Submitted:
13 July 2024
Posted:
15 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Surface and Ground Water Sampling
2.3. Physico-Chemical and Heavy Metals Analysis
2.3. Quality Control
2.4. Heavy Metals Pollution and Health Risk Assessment
2.4.1. Pollution Evaluation Index (PEI)
2.4.2. Metal Index (MI)
2.4.3. Heavy Metals Pollution Index (HPI)
2.4.4. Heavy Metal Evaluation Index (HEI)
2.4.5. Health Risk Assessment
2.5. Statistical Analysis
3. Results and Discussions
3.1. Physico-Chemical Characteristics of Surface Water
| Location | Sample code | pH | EC | Cd | Mn | Cu | Ni | Pb |
|---|---|---|---|---|---|---|---|---|
| mean ± SD | mean ± SD (µS/cm) | mean ± SD (mg/L) | ||||||
| Abbottabad | SW1 | 7.3 ±0.2 | 16193 ±1149.5 | 0.04±0.011 | 2.34±0.173 | - | 2.5 ±0.3 | 0.19 ±0.011 |
| SW2 | 7.2 ±0.1 | 14144.7 ± 1278.1 | 0.01±0.001 | 0.11±0.021 | - | 2.7±0.23 | 0.01 ±0.003 | |
| SW4 | 6.9 ±0.05 | 12195 ±1134.2 | 0.01±0.001 | 0.01±0.001 | - | 1.9±0.01 | 0.01 ±0.002 | |
| SW5 | 6.8 ±0.1 | 15190.23 ±1049.5 | 0.02±0.003 | 0.41±0.003 | - | 2.56±0.2 | 0.11±0.013 | |
| Overall mean | 7.05 ±0.24 | 14430.73 ± 1152.82 |
0.02 ±0.005 | 0.71 ±0.05 | - | 2.41 ± 0.17 | 0.08±0.007 | |
| Bannu | SW1 | 7.2±0.13 | 12026.4 ±109.7 | 0.1±0.03 | 1.74±0.125 | - | 1.5±0.031 | 0.95±0.08 |
| SW2 | 7.1±0.16 | 11882 ±1195.8 | 0.02±0.001 | - | - | 1.6±0.042 | 0.02±0.002 | |
| SW3 | 7±0.1 | 24144 ±1254.2 | 0.08±0.012 | 1.14±0.178 | - | 1.5±0.01 | 0.57±0.03 | |
| SW5 | 6.7±0.14 | 16192.6 ±1189.7 | 0.02±0.001 | 0.50±0.037 | - | 1.36±0.037 | 1.34±0.07 | |
| Overall mean | 7.00 ±0.22 | 16061.25 ± 937.35 |
0.05 ±0.01 | 0.85 ± 0.08 | 1.49±0.02 | 0.72 ±0.04 | ||
| Peshawar | SW1 | 7.4±0.1 | 19295.3±246.6 | 0.03±0.001 | 1.13±0.023 | - | 2.7 ±0.512 | 1.03±0.011 |
| SW2 | 7.2±0.11 | 18124.3±675.6 | 0.02±0.001 | 0.02±0.025 | - | 2.7 ±0.311 | 1.09±0.019 | |
| SW3 | 7±0.2 | 21686.3±1392.4 | 0.001±0.0003 | 1.1±0.07 | - | 1.1 ±0.116 | 0.03±0.004 | |
| SW5 | 6.9±0.05 | 20190.43± 794.9 | 0.03 ±0.013 | 0.02±0.005 | - | 2.7 ±0.194 | 0.20±0.0218 | |
| Overall mean | 7.12 ±0.20 | 19824.08 ± 893.23 | 0.02 ±0.008 | 0.57 ±0.03 | 2.3 ±0.30 | 0.53 ±0.03 | ||
| NEQS | 6-9 | - | 0.1 | 1.5 | 1.0 | 1.0 | 0.5 | |
3.2. Heavy Metal Analysis of Groundwater
| Location | Sample code | pH | EC | Cd | Mn | Cu | Ni | Pb |
|---|---|---|---|---|---|---|---|---|
| mean ±SD | mean ±SD (µS/cm) | Mean ±SD (mg/L) | ||||||
| Abbottabad | GW1 | 7.08±0.17 | 599.48±122.23 | - | 0.001±0.00 | - | 1.09±0.11 | - |
| GW2 | 7.00±0.2 | 794.67±73.51 | - | 0.002±0.001 | - | 1.24±0.15 | - | |
| GW3 | 7.08±0.3 | 645±117.44 | - | 0.003±0.001 | - | 0.78±0.01 | - | |
| GW4 | 7.07±0.29 | 243.33±78.69 | - | 0.01±0.003 | - | 1.13±0.1 | - | |
| GW5 | 7.02±0.27 | 677.67±116.08 | - | 0.005±0.001 | - | 2.67±0.17 | - | |
