Variability in Hyperspectral Data Unmixing: A Comprehensive Review. IEEE Geosci Remote Sens Mag 2021, 9, 223–270. [Google Scholar] [CrossRef]
- Halimi, A.; Dobigeon, N.; Tourneret, J.-Y. Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability. IEEE Transactions on Image Processing 2015, 24, 4904–4917. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J Sel Top Appl Earth Obs Remote Sens 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Thompson, D.R.; Mandrake, L.; Gilmore, M.S.; Castano, R. Superpixel Endmember Detection. IEEE Transactions on Geoscience and Remote Sensing 2010. [Google Scholar] [CrossRef]
- Fridman, A.; Høye, G.; Løke, T. Resampling in Hyperspectral Cameras as an Alternative to Correcting Keystone in Hardware, with Focus on Benefits for Optical Design and Data Quality. Optical Engineering 2014, 53, 053107. [Google Scholar] [CrossRef]
- Høye, G.; Løke, T.; Fridman, A. Method for Quantifying Image Quality in Push-Broom Hyperspectral Cameras. Optical Engineering 2015, 54, 053102. [Google Scholar] [CrossRef]
- Swayze, G.A.; Clark, R.N.; Goetz, A.F.H.; Livo, K.E.; Breit, G.N.; Kruse, F.A.; Sutley, S.J.; Snee, L.W.; Lowers, H.A.; Post, J.L.; et al. Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy. Economic Geology 2014, 109, 1179–1221. [Google Scholar] [CrossRef]
- Bedini, E.; Chen, J. Prospection for Economic Mineralization Using PRISMA Satellite Hyperspectral Remote Sensing Imagery: An Example from Central East Greenland. 2022 2022, 12, 7. [Google Scholar] [CrossRef]
- Schodlok, M.C.; Frei, M.; Segl, K. Implications of New Hyperspectral Satellites for Raw Materials Exploration. Mineral Economics 2022, 35, 495–502. [Google Scholar] [CrossRef]
- Chirico, R.; Mondillo, N.; Laukamp, C.; Mormone, A.; Di Martire, D.; Novellino, A.; Balassone, G. Mapping Hydrothermal and Supergene Alteration Zones Associated with Carbonate-Hosted Zn-Pb Deposits by Using PRISMA Satellite Imagery Supported by Field-Based Hyperspectral Data, Mineralogical and Geochemical Analysis. Ore Geol Rev 2023, 152, 105244. [Google Scholar] [CrossRef]
- Dong, X.; Gan, F.; Li, N.; Zhang, S.; Li, T. Mineral Mapping in the Duolong Porphyry and Epithermal Ore District, Tibet, Using the Gaofen-5 Satellite Hyperspectral Remote Sensing Data. Ore Geol Rev 2022, 151, 105222. [Google Scholar] [CrossRef]
- Kasmaeeyazdi, S.; Mandanici, E.; Balomenos, E.; Tinti, F.; Bonduà, S.; Bruno, R. Mapping of Aluminum Concentration in Bauxite Mining Residues Using Sentinel-2 Imagery. Remote Sens (Basel) 2021, 13, 1517. [Google Scholar] [CrossRef]
- Blumberg, A.; Schodlok, M.C. The Synergistic Use of Multi-Scale Remote Sensing Data for the Identification of Hydrothermal Alteration Patterns in Los Frailes, Spain. International Journal of Applied Earth Observation and Geoinformation 2022, 114, 103034. [Google Scholar] [CrossRef]
- Kruse, F.A.; Bedell, R.L.; Taranik, J.V.; Peppin, W.A.; Weatherbee, O.; Calvin, W.M. Mapping Alteration Minerals at Prospect, Outcrop and Drill Core Scales Using Imaging Spectrometry. Int J Remote Sens 2012, 33, 1780–1798. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sens (Basel) 2017. [Google Scholar] [CrossRef]
- Dalm, M.; Buxton, M.W.N.; Van Ruitenbeek, F.J.A.; Voncken, J.H.L. Application of Near-Infrared Spectroscopy to Sensor Based Sorting of a Porphyry Copper Ore. Miner Eng 2014, 58, 7–16. [Google Scholar] [CrossRef]
- Dalm, M.; Buxton, M.W.N.; van Ruitenbeek, F.J.A. Discriminating Ore and Waste in a Porphyry Copper Deposit Using Short-Wavelength Infrared (SWIR) Hyperspectral Imagery. Miner Eng 2017, 105, 10–18. [Google Scholar] [CrossRef]
- Lypaczewski, P.; Rivard, B. Estimating the Mg# and AlVI Content of Biotite and Chlorite from Shortwave Infrared Reflectance Spectroscopy: Predictive Equations and Recommendations for Their Use. International Journal of Applied Earth Observation and Geoinformation 2018, 68, 116–126. [Google Scholar] [CrossRef]
- Thiele, S. Hylite - An Open-Source Python Toolbox for Spectral Geology 2020.
- Salles, R. dos R.; de Souza Filho, C.R.; Cudahy, T.; Vicente, L.E.; Monteiro, L.V.S. Hyperspectral Remote Sensing Applied to Uranium Exploration: A Case Study at the Mary Kathleen Metamorphic-Hydrothermal U-REE Deposit, NW, Queensland, Australia. J Geochem Explor 2017, 179, 36–50. [Google Scholar] [CrossRef]









| Name (Service provider/ brand/ name of instrument) | Wavelength range | Type of data acquisition | Spectral bands and sampling |
| NEO/HySpex Mjolnir VS-620 |
VNIR (400 – 1000 nm) SWIR (970 – 2500 nm) |
Pushbroom | 200 bands @ 3nm; 300 bands @ 5.1 nm |
| Headwall Nano HP | VNIR (400 – 1000 nm) | Pushbroom | 340 bands @ 1.76 nm |
| Headwall Micro 640 | SWIR (900 – 2500 nm) | Pushbroom | 267 bands @ 6 nm |
| Headwall Co-Aligned HP | VNIR (400 – 1000 nm) SWIR (900 – 2500 nm |
Pushbroom | 340 bands @ 1.76nm; 267 bands @ 6 nm |
| Senop Rikola | VNIR (500 – 900 nm) | Frame-based snapshot | 50 bands @ 8 nm |
| Senop HSC-2 | VNIR (500 – 900 nm) | Frame-based snapshot | up to 1000 freely selectable bands @ 6 – 18 nm, |
| Specim AFX10 | VNIR (400 – 1000 nm) | Pushbroom | 224 bands @ 2.68 nm |
| Specim AFX17 | VIS-NIR (400 – 1700 nm) | Pushbroom | 224 bands @ 3.5 nm |
| Cubert GmbH ULTRIS X20 | UV-VNIR (350 – 1000 nm) | Snapshot | 164 bands @ 4 nm |
| Telops Hyper-Cam Nano (announced April 2024) | VIS – NIR (400 – 1700 nm) | - | - |
| Haip Solutions – Black Bird 2 | VNIR (500 – 1000 nm) | Hovering Linescanner | 100 bands @ 5 nm |
| Resonon Pika L | VNIR (400 – 1000 nm) | Pushbroom | 281 bands @ 2.7 nm |
| Resonon Pika IR-L | NIR (925 – 1700 nm | Pushbroom | 236 bands @ 5.9 nm |
| BaySpec OCI-UAV | VNIR (600 – 1000 nm) | Pushbroom and Snapshot | 100 bands @ 5 nm |
| IMEC | VNIR (460 – 900 nm) | Frame-based snapshot, multispectral | 31 bands |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