| GW6 | 7.07±0.31 | 1043±228.58 | - | - | - | 4.34±0.35 | - | |
| Overall mean | 7.05 ±0.26 |
667.19 ±122.76 | - | 0.005±0.001 | - | 1.88 ±0.15 |
- | |
| Bannu | GW1 | 7.10±0.2 | 929.7±215.16 | - | 0.56±0.02 | - | 0.38±0.13 | - |
| GW2 | 6.97±0.15 | 1072.7±267.74 | - | 0.69±0.07 | - | 1.37±0.05 | - | |
| GW3 | 7.30±0.11 | 531.37±68.58 | - | 0.52±0.03 | - | 0.41±0.01 | - | |
| GW4 | 7.29±0.11 | 420.7±18.03 | - | 0.51±0.13 | - | 0.33±0.07 | - | |
| GW5 | 7.14±0.26 | 664.37±118.58 | - | 0.55±0.11 | - | 0.41 ±0.11 | - | |
| GW6 | 7.03±0.13 | 486.03±84.58 | - | 0.54±0.08 | - | 0.32±0.03 | - | |
| Overall mean | 7.14 ± 0.17 | 684.15 ± 128.78 | - | 0.561 ± 0.07 | - | 0.52 ± 0.07 |
- | |
| Peshawar | GW1 | 6.94±0.13 | 932.13 ±167.33 | - | 0.01±0.001 | - | 2.34±0.13 | - |
| GW2 | 6.87±0.12 | 985.70 ±268.16 | - | 0.002±0.001 | - | 2.66±0.01 | - | |
| GW3 | 7.27±0.05 | 429.74 ±73.58 | - | 0.01±0.003 | - | 1.25 ±0.12 |
- | |
| GW4 | 7.05±0.1 | 538.33±61.74 | - | 0.01±0.002 | - | 2.03±0.22 | - | |
| GW5 | 6.99±0.1 | 675.31 ±139.03 | - | - | - | 2.53 ±0.04 |
- | |
| GW6 | 6.73±0.2 | 489.03 ±68.58 | - | - | - | 1.28 ±0.19 |
- | |
| Overall mean | 6.98 ±0.12 |
675.03 ±113.07 | - | 0.063 ± 0.002 | 2.02 ± 0.12 |
- | ||
| NEQS | 6.5-8.5 | - | 0.01 | 0.5 | 2 | 0.02 | 0.05 | |
| WHO | 6.5-8.5 | - | 0.003 | 0.5 | 2 | 0.02 | 0.01 | |
3.3. Pearson’s Correlation Analysis


3.4. Principal Component Analysis
| Parameters | Abbottabad | Bannu | Peshawar | |||
|---|---|---|---|---|---|---|
| PC 1 | PC 2 | PC 1 | PC 2 | PC 1 | PC 2 | |
| pH | -0.26 | 0.34 | -0.50 | 0.07 | -0.37 | 0.80 |
| EC | 0.70 | 0.05 | 0.55 | 0.14 | 0.57 | 0.28 |
| Cd | - | - | - | - | - | - |
| Mn | -0.44 | 0.65 | -0.45 | 0.76 | -0.50 | 0.23 |
| Ni | 0.50 | 0.68 | 0.49 | 0.63 | 0.53 | 0.48 |
| Pb | - | - | - | - | - | - |
| Eigenvalue | 1.95 | 1.09 | 2.81 | 0.62 | 2.53 | 0.86 |
| % of variance | 48.70 | 27.28 | 70.30 | 15.38 | 63.25 | 21.46 |
| % Cumulative variance | 48.70 | 75.98 | 70.30 | 85.68 | 63.25 | 84.71 |
3.5. Ground Water Pollution Assessment

| Exposure parameters | Symbols | Units | Value |
|---|---|---|---|
| Ingestion rate | IR | L/day | 2.3 |
| Average time | AT | years | 67.9 |
| Exposure duration | ED | years | 67.9 |
| Exposure frequency | EF | days/year | 365 |
| Body weight | BW | kg | 59 |
| Heavy metals | Oral RfD (mg/kg/day) |
|---|---|
| Cd | 0.000057 |
| Mn | 0.013 |
| Cu | 0.04 |
| Ni | 0.0022 |
| Pb | 0.00035 |

4. Conclusion
Acknowledgments
Conflicts of Interest
References
- Ishchenko, V. and Vasylkivskyi, I., 2020. Environmental pollution with heavy metals: case study of the household waste. Sustainable production: Novel trends in energy, environment and material systems, pp.161-175.
- Bansal, R. , Hans, M. and Bansal, E., 2023. Impact of Solid Waste Disposal on Inland Water Wetlands: Solid Waste Management. In Handbook of Research on Safe Disposal Methods of Municipal Solid Wastes for a Sustainable Environment (pp. 285-295). IGI Global.
- Ma, S., Zhou, C., Pan, J., Yang, G., Sun, C., Liu, Y., Chen, X. and Zhao, Z., 2022. Leachate from municipal solid waste landfills in a global perspective: Characteristics, influential factors and environmental risks. Journal of Cleaner Production, 333, p.130234.
- Adamcová, D., Radziemska, M., Ridošková, A., Bartoň, S., Pelcová, P., Elbl, J., Kynický, J., Brtnický, M. and Vaverková, M.D., 2017. Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere, 185, pp.1011-1018.
- Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R. and Sadeghi, M., 2021. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in pharmacology, 12, p.643972.
- Rahman, Z. and Singh, V.P., 2019. The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental monitoring and assessment, 191, pp.1-21.
- Bashir, S.M., Niyi, A.J., Ngozi, I.J., Evaristus, O.E. and Onyinyechi, O.E., 2019. Trace Metals Content of Soil around a Municipal Solid Waste Dumpsite in Gombe, Nigeria: Assessing the Ecological and Human Health Impact. Journal of Chemical Health Risks, 9(3).
- Olagunju, E., Badmus, O., Ogunlana, F. and Babalola, M., 2018. Environmental impact assessment of waste dumpsite using integrated geochemical and physico-chemical approach: A case study of Ilokun waste dumpsite, Ado-Ekiti, Southern Nigeria. Civil Engineering Research Journal, 4(2), pp.001-0013.
- Ihedioha, J.N., Ukoha, P.O. and Ekere, N.R., 2017. Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environmental geochemistry and health, 39, pp.497-515.
- Abasi, O.I., Esom, N.E., Ezekiel, I.O. and Philip, O.N., 2015. Evaluation of pollution status of heavy metals in the groundwater system around open dumpsites in Abakaliki urban, Southeastern Nigeria. African Journal of Environmental Science and Technology, 9(7), pp.600-609.
- Ajah, K.C., Ademiluyi, J. and Nnaji, C.C., 2015. Spatiality, seasonality and ecological risks of heavy metals in the vicinity of a degenerate municipal central dumpsite in Enugu, Nigeria. Journal of Environmental Health Science and Engineering, 13, pp.1-15.
- Gandhi, D., Rudrashetti, A.P. and Rajasekaran, S., 2022. The impact of environmental and occupational exposures of manganese on pulmonary, hepatic, and renal functions. Journal of Applied Toxicology, 42(1), pp.103-129.
- Madden, E.F. and Fowler, B.A., 2000. Mechanisms of nephrotoxicity from metal combinations: a review. Drug and chemical toxicology, 23(1), pp.1-12.
- Khalaf, E.M., Taherian, M., Almalki, S.G., Asban, P., Kareem, A.K., Alhachami, F.R., Almulla, A.F., Romero-Parra, R.M., Jawhar, Z.H., Kiani, F. and Noroozi Manesh, I., 2023. Relationship between exposure to heavy metals on the increased health risk and carcinogenicity of urinary tract (kidney and bladder). Reviews on Environmental Health, (0). [CrossRef]
- Hejazy, M., Koohi, M.K., Bassiri Mohamad Pour, A. and Najafi, D., 2018. Toxicity of manufactured copper nanoparticles-A review. Nanomedicine Research Journal, 3(1), pp.1-9.
- Roychoudhury, S., Nath, S., Massanyi, P., Stawarz, R., Kacaniova, M. and Kolesarova, A., 2016. Copper-induced changes in reproductive functions: in vivo and in vitro effects. Physiological research, 65(1).
- Das, K.K., Das, S.N. and Dhundasi, S.A., 2008. Nickel, its adverse health effects & oxidative stress. Indian journal of medical research, 128(4), pp.412-425.
- Lidsky, T.I. and Schneider, J.S., 2003. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain, 126(1), pp.5-19.
- Khyber Pakhtunkhwa environmental protection agency, 2016. Climate change policy. https://epakp.gov.pk/wp-content/uploads/2022/03/KP-Climate-Change-Policy-Approved-2017.pdf.
- Boateng, T.K., Opoku, F. and Akoto, O., 2019. Heavy metal contamination assessment of groundwater quality: a case study of Oti landfill site, Kumasi. Applied water science, 9(2), p.33.
- Prasanna, M.V., Praveena, S.M., Chidambaram, S., Nagarajan, R. and Elayaraja, A., 2012. Evaluation of water quality pollution indices for heavy metal contamination monitoring: a case study from Curtin Lake, Miri City, East Malaysia. Environmental Earth Sciences, 67, pp.1987-2001.
- Tamasi, G. and Cini, R., 2004. Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. Science of the total environment, 327(1-3), pp.41-51.
- Lyulko, I., Ambalova, T. and Vasiljeva, T., 2001. To integrated water quality assessment in Latvia. In MTM (monitoring tailor-made) III, proceedings of international workshop on information for sustainable water management, Netherlands (pp. 449-452).
- Prasad B. and Bose J., Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environmental Geology, 41(1), 183- 188(2001).
- Mohan, S. V.; Nithila, P.; Reddy, S. J., (1996). Estimation of heavy metal in drinking water and development of heavy metal pollution index. J. Environ. Sci. Health A., 31 (2), 283-289.
- Edet AE, Offiong OE (2002) Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo–Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal 57:295–304.
- Wongsasuluk, P., Chotpantarat, S., Siriwong, W. and Robson, M., 2014. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental geochemistry and health, 36, pp.169-182.
- Lim, H.S., Lee, J.S., Chon, H.T. and Sager, M., 2008. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of geochemical exploration, 96(2-3), pp.223-230.
- Aboyeji, O.S. and Eigbokhan, S.F., 2016. Evaluations of groundwater contamination by leachates around Olusosun open dumpsite in Lagos metropolis, southwest Nigeria. Journal of environmental management, 183, pp.333-341. [CrossRef]
- Bhalla, B., Saini, M.S. and Jha, M.K., 2013. Effect of age and seasonal variations on leachate characteristics of municipal solid waste landfill. International Journal of Research in Engineering and Technology, 2(8), pp.223-232.
- Biswas, A.K., Kumar, S., Babu, S.S., Bhattacharyya, J.K. and Chakrabarti, T., 2010. Studies on environmental quality in and around municipal solid waste dumpsite. Resources, Conservation and Recycling, 55(2), pp.129-134.
- Daniel, A.N., Ekeleme, I.K., Onuigbo, C.M., Ikpeazu, V.O. and Obiekezie, S.O., 2021. Review on effect of dumpsite leachate to the environmental and public health implication. GSC Advanced Research and Reviews, 7(2), pp.051-060. [CrossRef]
- Najafi Saleh, H., Valipoor, S., Zarei, A., Yousefi, M., Baghal Asghari, F., Mohammadi, A.A., Amiri, F., Ghalehaskar, S. and Mousavi Khaneghah, A., 2020. Assessment of groundwater quality around municipal solid waste landfill by using Water Quality Index for groundwater resources and multivariate statistical technique: a case study of the landfill site, Qaem Shahr City, Iran. Environmental geochemistry and health, 42, pp.1305-1319.
- Przydatek, G. and Kanownik, W., 2019. Impact of small municipal solid waste landfill on groundwater quality. Environmental Monitoring and Assessment, 191, pp.1-14.
- Ohwoghere-Asuma, O. and Aweto, K.E., 2013. Leachate characterization and assessment of groundwater and surface water qualities near municipal solid waste dump site in Effurun, Delta State, Nigeria. Journal of Environment and earth Science, 3(9), pp.126-134.
- Hussein, M., Yoneda, K., Mohd-Zaki, Z., Amir, A. and Othman, N., 2021. Heavy metals in leachate, impacted soils and natural soils of different landfills in Malaysia: An alarming threat. Chemosphere, 267, p.128874.
- Tahiri, A.A., Laziri, F., Yachaoui, Y., El Allaoui, A. and Tahiri, A.H., 2017. Heavy metals leached from the waste from the landfill in the city of Meknes, and their impact on groundwater. J. Mater. Environ. Sci, 8, pp.1004-1014.
- Chaab, A., Moezzi, A.A., Sayyad, G.A. and Chorom, M., 2016. CASE STUDY: EFFECT OF COMPOST AND HUMIC ACID IN MOBILITY AND CONCENTRATION OF CADMIUM AND CHROMIUM IN SOIL AND PLANT.
- Kubier, A., Wilkin, R.T. and Pichler, T., 2019. Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, p.104388.
- Rékási, M. and Filep, T., 2015. Factors determining Cd, Co, Cr, Cu, Ni, Mn, Pb and Zn mobility in uncontaminated arable and forest surface soils in Hungary. Environmental Earth Sciences, 74, pp.6805-6817.
- Rinklebe, J. and Shaheen, S.M., 2014. Assessing the mobilization of cadmium, lead, and nickel using a seven-step sequential extraction technique in contaminated floodplain soil profiles along the central Elbe River, Germany. Water, Air, & Soil Pollution, 225, pp.1-20.
- Singh, J., Rawat, K.S. and Kumar, A., 2013. Mobility of cadmium in sewage sludge applied soil and its uptake by radish (Raphanus sativus L.) and spinach (Spinacia oleracea L.). Int. J. Agric. Food Sci. Technol, 4(4), pp.291-296.
- Onyekwelu, I.L. and Aghamelu, O.P., 2019. Impact of organic contaminants from dumpsite leachates on natural water sources in the Enugu Metropolis, southeastern Nigeria. Environmental monitoring and assessment, 191(9), p.543.
- Ishchenko, V., 2019. Heavy metals in municipal waste: the content and leaching ability by waste fraction. Journal of Environmental Science and Health, Part A, 54(14), pp.1448-1456.
- Backman, B., Bodiš, D., Lahermo, P., Rapant, S. and Tarvainen, T., 1998. Application of a groundwater contamination index in Finland and Slovakia. Environmental geology, 36, pp.55-64.
- WHO (2011) Guidelines for drinking-water quality (4th ed.). Geneva, Switzerland.
- Rehman, F. and Khan, A., 2022. Environmental impacts of urbanization encroachment in the lowlands of khyber pakhtunkhwa, Pakistan. Sustainability, 14(19), p.11959.
- Akmal, T. and Jamil, F., 2021. Assessing health damages from improper disposal of solid waste in metropolitan Islamabad–Rawalpindi, Pakistan. Sustainability, 13(5), p.2717.
- Le, P.G., Le, H.A., Dinh, X.T. and Nguyen, K.L.P., 2023. Development of sustainability assessment criteria in selection of municipal solid waste treatment technology in developing countries: a case of Ho Chi Minh City, Vietnam. Sustainability, 15(10), p.7917.
- Shahab, S. and Anjum, M., 2022. Solid waste management scenario in india and illegal dump detection using deep learning: an AI approach towards the sustainable waste management. Sustainability, 14(23), p.15896.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).